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Abstract. Diffraction gratings have been proposed as core optical elements in
future laser-interferometric gravitational-wave detectors. In this paper we derive
equations for the coupling between alignment noise and phase noise at diffraction
gratings. In comparison to a standard reflective component (mirror or beam
splitter) the diffractive nature of the gratings causes an additional coupling of
geometry changes into alignment and phase noise. Expressions for the change in
angle and optical path length of each outgoing beam are provided as functions of
a translation or rotation of the incoming beam with respect to the grating. The
analysis is based entirely on the grating equation and the geometry of the setup.
We further analyse exemplary optical setups which have been proposed for the use
in future gravitational wave detectors. We find that the use of diffraction gratings
yields a strong coupling of alignment noise into phase noise. By comparing the
results with the specifications of current detectors we show that this additional
noise coupling results in new, challenging requirements for the suspension and
isolation systems for the optical components.
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1. Introduction

The search for gravitational waves has led to a new class of extremely sensitive laser
interferometers. The first generation of large-scale laser-interferometric gravitational
wave detectors [1, 2, 3, 4] is now in operation with the aim of accomplishing the first
direct detection of gravitational waves. Simultaneously, new interferometer concepts
are evaluated for future detectors.

Traditionally, partly transmissive mirrors are used in interferometers to split and
combine coherent optical light fields. For high precision laser interferometers, such
as for gravitational wave detection, non-transmissive reflection gratings offer a useful
alternative way of splitting and combining. The resulting all-reflective interferometers
are beneficial because, firstly, they reduce the impact of all thermal issues that are
associated with absorbed laser power in optical substrates and, secondly, they allow
for opaque materials with favourable mechanical and thermal properties. With these
two qualities all-reflective interferometer concepts have, in principle, great potential
to become key technologies for enhancing the sensitivity of future generations of laser
interferometric-gravitational wave detectors.

From a functional viewpoint every partly transmissive mirror within an
interferometer can be substituted by an appropriate reflection grating because of its
analog input-output phase relations. However, the geometry of the interferometer
changes considerably when diffraction gratings are used. In this context several
interferometer concepts based on gratings have been proposed [5, 6] and some of
them have been demonstrated experimentally [7, 8, 9]. Also the influence of a grating
structure on the mechanical quality factor of a test mass has been studied [10]. Here
we investigate how certain peculiarities of grating interferometers affect their ability
to reach high strain sensitivities. In particular we derive formulae for the alignment
noise of such interferometers.

Grating movements within these interferometers or beam movements on the
grating affect the phase of the light differently than movements of mirrors and
beam splitters in conventional interferometers. This is due to the reduced symmetry
that diffraction gratings show compared to mirrors. Usually, the test masses in
gravitational wave detectors show cylindrical symmetry, therefore their roll movement
is of no concern. Gratings are merely invariant against translational displacement in
direction parallel to the grating grooves, but certainly not for rotation. Therefore roll
movement can be considered an additional degree of freedom that will be treated here.
Moreover, a translational displacement of a grating parallel to its surface in direction
perpendicular to the grating grooves will induce a phase shift [11] to the reflected
light.

After a brief review of known all-reflective interferometer concepts we derive
analytic expressions that describe the phase effects for various motions of optical
components in the particular interferometer and compare them to the well known
ones for conventional interferometers.

1.1. Gratings as functional optical elements in interferometers

A surface with a periodic modulation of optical properties, so-called grooves, defines
a diffraction grating. Let’s have a look at Figure 1 and consider incident light of
wavelength λ in the plane perpendicular to the grating grooves and its surface. For a
grating period d and an incidence angle of α, measured from the grating normal, the
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angle βm of the mth diffraction order is given by the well-known grating equation

sinα+ sinβm = mλ/d. (1)

m

m=1

m=0

+ −

β
in

Figure 1. A grating illuminated by a beam (in). The number of outgoing beams
is given by the grating equation (1). The beams are numbered by an integer (m)
and the angles with respect to the grating normal are given as βm. The angle of
the incident light is α = −β0. Shown is a non-Littrow mount.

