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Abstract  Generally speaking, there is a negative kinetic energy term in the Lagrangian of the 
Einstein-Hilbert action of general relativity; On the other hand, the negative kinetic energy term 
can be vanished by designating a special coordinate system. For general spherically symmetric 
metric, the question that seeking special coordinate system that satisfies the positive kinetic 
energy coordinate condition is referred to solving a linear first-order partial differential equation. 
And then, we present a metric corresponding to the Reissner-Nordström solution that satisfies the 
positive kinetic energy coordinate condition. Finally, we discuss simply the case of the Tolman 
metric. 
 
 
 
 

At first, we cite two conclusions in Ref. [1]: 
① For an arbitrary metric indicated by the line element 

νµ
µν xxgs ddd 2 = ,                             (0-1) 

the corresponding negative kinetic energy term of gravitation field is 
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where 0<= µνgg , ijg  is the determinant of the 3- dimensional metric ijg . 

For the Schwarzschild metric indicated by the line element 
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to (0-2), in the area of rrs <  the negative kinetic energy term of gravitation field vanishes.  
    But (0-3) cannot be continued into the area of srr <<0 . For continuing (0-3) into the area 
of srr <<0 , one has used the method of coordinate transformation and obtained some metrics, 

e.g., the Lemaitre[2] and the Kruskal[3] metrics. However, for the Lemaitre and the Kruskal metrics 
of the Schwarzschild solution, using (0-2), we can verify easily that there are corresponding 
negative kinetic energy terms of gravitation field in total space, respectively. 

For the Robertson-Walker metric[4] indicated by the line element 
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negative kinetic energy term of gravitation field in total space is 
2

2 d
)(d

)(
6







−

t
tR

tR
. 

② One of the positive kinetic energy coordinate conditions is 
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In this paper, at first, we discuss some characteristics of general spherically symmetric 
metric that satisfy the positive kinetic energy coordinate condition given by (0-5). And then, we 
present a metric corresponding to the Reissner-Nordström solution that satisfies (0-5). 
 
1 General spherically symmetric metric 

For general case of spherically symmetric metric indicated by the line element[4] 
, )dsin(d),(d),(d),(d 222222222 ϕθθ +++−= rtRrrtQtrtKs            (1-1) 

θ242 sin)( RtQgij = , and the positive kinetic energy coordinate condition (0-5) is 
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If this condition is not satisfied, then we can consider the following coordinate transformation 
),(  ),,( σρσρ rrtt == ,                          (1-2) 

under the transformation (1-2), (1-1) becomes 
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                         22222 )()(),( σσσρ rQtKW ′−′= ,                       (1-4) 

22222 )()(),( ρρσρΩ rQtK ′+′−= ,                      (1-5) 

σρσρσρ rrQttKE ′′+′′−= 22),( .                         (1-6) 

(1-4)×(1-5)＋(1-6)2, we have 
222222 )( σρσρΩ rttrQKEW ′′−′′=+ .                    (1-7) 

The corresponding metric indicated by (1-3) are 
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θΩ sin 2Rgij =  and the positive kinetic energy coordinate condition (0-5) becomes 
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Substituting 2Ω  and E given by (1-5) and (1-6) respectively to the above formula, and notice 
that 
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obtain the positive kinetic energy condition for (1-3): 
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    The above form enlightens us that we can try to take 
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substituting the above formula and (1-12) to (1-11), we have 
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Once we obtain a solution ) ,( rtF  of the linear first-order partial differential equation 
(1-13), according to (1-12) we obtain an equation on ),( σρt  and ),( σρr : 
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And, further, we can try to obtain the forms of ),( σρt  and ),( σρr  based on (1-14). 

We can verify easily that 
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is a solution of (1-13). However, if we adopt (1-15), then according to (1-12) and (1-5) we have 
0),( =σρΩ . Hence, (1-15) is not applicable. 
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We must seek a solution ) ,( rtJ  ( 1) ,( ≠rtJ ) of the above equation after the concrete forms of 
) ,( , ) ,( , ) ,( rtRrtQrtK  are given. And, considering (1-18), the above equation can be written to 

the following form: 
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In next section, we discuss the Reissner-Nordström metric as an example. 
 
