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Abstract Generally speaking, there is a negative kinetic energy term in the Lagrangian of the
Einstein-Hilbert action of general relativity; On the other hand, the negative kinetic energy term
can be vanished by designating a special coordinate system. For general spherically symmetric
metric, the question that seeking special coordinate system that satisfies the positive kinetic
energy coordinate condition is referred to solving a linear first-order partial differential equation.
And then, we present a metric corresponding to the Reissner-Nordstrom solution that satisfies the
positive kinetic energy coordinate condition. Finally, we discuss simply the case of the Tolman

metric.

At first, we cite two conclusions in Ref. [1]:
(@ For an arbitrary metric indicated by the line element
ds? = g o dxtdx”, (0-1)

the corresponding negative kinetic energy term of gravitation field is
2
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<0, gi/| is the determinant of the 3- dimensional metric g .

where g = |gw

For the Schwarzschild metric indicated by the line element
ds? =—(l—ri]dt2+;dr2 +72(d6% +sin? adp?), (0-3)
r r
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where r; =2m, we see that

=0 1in the area of r, <r, hence, according

to (0-2), in the area of r, <r the negative kinetic energy term of gravitation field vanishes.
But (0-3) cannot be continued into the area of 0<r <r,. For continuing (0-3) into the area

of 0<r<r,, one has used the method of coordinate transformation and obtained some metrics,

e.g., the Lemaitre!” and the Kruskal™ metrics. However, for the Lemaitre and the Kruskal metrics
of the Schwarzschild solution, using (0-2), we can verify easily that there are corresponding
negative kinetic energy terms of gravitation field in total space, respectively.

For the Robertson-Walker metric!* indicated by the line element
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ds? =—de? + R2 (0] —L_+2(d0? +sin” 6p?)|, (0-4)
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we have g~ =-1, g" =0, |gl-j|=R (I)ﬁ’ according to (0-2), the corresponding
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negative kinetic energy term of gravitation field in total space is — Rz_() o
t

@ One of the positive kinetic energy coordinate conditions is
04
g
(Igyle =0. (0-5)
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In this paper, at first, we discuss some characteristics of general spherically symmetric
metric that satisfy the positive kinetic energy coordinate condition given by (0-5). And then, we
present a metric corresponding to the Reissner-Nordstrom solution that satisfies (0-5).

1 General spherically symmetric metric
For general case of spherically symmetric metric indicated by the line element!"
ds? =—K*(t,r)dt* + Q*(t,r)dr* + R (t,r)(d0* +sin’Agp?), (1-1)
| g,-j| =0%(HR* sin? 6, and the positive kinetic energy coordinate condition (0-5) is
04 2
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If this condition is not satisfied, then we can consider the following coordinate transformation
t=t(p,o), r=r(p,o), (1-2)
under the transformation (1-2), (1-1) becomes
ds? =—W?(p,0)do? +2E(p,o)dadp + 22 (p,0)dp?

(1-3)
+R*(t(p,0))(d6? +sin’Adep?),
where,
Wi(p.o)=K(1;)" =0 (r;)”, (1-4)
Q*(p.0)=-K*(t;,)* +0*(r})*, (1-5)
E(p,0)=-K’t)t, +Q°rry . (1-6)
(1-4)x(1-5) +(1-6)*, we have
W2+ E* =K*Q° (rjt, —t,rs)” . (1-7)
The corresponding metric indicated by (1-3) are
&00 =—W2,g01 =g =E,8g1 =_(22,g22 =R2,g33 =R251n29;gyv =0, others. (1-8)
00 _ QZ 01 _ 10 _ E 1n_ W2
& TT 02, 208 T8 Ty 208 T 0. o2
W-Q°+F W-Q°+FE W-Q°+FE (1-9)
g% :Lz’g” =————3 g"" =0, others;
R R7sin“6

| gij| = QR?sin @ and the positive kinetic energy coordinate condition (0-5) becomes
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Substituting 27 and E given by (1-5) and (1-6) respectively to the above formula, and notice

that
K, =Kt +K'r,, K, =Kt\, +K'r};

0, =01, +0'r,, 0, =01, +0'r); (1-10)
R, =Rt, +R'r}, R, =Rt), +R'r};
. K K
where K:a (t,r)’ K':m,etc; we have
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from (1-7) we know that rjz;, —t,r, # 0, and because r,t),, —t,r,, = (r ) (—j » , we therefore
P

obtain the positive kinetic energy condition for (1-3):