For transparent materials the orders will exist in transmission and reflection. One
obtains an all-reflective beam splitter when the grating is combined with a high
reflectivity coating, or transmitted orders are suppressed by some other means. The
existence of higher orders depends on the choice of d and α. For our purposes only
one or two additional orders are required, so that d ∼ λ.

For appropriately chosen parameters there is only one additional diffraction order
and no degeneracy of ports (α 6= β1), thus one obtains the analog to a four-port mirror.
This device enables, for instance, an all-reflective version of a Michelson interferometer
as shown in Figure 2, provided that the efficiencies for the specular reflection and for
the diffraction into the first order are roughly the same.

The analog to a transmissive mirror with two ports (in the case of normal
incidence) is given by a first-order Littrow configuration. In this case also only one
additional order exists but the diffracted beam coincides with the incoming beam
(α = β1). An all-reflective linear Fabry-Perot interferometer can be constructed, also
shown in Figure 2. The maximal finesse of such a cavity is limited by the first-order
diffraction efficiency of the grating that is used to couple light to the cavity.

Parameters can likewise be chosen to allow for a second-order Littrow
configuration (two additional orders and α = β2). This results in a beam splitter with
three ports, which can also be used to construct a linear Fabry-Perot interferometer
(Figure 2). Its maximal finesse is limited by the specular reflectivity of the grating
rather than the diffraction efficiency. Such a three-port splitter has no simple analog
to a conventional transmissive mirror and its input-output phase relations are more
complex [12]. However, the resulting properties of such resonators are well understood
and controllable [13].

2. The geometry of the optical setup

In this section we consider the effects of geometry changes, namely translations and
rotations of the grating or the incident beam away from the initial, correctly aligned
setup. We derive the mathematical relation between each geometry change and the
change in optical path length, tilt and translation of the outgoing beam. In the
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Linear Fabry Perot Cavity

2 ports 3 ports

Michelson Interferometer

4 ports

Figure 2. (top) Sketch of a Michelson and a linear Fabry-Perot interferometer
with transmissive optical elements and (bottom) possible all-reflective realisations
of these devices based on diffraction gratings. Note that the Fabry-Perot
interferometer can either be realised with a grating in first-order (resulting in
two ports) or second-order Littrow mount (three ports).

following we often use the word beam when referring to the light fields interacting
at the grating. However, it should be noted that all computations are based on the
assumption of plane waves and infinite sized gratings. Furthermore we only consider an
idealised reflection grating while any influence from a diffractive coating is neglected.
The purpose of this is to summarise the differences between the ideal grating and
ordinary (ideal) mirrors or beam splitters.

Unless otherwise noted, the grating is located in a three-dimensional coordinate
system such that the impinging beam hits the grating at the origin with the grating
lying in the x-y plane and the grating structure (grooves) being parallel to the y-
axis. Thus, the nominal use of the grating requires the incoming beam to be in
the x-z plane. The incoming and outgoing beams can be defined by unit vectors in
the direction of propagation ~p and ~q respectively. In addition, it is useful to define
coordinate systems based on the incoming and outgoing beam in the perfectly aligned
systems: The coordinate system of the incoming beam (denoted as x′, y′, z′) is rotated
with respect to the coordinate system of the grating by an angle α around the y-axis
with α being the angle of incidence. The coordinate systems of the outgoing beam
will be denoted as x′′, y′′, z′′ (see Figure 3). In a well-aligned system the coordinate
system of an outgoing beam is rotated with respect to that of the grating around the
y-axis by the angle βm.

Any change of the geometry of the optical setup can change the angle of the
outgoing beams as well as the longitudinal phase (optical path length). The change
in optical path length between the initial setup and the respective new geometry will
be denoted as ζ.