2 The case of the Reissner-Nordström metric 

Similar to the Schwarzschild metric, for the Reissner-Nordström metric indicated by the 
following line element: 
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the Reissner-Nordström line element (2-1) thus becomes 
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According to (1-16), (1-22) and (1-23) we now have 
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r
r

r
r

r
r
r

sss

r

s 1
4

d

2

22

3

3

4

4

 

4

4
,                   (2-23) 

σσρ A

Ar
rb

r
r

r
r

r
b

r
r

r
rr

r
A

t
r

sssss

s

±

++−+−

= ∫
 

2

22

3

3

4

42

2

22

2

1
4

d

4

11),( .         (2-24) 

In (2-22), (2-23) and (2-24), (2-2) is considered.  
Similar to the case of the Lemaitre metric of the Schwarzschild solution, (2-22), (2-23) and 

(2-24) show that both the metrics determined by ) ,( σρrr = and its 
time-reverse ) ,( σρ −= rr respectively are the solution of the Einstein equation 

µνµνµν π
(EM)4

8
2
1 T

c
GRgR =− , where µν

(EM)T  is the energy-momentum tensor of the electromagnetic 

field of a point charge with the charge q. 
Generally speaking, both the integrals in (2-23) and (2-24) have to be expressed by the 

elliptical integral, respectively. For example, if we use one of two values of A given by (2-7), 
then we must take advantage of the elliptical integral for both the integrals in (2-23) and (2-24). 

On the other hand, if 22 mq ≥ , then 011
2

222

2

2
≥

−
+






 −=+−

r
mq

r
m

r
q

r
rs . We therefore can 

always use the original form (2-1) of the Reissner-Nordström metric but not need to make a 
transformation (1-2) in this case (of course, there is still a coordinate singularity mr =  in the 
original form (2-1) when 22 mq = ), what conclusions we have obtained in this section are only 

needed for the case of 1
2

2
2 <=

m
q

b . For this case, we set 

0
8

893 2
0 >

−+
=

b
r
r

s
,                        (2-25) 

0
8

189
2
1 2

02 >
−−

=−≡
b

r
r

s
ω ;                     (2-26) 
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We can prove that the quartic equation 01
4 2

22

3

3

4

4
=++−

Ar
rb

r
r

r
r

sss

 has repeated root if and only 

if 

01
3

0
2

>







=

r
r

A s

ω
,                          (2-27) 

and, further, if we take (2-27), then we have 














+








+








−=








++−=++− 2

2
2

2
0

3
02

2

22

3

3

4

4

2

22

3

3

4

4

2
1

4
1

4
ωωω

ssssssssss r
r

r
r

r
r

r
r

r
rb

r
r

r
r

Ar
rb

r
r

r
r , (2-28) 

And from (2-6) we have 

0
2
11)( 2

2
2

2
0

4

43

0
2

≥













+








+








−








= ωω
ω sss

ss

r
r

r
r

r
r

r
r

r
r

rf , 

we see that (2-27) is allowable. 
According to (2-28), (2-22), (2-23) and (2-24) now become 

)dsin(ddd
2
11d 22222

4

4
22

2
2

2
0

4

43

0
2

2 ϕθθρσωω
ω

+++













+








+








−








−= r

r
r

r
r

r
r

r
r

r
r

r
r

s s

sss

ss , (2-29) 

σρ

ωω

±=

+







+

−
∫

2
2

2
0

 

4

4

2
1

d1

s
ss

r

s

r
r

r

r
r

r
rr

r ,                 (2-30) 

σ
ω

ωω

ωσρ
3

0

 

2
2

2

2

2

2
0

2

23
0 1

2
1

d

4

11),( 







±

+







++−−









= ∫ r

r

r
r

r
b

r
r

r
r

r
r

r
rr

r
r
r

t sr

s
ssss

ss
.  (2-31) 

We see that both the integrals in (2-30) and (2-31) can now be expressed by elementary functions. 
However, a weak point of (2-29) is that the coefficient of 2dσ  vanishes when 0rr = . 

