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Abstract: At first, we state some results in arXiv: 0707.2639, and then, using a positive kinetic
energy coordinate condition given by arXiv: 0707.2639, we present an action with positive kinetic

energy term for general relativity. Based on this action, the corresponding theory of canonical
quantization is discussed.

1 Some results in arXiv: 0707.2639
1.1 Basic form of the theory

Considering the tetrad field ef;’ by which the metric tensor g, is
= enel =ele, (1)
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where Tapi is the Ricci’s coefficients of rotation:
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The Einstein-Hilbert action
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The corresponding Euler-Lagrange equations
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There are six identities and ten independent equations being equivalent to the Einstein equations
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in the sixteen Euler-Lagrange equations.

1.2 The Schwinger time gauge condition
el =0, a=1,2,3, (3)
Under the condition (3), (2) is simplified to the following form
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In (4), time derivative term only appears in Ly, and there is not the term e(‘io in Lg.

The sixteen Euler-Lagrange equations ©"“ =0 under the condition (3) read
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Because there is not e; in e8‘3e‘LG , there is not the corresponding equation ®° =0 in

the Euler-Lagrange equations. On the other hand, we can prove
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It shows that @ =0 does not provide new independent equation.

The rest nine equations are
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where U’ and S% are given by (4) and (7), respectively;
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1.3 The non-positive definiteness of the quadratic term of time derivative in L

The quadratic term of time derivative in Ly, given by (4) is non-positive definitive. This

conclusion is obvious from the following expression:
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Lgo can be written to the following form:
LGO :egleg(gl g] g g /a]rvlm ’ (10)
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where F,u‘/:E(gm,_/+g,1/,i—gy,,1), gl =eie¥ =g" +efel  and g¥gy =5

1.4 A coordinate condition insuring positive definiteness of the kinetic energy term in L,

The following formula is proved:
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From (11) we see that if we choose
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then
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and the quadratic term of time derivative in Lg, given by (9) is thus positive definitive.

1.5 A group of variable substitution

Using (3) and (1) we have



) -l R ) )
0_ :_ 0 (0 . i 0. |4 0|3 |. i b _ b j
e; =0,i=1,2,3; ¢; —[eo) ;e =—ejene; s 1/—g—‘ e‘—eo‘ e‘, eze; =0y ; el e, =6/, (14)

2 . L .o
g =), g% =—elel . g" | =—ejel +ege?
0 . . (15)
£00 :_[eo) +ege&0, &oi :ege&i, & :efe&j~
3 X s ~ N2 A ANY) . ~ a2
g33—2(e3) >0, g2 & :(eée?—eée%) +(eée§’—e;e;] +(e§e§’—e3ze§) >0,
) g3 833 (16)
312
|gl~j|: e‘ >0.
Based on (16), we define
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Taking advantage of (17), | g y| as an independent variable is separated from the six dynamical

variables g, . Contrarily, we can obtain easily the expression
g =8;(h,),u=0,12,3,4,5 (18)

from (17). And, if there does not exist gravitation field, and g, =g, =g =1,

1.6 The Cholesky decomposition

For the purpose that ef can be expressed by g, and, further, by 4, (=0, 1,2, 3, 4,5)
via (18):
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we add following gauge conditions

€ =0, a<u, (19)
combining the last formula in (15), e, is thus a triangular matrix:
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The form of e, given by (20) is so called Cholesky decomposition in algebra.

Based on (20), from g, = eg e, in(15) we have
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2 An action with positive Kinetic energy term for general relativity

In §1, we state some results in arXiv:0707.2639, one among the results is that the quadratic
term of time derivative in Ly, given by (4) is non-positive definitive; but, generally speaking,
the quadratic term of time derivative in an action corresponds to kinetic energy of the system, if
this term was non-positive, then it was weird. On the other hand, the non-positive definiteness of
the quadratic term of time derivative in an action leads to the principle of variation failure!?.

On the other hand, yet based on the results given by §1, we can present an action with
positive kinetic energy term for general relativity.

Substitute (13) into (5), (6) and (8), we obtain the Einstein equations with the character (13)
under the condition (3), whose concrete forms no longer be written down here.

In (9), the negative kinetic energy termin Ly, is
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It is important that we can prove that the action
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can leads to the Einstein equations with the character (13) under the condition (3), where Lg is

given by (4); especially, in Lgp , time derivative terms only appear in the term
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It is obvious that there is not any negative kinetic energy term in Lpg , we therefore can use
(25) to quantize gravitation field by various methods of quantization. In this paper, we only
discuss the method of canonical quantization.

3  The Hamiltonian representation
As a first step of the Hamiltonian representation, we need 3+1 dimensional decomposition of
space-time manifold, this can be realized by the well-known ADM decomposition:
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where N, =h; N /. For using the form of the foregoing formulas, we still use g; todenote h;.
Under (3), both (14) and (15) hold in this case, and especially we have

eg:N,eg:e&iNi:efNi,eé:—egNi h =gl =ele? . (28)

For the action (25), substituting (21) into (26) and considering (28), we have
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and from (30) we obtain 7, , as the functions of 7, :
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Substituting (31) into (29), we have
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From the above expression we can obtain five constraints:
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After realizing quantization, the commutation relations are

[h, ¢, x), 7, (t, x)]|=ih5,,8° (x—x");[h, (&, x), b, (t, x")] =0 36)

[7,t.x), 7, (t,x)]=0; wu,v=1,2,3,4,5.

(33) ~ (35) change to five constraint equations for wave function ¥[h,(x)], the five equations of

motion of operators are
iz, (t,x)=[r,(t, %), H]; u=1,2,3,4,5. (37)



In (37),
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All the concrete forms of (29) ~ (38) obtained by computer are complicated.
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