Q_2[2+2§J(r/’) )3 +(2%_g+2%}'p (r/') )2

K\ 0 0
' ' (1-11)
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The above form enlightens us that we can try to take
t, =F(t,rr,, (1-12)
and notice that
t/
_ﬁ: , :GF(t,r):(?F(t,r) V,;-I-@F(t’r)t’p :aF(t’r)r);+8F(t’r)F(t,r)r);,
r, op or ot or ot
substituting the above formula and (1-12) to (1-11), we have
2 : 5 ' ' ' > : >
O QLRI [LK O L& F(t,r) + K_,0 ,R F2(t,r)
k2lo "R K O R K "0 "R (1-13)
2 ’ ’ )
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Q2 K R or ot

Once we obtain a solution F(¢,7) of the linear first-order partial differential equation
(1-13), according to (1-12) we obtain an equation on #(p,o) and r(p,o0):
o1(p, o) or(p,0) (1-14)
op op
And, further, we can try to obtain the forms of #(p,o) and r(p,0) based on (1-14).

=F(t(p,0),r(p,0))

We can verify easily that



F(z,r):% (1-15)

is a solution of (1-13). However, if we adopt (1-15), then according to (1-12) and (1-5) we have
Q(p,0)=0.Hence, (1-15) is not applicable.

However, (1-15) enlightens us that we can take

t,r
F(t,r)z%](t,r); (1-16)
According to (1-12) and (1-16), (1-5) become
2%(p,0)=07(1-7)r))?, (1-17)
from the above expression we see that J(¢,) must satisfy
J2(t,r)<1. (1-18)

Substituting (1-16) to (1-13), we obtain

2[2+2£J(1—J2)+(£+2£jJ(I—J2)+2J6—J+6—J=0.
K\QO "R K R K~ o or

We must seek a solution J(z,7) (J(t,7)#1) of the above equation after the concrete forms of
K(t,r),0(@,r),R(,r) are given. And, considering (1-18), the above equation can be written to

the following form:

2 2
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or }1 _ JZ ot ’1 _ J2
We therefore can set
o,r)
VO (6.1 + K2 (. R (t,7)
it is obvious that the form of J(¢,7) given by (1-20) satisfies (1-18). Substituting (1-20) to (1-19),
we obtain an equation that @(¢,r) satisfies:
20,9 2\/@2+K2R4 =0. (1-21)
or ot\ K
Once we obtain O(¢,r) by (1-21), (1-14) and (1-17) become
onp,o) _ Ot(p,0),r(p,0))
dp  K(p,0),r(p,0))

J(t,r)=

(1-20)

x Ot(p,o),r(p,o)) or(p, o) (1-22)
\/@2(1(,0, o), 1(p, o)+ K2 (t(p, o), r(p, )R (t(p, &), p, 7)) op
O’K*R*
pr0) = g ) (1-23)

In next section, we discuss the Reissner-Nordstrom metric as an example.

2 The case of the Reissner-Nordstrom metric
Similar to the Schwarzschild metric, for the Reissner-Nordstrom metric indicated by the

following line element:

2
dSZ :_(l_ri_'_q_sztz +;dr2+r2(d¢92+sin2 66.(ﬂ2), (2_1)
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| j| :ﬁ r_sin” 0 =0 1in the area of l—ri+q—>0, hence, according to
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we see that

(0-2), in the area of 1—£+—2
ror

> 0, the negative kinetic energy term of gravitation field vanishes.

2

But (2-1) cannot be continued into the area of l_r_s+q_2 < 0. For continuing (2-1) into the

ror
2

areaof 1-2+94 ¢ and, at the same time, obtaining a metric that satisfies the positive kinetic

ror
energy coordinate condition (0-5), we use the method given by §1.