If the charge 0=q , then what metric that satisfies the positive kinetic energy coordinate 

condition (0-5) we obtain in this section corresponds to the case of the Schwarzschild solution. 
 
3  The case of the Tolman metric 

We now discuss simply a spherically symmetric co-moving coordinate system, which plays a 
basic part in some researches, for example, gravitational collapse and the Robertson-Walker 
metric[4]. 
3.1  The Tolman metric 

The metric of a spherically symmetric co-moving coordinate system are indicated by the 
following line element: 

)dsin(d),(dedd 22222),(22 ϕθθβα +++−= rtrts rt ;               (3-1) 

We take the energy-momentum tensor of matter   
νµµνµν ρ UUppgT )( ++= ,                        (3-2) 

where 
)0 , 0 , 0 , 1( ; ) , (, ) , ( === µρρ Urtpprt .                   (3-3) 

    The Einstein equation 





 −= TgTGR µνµνµν π

2
18  leads to the following equations: 
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( )pGR 342
42

2

00 +=−−−= ρπ
β
βαα &&&&&

,                     (3-4) 

0201 =
′

+
′

−=
β
βα

β
β &&

R ,                           (3-5) 

( )pGR −=
′′

+
′′

−









++= ρπ

β
βα

β
β

β
βααα αα e42

42
e

2

11

&&&&&
,              (3-6)  

( )pGR −=++++





 ′′−′−

′′
= − ρβπββαββββββββαα 222

22 41
22

e
&&&&& ,         (3-7) 

( )pGRR −== ρθβπθ 222
2233 sin4sin .                    (3-8) 

Form (3-5) we have 

( )[ ]2ln2 β
β
βα ′

∂
∂

=
′
′

=
t

&
& ,                          (3-9) 

we therefore obtain 

1)( , 
)(1

e
2

−>
+
′

= rf
rf

βα .                        (3-10) 

The form of (3-1) with (3-10) is so called the Tolman metric. 

From (3-5) we have 
2

22 







′
′

−
′
′

=
β
β

β
βα

&&&
&& , substituting this formula and (3-9) to (3-4), we 

obtain 

( )pG 342 +−=+
′
′

ρπ
β
β

β
β &&&&

.                        (3-11) 

Calculating ( )6)-(3e5)-(3
2
17)-(3 2 αβ −+−  and using (3-10) we have 

pGrf 22 8)(2 βπβββ −=−+ &&& ,                       (3-12) 

from the above formula we obtain 

( ) ∫ +
∂
∂

−=−
t

rFt
t

pGrf
 3

2 )(d
3
8)( βπββ & .                   (3-13) 

On the other hand, we can prove that we can only obtain three independent equations (3-10), 
(3-11) and (3-13) from (3-4)~(3-8).  

The equation of conservation of the energy-momentum tensor 0 ;      =µν
νT  can only provide 

two independent equations: 

( )
( ) ( )

01
33

3

0
 ;      =



















∂





 ′

∂
+

∂





 ′

∂

′
=

t
p

t
T

ββρ

β

ν
ν ,                (3-14) 

0e1
 ;      =

∂
∂

= −

r
p

T αν
ν .                          (3-15) 

From (3-15) we obtain 
)(tpp = ;                               (3-16) 

from (3-11), (3-13) and (3-15) we obtain 

( )
( )

( )′
′

+
∂





 ′

∂

′−= ∫ 3

 
3

3

)(
8

3d)(1

βπ

β

β
ρ

rF
G

t
t

tp
t

.                (3-17) 

We can prove that we can only obtain four independent equations (3-10), (3-13), (3-16) and 
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(3-17) from (3-4)~(3-8), (3-14) and (3-15), notice that (3-11) now is no longer an independent 
equation. 