For a description of diffracted beams in three dimensions the commonly used
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Figure 3. Coordinate systems and angle convention at the grating

scalar grating equation is not adequate. Instead we will base the following on the
grating equation in vector form which, for a reflective grating (in vacuum) reads:

~q × ~N − ~p× ~N =
mλ

d
~G (2)

with ~N the normal vector of the grating and ~G the unit vector in the direction of the
grooves. In the aligned setup we can set ~N = ~ez and ~G = ~ey:

~q × ~ez − ~p× ~ez =
mλ

d
~ey (3)

We can write this in separate equations for the vector components:

px − qx = mλ
d

py = qy

(4)

Here, qz is not directly defined through the cross product but is given by the definition
of ~p and ~q as unit vectors.

3. Alignment of the outgoing beam

3.1. Translation

The translations of the grating along x and y have no particular effect on the geometry
of the outgoing beam, only a translation of the grating along the z-axis by an
amount ∆z will translate the outgoing beam along the x′′ axis. From three triangular
equations:

tanα =
x1

∆z
, tanβm =

−x2

∆z
, cosβm =

∆x′′

x1 + x2
(5)

We obtain:

∆x′′ = ∆z cosβm (tanα− tanβm) (6)

3.2. Rotation

There are three independent degrees of freedom for rotating the incoming beam.
However, in this work we restrict the analysis to rotations around x′ and y′ and
neglect the influence of changes in the direction of polarization. At the same time
we want to know the effects of a rotation of the grating around the three axes of its
coordinate system. In the following we will first consider a rotation of the incoming
beam by ∆α around the y axis and δ′ around the x′ axis and compute the resulting
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rotation of the outgoing beam (∆β around y axis and δ′′ around x′′ axis). Later we
will derive all other alignment relations from this result.

We project the unit vector of the incoming beam ~p = ~k/k to the coordinate
system of the grating and get:

px = sin (α+∆α) cos δ′

py = sin δ′

pz = − cos (α+∆α) cos δ′

(7)

We can compute the vector in the direction of any outgoing beam ~q using the grating
equation (4). From the condition for the y coordinate we can immediately compute
δ′′:

qy = py = sin δ′ ⇒ δ′′ = δ′ (8)

The projection on x can thus be written as:

qx = − sin (βm +∆βm) cos δ′ ≈ − (sinβm +∆βm cosβm) cos δ′ (9)

The minus sign originates from the fact that we consider a reflection grating which
turns the direction vector; e.g. for α = βm we must obtain qx = −px. Using the above
and the grating equation we get:

cos δ′ (sinα+∆α cosα) + cos δ′ (sinβm +∆βm cosβm) = mλ
d

(10)

For small δ′ we can write:

∆βm ≈
(

mλ

d

δ′2

2
−∆α cosα

)

/ cosβm (11)

Rotation of the incoming beam around the y-axis: For small rotations of the incoming
beam by ∆α around the y′ axis we obtain:

∆βm = − cosα

cosβm

∆α and δ′′ = 0 (12)

Rotation of the incoming beam around the x′-axis: A single rotation by δ′ around
the x′ axis yields:

∆βm ≈ mλ

d

δ′2

2 cosβm

and δ′′ = δ′ (13)

Rotation of the grating around the z-axis: In order to compute the effect of a rotation
of the grating around its normal by an angle γ we again make use of the vectorial
grating equation (2). In this case the unit vector along the direction of the grooves is
given as (sin γ, cos γ, 0) and we obtain the following set of equations:

qx − px = −mλ

d
cos γ and qy − py =

mλ

d
sin γ (14)

With the input beam aligned we can use the following projections px = sinα and
py = 0. This leads to:

qx = − sin(βm +∆β) = sinα− mλ
d

cos γ

qy = sin δ′′ = mλ
d

sin γ
(15)
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For small γ we can approximate the rotation around the x′′ axis as:

δ′′ ≈ mλ

d
γ (16)

We can derive ∆β as before; for small γ we obtain:

∆β ≈ −mλ

d

γ2

2 cosβm

(17)

This shows that in first order the roll motion of the grating will couple into a rotation
of the beam around the x′′ axis. The order of magnitude is the same as for a tilt motion
of the grating (or mirror). Thus in contrast to a reflective element the suspension of
a grating must be designed such that the roll motion is suppressed to the same level
as the other two rotational degrees of freedom.