For the sake of brevity, we set:
2
N S S (2-2)

2
s Ts s m

the Reissner-Nordstrom line element (2-1) thus becomes

2 1 b2 1) 1 2 2402 L2 2
ds*=—{1l-—+—— |t +———dr " +r (dt9 +sin” &g ) (2-3)
roo4 g Lt
r 4 rz
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Comparing (2-3) with (1-1), for the case of l__+T_2 >0, we have
r r
2
K(t,r)= 1—l+b—L,Q(t,r): L ! , R(t,r)=r. (2-4)
ro 4 5 K(t,r) 1 b2 1
e

r 4r2

Notice that all the K, Q and R are independent of time ¢, we therefore assume that all the functions
F,Jand @ in (1-16) and (1-20) are also independent of time ¢, (1-20) thus becomes
do(r)

0,
dr
we obtain immediately
1
Or)y=—-= tant .
(r) y constan
According to (1-20) and (2-4), we have
)= 60) S (2-5)
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f(}’)=r—4+A(l—;+Tr—2\J=r—4[l’ —-r +Tl” +; . (2-6)

And, further, if we set 4> 0, then considering (2-5) we must choose the constant 4 such that
f(r)>0 for the total space » >0 . There are infinite such constant 4 satisfying the condition, for

example,

1) 1Y) b2
A=4, f(r):1+2(1——j +[1——j +2_5o0;
% 2 2

r r

2 2
A=2(2iﬁ), f(r):Z[li%—l] +(1—i2J +(1i%}%>o;em.
r

According to (1-16), (1-22) and (1-23) we now have

(2-7)
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Qz(p,a)— f( )(7‘ ) >0. (2-10)

From (2-9) we have

t(p,o) = j F(r)dr+V (o) :ﬁ J " dr

2 2
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where V(o) is only a function of the variable o . From the above expression we have

i = Py, + 3V (2-12)
do

+V(e), (2-11)

Substituting (2-12) and (2-8) to (1-4), and considering (2-4), we have
A () L, 1 dV(e) WK ()[dV(G)j _o: (2-13)
do

e P2 Jf@r) do

If we take

W(p,o) = de:) Wy (p.0). (2-14)

then from (2-13) we obtain

- dV(a) \/f(r [ s /f( A } (2-15)

where 6 =+1; and we must choose W,(p,o) that satisfies f (r)—AWO2 >0. For example, if

2
A=4 then we can choose that W, (p,0) =% ,or Wy(p,0) =% 1+ 2(1—1J , etc; or we choose
r

that W,(p,0) = %1/4 f(r) for arbitrary constant 4.
A

From (2—15) we obtain
dr

J- f(r) 1+§Jf(r) AW J. f(” 1+ 12 f(r)— AW

where U(p) is only a function of the variable p . Hence, after designating the functions

=U(p)+V(o). (2-16)

Wy(p,0), U(p) and V (o), from (2-16) and (2-11) we obtain the transformational relations
t=t(p,o0), r=r(p,0) between (¢,r) and (p,o).
From (2-16) we have

"= dU(/’) Vf(r L L8y f- AWO} (2-17)

Substituting (2-17) to (2-10), we obtain

| 14872 f(r)— AW dU(p)
— ; (2-18)
\/Z 2 dp

And, further, substituting (2-9), (2-12), (2-17), (2-15) and (2-4) to (1-6), we obtain

p,0)=




E(p, o) =%5,/f(r)—AW02 lew,/f(r)—AWOz } d(é;p) dz(;) : (2-19)

If we choose appropriate forms of the functions W,(p,0), U(p) and V(o), then we can
obtain simpler forms of W(p,o), 2(p,0) and E(p,o). For example, when 4=4, if we

designate W,(p,0) = L, V(o) = V20 , then from (2-14) we see W(p,o)=1.

V2

If we take
1
Wo(p,0)=—=+/ (), (2-20)
0 \/Z
then from (2-19) we see E(p,o)=0. And, further, we designate that

Up)=+vAp,V(c)=+/Ac, (2-21)

according to (2-14), (2-18) and (2-19), the line element (1-3) in this case becomes

4 2 4
ds? = {iﬁ A(l—ri+q—2]]d02 +i4dp2 +r2(d6* +sin’&p?); (2-22)
r ror r

we see that the unique singularity in (2-22) appears at » = 0.
(2-16) and (2-11) now become

4
Ty dr

I_“ 4 3 ;2 2 =pEO (2-23)

oo r__r- b7rt 1

A N

1 rp? 1 dr

Hp.o :—j r + 4o . 2-24
(p,0) i 2 (2-24)

2
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In (2-22), (2-23) and (2-24), (2-2) is considered.