Of course, we should have an equation of state 
)(ρpp = .                              (3-18) 

If we try to seek a separable solution of β : 
)()( 10 rt βββ = ,                            (3-19) 

then (3-13) becomes 

∫ +
∂

∂
−=










−

t

r
rFt

t
t

tpG
r

rftt
 

3
1

3
0

2
1

2
00

)(
)(d

)(
)(

3
8

)(
)()()(

β

β
π

β
ββ & , 

we see that, for this case, we must take 
)()( , )()( 3

1
2

1 rkrFrkrf ββ ′=−= ,                     (3-20) 
where both k  and k ′  are constants. And )(0 tβ  satisfies 

( ) ∫ ′+
∂

∂
−=+

t
kt

t
t

tpGktt
 3

02
00 d

)(
)(

3
8)()(

β
πββ & .               (3-21) 

Substituting (3-19) and (3-20) to (3-17), we obtain 
( )

)(
)(

1
8
3d

)(
)(

)(
1

3
0

 3
0

3
0

t
tG

kt
t

t
tp

t

t
ρ

βπ
β

β
ρ ≡

′
+

∂
∂

−= ∫ .               (3-22) 

We see that, for this case, ρ  is consequentially only a function of t , namely, it is independent 

of r . 
3.2  The Tolman metric that satisfies the positive kinetic energy coordinate condition is 
inexistent 

If we ask that the metric indicated by (3-1) and (3-10) satisfies the positive kinetic energy 
coordinate condition (0-5), then we have 

( )

( ) ( ) . 0
)(1

sin
3
1

)(1
sin

3
1

)(1
sinesin

32
3

22

 , 
00

0

=
∂∂

∂

+
=

∂





 ′

∂

+
=















+

′
∂
∂

=
∂

∂
=











rtrftrf

rfttg
g

gij

βθ
β

θ

ββθβθ
α

λ

λ

 

The solution of the above equation reads: 
3 )()(~ rt βββ += .                           (3-23) 

Substituting (3-23) to (3-17), we obtain 

)(
)(
)(

8
3 r

r
rF

G
ρ

βπ
ρ ≡

′
′

= .                         (3-24) 

We see that, for this case, ρ  is consequentially only a function of r , namely, it is independent 

of t . 

From (3-23) we have 
2

)()(~
)(~

3
22 














+
=+

′
′

rt
t
ββ

β
β
β

β
β &&&&&

. Substituting this formula, (3-16) and 

(3-24) to (3-11), we obtain 

( ))(3)(4
)()(~

)(~

3
2

2

tprG
rt

t
+−=














+
ρπ

ββ
β& .                   (3-25) 

It is obvious that (3-25) has not solution for general case. Hence, the Tolman metric that satisfies 
the positive kinetic energy coordinate condition is inexistent. 
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3.3  The coordinate transformation between the Tolman metric and a metric satisfying the 
positive kinetic energy coordinate condition 

Now that the Tolman metric that satisfies the positive kinetic energy coordinate condition is 
inexistent, we have to use the method given by §1, namely, we make the coordinate 
transformation (1-2) for seeking a coordinate system ),, ,( ϕθρσ  satisfying the positive kinetic 

energy coordinate condition for the given spherically symmetric co-moving coordinate system 
),, ,( ϕθrt . According to the discussion in §1, we must solve the equation (1-21) as the first step 

for this purpose. Substituting the Tolman metric indicated (3-1) and (3-10) to (1-21), we have 

0
)(1

1 42 =




 +′

∂
∂

+
+

∂
∂ βΘβΘ

trfr
.                   (3-26) 

Especially, for the separable solution (3-19) of β , if we redefine the radial coordinate such that 
rr =)(1β , then according to (3-20), (3-26) becomes 

0)()(
1

1 4
0

42
0

2
=





 +

∂
∂

−
+

∂
∂ trt

tkrr
βΘβΘ .                (3-27) 

    Once we obtain the relation between ),, ,( ϕθρσ  and ),, ,( ϕθrt , the results obtained in the 
spherically symmetric co-moving coordinate system ),, ,( ϕθrt  should be explained in the 
coordinate system ),, ,( ϕθρσ . 
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