In addition, during installation and pre-alignment one must ensure the right roll
angle for the grating. In the case of the VIRGO detector [14], where the pre-alignment
requires to align a diffracted beam with an accuracy of 30 cm to a mirror 3 km far away,
the grating would have to be positioned correctly with:

γ ≈ δ′′ < 90µrad or 6 · 10−3 deg (18)

The precision and dynamic range of the pre-alignment control must be designed such
that any initial mis-orientation larger than this can be corrected. This can be achieved
already with technology used in current gravitational-wave detectors.

Frequency Change: It is worth noting that a change of the laser frequency will also
result in a grating specific change in the angle of the outgoing beam. In an otherwise
aligned setup this is given by:

sinα+ sin(βm +∆βm) =
mc

d(f +∆f)
=

mc

df
− mc∆f

2df2
(19)

Hence

∆βm = − mλ

d cosβm

∆f

f
or ∆βm = − mλ2

d c cosβm

∆f (20)

with c the speed of light. By using typical values for the frequency stability in
gravitational wave detectors we can show that in this case this effect can usually
be neglected:

∆βm ≈ 10−22 rad

(

∆f

1Hz

)(

λ

1µm

)

(21)

4. Optical path length

The optical path length is neither affected by the alignment of the grating nor by a
translation of the grating along the y axis. It only shows a dependence on ∆x and
∆z.

The optical path length change following a translation of the grating by ∆z can
be computed from the geometry alone, see Figure 4:

ζ∆z = ζ1 + ζ2 = −∆z (cosα+ cosβm) (22)

The minus sign reflects the definition of the phase change: The optical path length
must become larger when the grating is moved towards smaller z (∆z < 0).



Phase and alignment noise in grating interferometers 8

x

in

∆ z

βm

2ζ
1ζ

α

out (order m)

z

out (order m)

in

βm

3ζ4ζ

x

∆ x

α

z

Figure 4. Optical path length changes ζ due to translations of the grating.
The top schematic illustrates the translation of the grating along z, the bottom
schematic depicts a grating translated along the x-axis (please note that the
grating itself is omitted in these figures; only the respective coordinates are
shown). The optical path length difference with respect to either translation
follows directly from the optical geometry (see text). Please note that all angles
and auxiliary variables (∆x, ζ3, . . . ) carry signs and are not defined as mere
distances. For example, in the bottom schematic βm and ζ4 are negative as well
as ∆z in the top graphic.

Also the translation of the grating along the x-axis introduces a change in the
optical path length. This phase change is rather counter-intuitive [11] but follows
similarly from the geometry of the problem. The bottom plot in Figure 4 shows two
parallel rays diffracted by the grating. These rays are understood to be components
of the same plane wave. By definition both rays have the same phase (modulo λ) in
every reference plane perpendicular to their direction of propagation. However, if we
assume no (or a constant) phase change at the grating surface and follow the rays
through the system to a reference plane in the outgoing field we will obtain a phase
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difference ∆φ between the two rays of

∆φ
λ

2π
= ζ3 + ζ4 = ∆x (sinα+ sinβm) (23)

(please note that ζ4 as shown in Figure 4 would be negative). This has two implications
for the phase of the diffracted beam:

• the diffraction at the grating must advance or retard the phases for those parts
of the plane wave that hit the grating with a spatial distance ∆x to a chosen
reference.
We can follow that the grating introduces a change in the optical path length as:

ζ∆x = −∆x (sinα+ sinβm) (24)

• We can for example define the center of the incoming wave such that the phase
of the center ray can be computed by following the ray path through the system.
A lateral displacement of the incident wave will then change the phase of the
outgoing beam by the same amount ζ∆x

with ∆x as the displacement of the wave
projected on the grating surface.