Similar to the case of the Lemaitre metric of the Schwarzschild solution, (2-22), (2-23) and
(2-24) show that both the metrics determined by r=r(p,0) and its
time-reverse r=r(p,—o) respectively are the solution of the Einstein equation

1 &G

Hv L uVp uv uv : _ :
R 5 g"'R= _c Ty » where Ty, is the energy-momentum tensor of the electromagnetic

field of a point charge with the charge g.
Generally speaking, both the integrals in (2-23) and (2-24) have to be expressed by the

elliptical integral, respectively. For example, if we use one of two values of 4 given by (2-7),

then we must take advantage of the elliptical integral for both the integrals in (2-23) and (2-24).
2

2 2 2
On the other hand, if ¢ 2 >m?, then 1—£+q—2 =(1—ﬂj +4 2m >0. We therefore can
r V4 r V4

always use the original form (2-1) of the Reissner-Nordstrom metric but not need to make a
transformation (1-2) in this case (of course, there is still a coordinate singularity »=m in the
original form (2-1) when ¢? =m?), what conclusions we have obtained in this section are only

2
needed for the case of b2 = q_z <1. For this case, we set
m
lo_en2
fo _ # >0, (2-25)
r?
— 2 p—
e E’—O—%z—”ib%o; (2-26)
rS
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We can prove that the quartic equation _4__3+T_2+Z =0 has repeated root if and only
rﬁ‘ rS rS
if
: 3
r,
A=—|—| >0, (2-27)
[0 )

and, further, if we take (2-27), then we have

4 3 2 2 4 3 2 2 3 2 2
r—4—r—3+b—r—2+i=r—4—r—3+b—r—2+a)2 R I A L w? +la)2 , (2-28)
7. 7, 4 7, A 7, 7, 4 7, r. I, r. I, 2

s N N s N

And from (2-6) we have

. 3, 2 2

T, v, 4

[ =— =] = 2 w?| 420?20,
-\ Iy ro\Is T Ts 2

we see that (2-27) is allowable.
According to (2-28), (2-22), (2-23) and (2-24) now become

3 4 2 2 4
&’ :_Lz(’_sJ %{LJ_OJ [{ij +%a)2}d62+%dp2+r2(d62+sin29d(02), (2-29)
r

() Ty r T Ty T
.4
[ ! dr —pto, (2-30)
rboron 2
S o= r 2 1 5
r. 7. —+w +—w
N N \/(rs j 2
Y i1 1 d Y
rr r A
Hp,0)=0 [r_OJ J. B I 2 - i; (r—] o. (2-31)
s rg I _Tort r b7 - , 1, 0
rs rS rsz rs 4 Z‘{‘a) +Ea)

We see that both the integrals in (2-30) and (2-31) can now be expressed by elementary functions.
However, a weak point of (2-29) is that the coefficient of do® vanishes when r= Ty -
If the charge ¢ =0, then what metric that satisfies the positive kinetic energy coordinate

condition (0-5) we obtain in this section corresponds to the case of the Schwarzschild solution.

3 The case of the Tolman metric

We now discuss simply a spherically symmetric co-moving coordinate system, which plays a
basic part in some researches, for example, gravitational collapse and the Robertson-Walker
metricl¥.
3.1 The Tolman metric

The metric of a spherically symmetric co-moving coordinate system are indicated by the

following line element:

ds? = —d* +e“dr? + B2 (1,r)(d6? +sin’Gdp?) ; (3-1)
We take the energy-momentum tensor of matter
T = pg"" +(p+p)U*U", (3-2)
where
p=p(t.r),p=pt,r);U"=(1,0,0,0). (3-3)

The Einstein equation R, = SﬂG(T v —% guwT j leads to the following equations:



Ry :—%-%—Z%ﬂzﬁ(pﬁp)a (3-4)
Ry =2+ S0, (3-5)
Ry =e“£§+%2+d7ﬂ]—2%ﬁ+%=4ﬂGea(P—P), (3-6)
Rzz_e‘“(“ﬁﬁ _ B _pp j+,6'ﬁ+,b’ N 1=47GB*(p-p), (3-7)
Ry = Ryysin?0 = 472G B sin? e(p- p). (3-8)
Form (3-5) we have '
. "0 ,
b= 2%:5[1@ 2, (3-9)
we therefore obtain

a_ B? o }

e _1+f(r)’f( )>-1. (3-10)

The form of (3-1) with (3-10) is so called the Tolman metric.