Using the grating equation we can also write (23) as:

ζ∆x = −∆x
mλ

d
(25)

It should be clear that a translation of the grating by ∆x is equivalent to a translation
of the incoming wave. Hence we can conclude that a translation of the grating produces
also a change of the optical path length as stated in (25). However, due to the periodic
symmetry of the grating all measurable quantities must be identical for ∆x = 0 and
∆x = n · d with n an integer. Thus, in this case, the change in the optical path length
is periodic with Equation 25 being defined for a translation of less than one grating
period, i.e. ∆x λ/d is periodic with a period of d.

It is possible to find an eigenvector such that for a translation of the grating
along this vector the change of the optical path length is zero [15]. By comparing the
gradient of the path length change for translations parallel to x and z we find a vector
along which the change in optical path length cancels (ζ∆x + ζ∆z = 0).

We take the ratio between the slopes of the optical path length change for ∆x
and ∆y:

ζ∆x/∆x

ζ∆z/∆z
=

sinα+ sinβm

cosα+ cosβm

= tan

(

α+ βm

2

)

(26)

The unit vector for motion with exactly compensating changes of the optical path
length must be perpendicular to ~S as shown in Figure 5; the direction of ~S is defined
by the angle θ = (α + βm)/2 which defines the bisection between the incoming and
the diffracted beam.

Hence a translating of the grating perpendicular to the bisection of the input and
diffracted wave vector yields no change in the optical path length. This fact can be
utilised for example by carefully choosing a mounting and seismic isolation strategy
such that the translational degree of freedom containing the largest amount of (seismic)
noise is made perpendicular to the bisection of the incoming and one outgoing beam.
However, the fact that the axis for zero phase change can only be chosen with respect
to one pair of beams and that it cannot be perpendicular to an incoming beam makes
it impossible to avoid all couplings of alignment noise into phase noise for higher
diffraction orders, especially for a mis-alignment of the incoming beam.
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ζ
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∆ x

∆ x
ex

θe
∆

∆z
z

z

ζ

Figure 5. Eigenvector along which the translation of the grating does not change
the optical path length (of a given refraction order): The unit vectors ~ex and ~ez
represent the coordinate system of the grating. ζ∆x and ζ∆z refer to the optical
path length change induced by a translations by ∆x and ∆z along the respective
axis (note that the change in optical path length depends on the refraction order,

see Equation 25). Thus a translation perpendicular to the vector ~S will yield no
overall change in optical path length as ζ∆x and ζ∆z compensate exactly.

5. Alignment noise in exemplary optical setups

In this section we will compute the coupling of alignment noise into phase noise for a
few simplified, exemplary optical setups. The optical systems are analysed in the plane
perpendicular to grating grooves, ignoring the second alignment degree of freedom of
each optical component.

We will compare the phase noise due to component or beam misalignment in
standard two-mirror cavities to that of a Fabry-Perot cavity with a grating as the
input coupler. We will further briefly discuss the alignment-related phase noise at
beam splitters.

5.1. Two-mirror cavity

In this section we recall the basic geometry of a two-mirror cavity with a flat input
mirror and a spherical end mirror. The misalignment of the optical system can be
described by a misalignment of the input mirror and/or the end mirror. Both effects
result in a displacement of the cavity eigenmode and a change of the optical path
length.

Figure 6 shows the geometry for our two-mirror example cavity with both mirrors
being misaligned. In practice, also the input mirror might be spherical and the
center of rotation will probably not coincide with the optical surface. However the
calculations below provide the order of magnitude of the misalignment effects. By
using some basic geometry we see that the new cavity length is given by L′ = Rc− s2.
We further find that

s1 = L
sin(π/2− γ1)

sin(π/2− (γ2 − γ1))
= L

cos γ1
cos(γ2 − γ1)

(27)

and

s2 = (Rc − s1) cos(γ2 − γ1) = Rc cos(γ2 − γ1)− L cosγ1 (28)
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Figure 6. The geometry of a conventional two-mirror cavity with both mirrors
misaligned. The length of the misaligned cavity L′ = Rc − s2 can be computed
from the shown parameters as described in the text.

Thus we can write the new cavity length as

L′ = Rc − (Rc − L cos γ1

cos(γ2−γ1)
) cos(γ2 − γ1)

= Rc(1− cos(γ2 − γ1)) + L cos γ1

(29)

or for small angles:

L′ ≈ L−Rcγ2γ1 +
Rc

2
γ2
2 +

Rc − L

2
γ2
1 (30)

This result shows a quadratic dependency on the mirror misalignment. The change
in the cavity length ∆L = L−L′ yields a change in the phase of the circulating light.
In the following we will refer to the term ∆L also as phase noise which implies some
assumptions on the frequencies of the alignment fluctuations with respect to the cavity
linewidth, see below.

To quantify the alignment noise coupling we can compute a limit on the
fluctuation of one mirror with respect to a phase noise sensitivity. Due to the nature of
the seismic isolation systems the alignment fluctuations of the core optical components
in a gravitational wave detector have similar spectral distributions: the alignment
fluctuations are largest at Fourier frequencies below a cut-off frequency fc (often 1Hz)
and decrease rapidly with increasing frequency. Thus the phase noise ∆L at a given
frequency fn > fc as a function of the quadratic coupling of alignment fluctuation as
shown in (30) is dominated by the mix-terms between a low-frequency (quasi-static)
misalignment and the fluctuations at fn. We therefore write the alignment fluctuations
as a sum of a DC term and an AC term:

γ = γDC + γ(fn) (31)

This yields for the phase noise at a given Fourier frequency fn > fc:

∆L(fn) = Rc(γ2,DC γ1(fn) + γ1,DC γ2(fn))

+Rcγ2,DC γ2(fn) + (Rc − L)γ1,DC γ1(fn)
(32)

This change in cavity length is equivalent to that of a mirror displacement of ∆L if the
frequency of the alignment fluctuations are within the cavity linewidth FWHM > 2fn.
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In general the frequencies of interest are largely outside the cavity bandwidth.
However, the low frequency limit of the measurement band can be considered to
be within the cavity linewidth (limits for third generation ground based detectors
are expected to be between 1Hz and 50Hz). Alignment noise specification are of
special interest at this lower bound because the alignment fluctuations fall steeply
with increasing frequency. The following alignment noise limits will be computed for
Fourier frequencies fn in the low frequency band of the detector sensitivity.

Commonly the alignment noise specifications are computed such that a certain
amount of quasi-static misalignment is assumed, based on experience with suspension
control systems, and then a limit for the high frequency fluctuations can be derived
with respect to a given sensitivity limit. A typical value for the residual root
mean square misalignment integrated over a band between 0Hz to 10Hz for future
gravitational-wave detectors can be assumed to be γDC = 10 nrad [16]. We consider
the mirrors to be misaligned statically by γ1,DC and γ2,DC and the far mirror is rotating
further with an amplitude of γ2(fn) at frequency fn. This yields a phase noise of:

∆Lγ2
(fn) = Rc γ1,DC γ2(fn)−Rc γ2,DC γ2(fn) (33)

Equation 33 shows that the maximum phase noise is reached when γ2,DC = −γ1,DC,
which yields:

∆Lγ2
(fn) = 2Rc γ1,DC γ2(fn) (34)

If we take ∆Lγ2
(fn) to be the (differential) phase noise in the arm cavities of a

Michelson interferometer and we further assume a sensitivity goal for that Michelson of
h = 10−23/