. . 2
From (3-5) we have & =2 % - 2[%} , substituting this formula and (3-9) to (3-4), we
obtain
ﬂ,+z%:—4nc(p+3p). (3-11)
Calculating (3-7) —%ﬂz ((3 -5)+e “(3- 6)) and using (3-10) we have

2BB+ B~ f(r)=—81GB>p, (3-12)
from the above formula we obtain

A - 10)=-Sm6] p L ar s Fer. (3-13)

On the other hand, we can prove that we can only obtain three independent equations (3-10),
(3-11) and (3-13) from (3-4)~(3-8).
The equation of conservation of the energy-momentum tensor 7", =0 can only provide

L jelel |l

two independent equations:

%, = + =0, 3-14
A P % (-14)
TV, =e™ P _y. (3-15)

’ or

From (3-15) we obtain
p=p); (3-16)
from (3-11), (3-13) and (3-15) we obtain
(% ,
p=— - dt+8jGF(r,). (3-17)
(7) (7)

We can prove that we can only obtain four independent equations (3-10), (3-13), (3-16) and



(3-17) from (3-4)~(3-8), (3-14) and (3-15), notice that (3-11) now is no longer an independent
equation.

Of course, we should have an equation of state

p=p(p). (3-18)
If we try to seek a separable solution of S
B=po0p (), (3-19)

then (3-13) becomes

o S )8 .t 0B F(r)
- =——7G d ,
By (t)[ﬂo 0= (FJ 7G] PO i 50
we see that, for this case, we must take
f) ==k (1), F(r) =k'B (), (3-20)
where both & and k' are constants. And f,(¢) satisfies
. 3
Bo 52 (1) + k)= —%;;Gj () 6/)’gt(t) dt+ k. (3-21)
Substituting (3-19) and (3-20) to (3-17),( we ok))tain
b B @) 3K _ ]
P | PR TG (3-22)

We see that, for this case, p is consequentially only a function of ¢, namely, it is independent

of r.
3.2 The Tolman metric that satisfies the positive Kinetic energy coordinate condition is
inexistent

If we ask that the metric indicated by (3-1) and (3-10) satisfies the positive kinetic energy
coordinate condition (0-5), then we have

g . aletp) . o BB
( |gii|gWJ’ﬂ =sind or _SIHQ&{WJ
| sing 6|:(ﬂ3)} l sin @ 62(ﬂ3)

=_ = =0.
3 /1+f(r) ot 31+ f(r) otor

The solution of the above equation reads:

B=BWO+B). (3-23)
Substituting (3-23) to (3-17), we obtain
3 F(r)
P=c =, %
872G B'(r)
We see that, for this case, p is consequentially only a function of r, namely, it is independent

pr). (3-24)

of ¢.

From (3-23) we have ﬁ:+2£=g # . Substituting this formula, (3-16) and
BB 3| B0+ L)

(3-24) to (3-11), we obtain

5 2
21 LY 4a6(pr)+3p(0). (3-25)
3[ﬂ(t)+ﬂ(r)] 0 3p00)

It is obvious that (3-25) has not solution for general case. Hence, the Tolman metric that satisfies

the positive kinetic energy coordinate condition is inexistent.

10



3.3 The coordinate transformation between the Tolman metric and a metric satisfying the
positive Kinetic energy coordinate condition

Now that the Tolman metric that satisfies the positive kinetic energy coordinate condition is
inexistent, we have to use the method given by §1, namely, we make the coordinate
transformation (1-2) for seeking a coordinate system (o, p,d,¢) satisfying the positive kinetic

energy coordinate condition for the given spherically symmetric co-moving coordinate system
(t,7,0,9). According to the discussion in §1, we must solve the equation (1-21) as the first step

for this purpose. Substituting the Tolman metric indicated (3-1) and (3-10) to (1-21), we have
8@ (
i po*+p* )0, (3-26)
6r 1+ f(r) ot
Especially, for the separable solution (3-19) of f, if we redefine the radial coordinate such that
S, (r)=r, then according to (3-20), (3-26) becomes
el 1 0
——(/30@) o’ +r4ﬁg(t)) =0. (3-27)
ar .2 Ot
1—kr
Once we obtain the relation between (o, p,0,¢) and (¢,r,0,¢), the results obtained in the
spherically symmetric co-moving coordinate system (z,7,6,9) should be explained in the

coordinate system (o, p, 6, 9).
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