√
Hz we can use (34) to compute a limit for γs(fn), i.e. the alignment noise

at the second mirrors. Using exemplary parameters for the cavity length and mirror
curvature from the VIRGO interferometer [2], we obtain the following alignment noise
limit:

γ2(fn) < 2 · 10−16 rad√
Hz

(

h

10−23/
√
Hz

)(

L

3 km

)(

3.5 km

Rc

)(

10 nrad

γ1,DC

)

(35)

In the following sections we will use the same method to compute limits on
alignment fluctuations for cavities that employ gratings. In the presence of gratings
we also need to know the displacement of the optical axis. In order to compute the
lateral translation of the eigenmode with both mirrors misaligned we first compute
the x coordinate of the center of the sphere associated with the end mirror:

xc = −Rc sin γ2 (36)

With this we can compute the x coordinate of the point where the eigenmode touches
the front mirror:

xf = xc + s2 sin γ1 = sin γ1(Rc cos(γ2 − γ1)− L cosγ1)−Rc sin γ2 (37)

which gives a new x′′ coordinate for the eigenmode of

x′′ =
xf

cos γ1
= Rc sin(γ2 + γ1)− L sin γ1 (38)

And for small angles

x′′ ≈ Rcγ2 + (Rc − L)γ1 (39)

We find that the lateral displacement is linearly dependent on the misalignment
angles. This displacement does not result in a dominant phase noise contribution
when conventional mirrors are used but is shown in the next section to be critical
when gratings are employed.
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5.2. Two-port grating as coupling ’mirror’ into arm cavity

In this section we will compare the above results to those of a similar cavity with a
grating as the input couplers (see Figure 2 bottom, left). We use the same parameters
as above; i.e. the grating is flat and the end mirror is spherical. It should be clear that
the cavity with a grating experiences exactly the same coupling of alignment into phase
noise as computed for the two-mirror cavity. However, there is an additional coupling
process through the transversal displacement of the eigenmode on the grating.

The displacement of the optical axis for a misalignment of the end mirror by
γ2(fn) can be approximated as:

∆x′′

γ2
(fn) = ∆x′ ≈ RCγ2(fn) (40)

With respect to the grating coordinate system we shall write:

∆x =
∆x′

cos(α)
=

RC

cos(α)
γ2 (41)

As shown above, the translation of the beam on the grating will result in a variation
of the optical path length during the refraction as:

∆ζ = ∆x
mλ

d
=

RC

cos(α)

λ

d
γ2 (42)

Such change in phase corresponds to an apparent fluctuation in the cavity length of
∆L = 0.5∆ζ. From this we can compute, for example, new limits for the alignment
noise of the second mirror. Assuming again a sensitivity goal of h = 10−23, VIRGO-
like parameters and typical values for the grating parameters we can write:

γ2 < 7 · 10−24 rad√
Hz

(

h

10−23/
√
Hz

)(

L

3 km

)(

cos(α)

cos(30◦)

)(

3.5 km

RC

)(

d

λ

)

(43)

which proves to be a much more stringent alignment requirement than the direct
coupling mechanism of alignment into phase noise given in (35).

5.3. Three-port grating as coupling ’mirror’ into arm cavity

In the case of a three-port grating as the cavity input mirror with the cavity mode
impinging on the grating at normal incidence the situation is a little different: Since
the cavity mode does not experience refraction at the grating but rather a zero order
reflection, a translation of the mode will not create an optical path length change
within the cavity. However, the beams leaving or entering the cavity will experience
exactly the same phase noise as described above. The main difference is that the
limits in this case are relaxed by the finesse of the arm cavity. Hence, for a cavity
with finesse F and a three-port grating coupling mirror we can compute limits for the
misalignment of the far mirror to be:

γ2 < 1 · 10−21 rad√
Hz

(

h

10−23/
√
Hz

)(

L

3 km

)(

F

200

)(

cos(α)

cos(45◦)

)(

3.5 km

RC

)(

d

λ

)

(44)

However, the presence of the grating will result also in more stringent requirements
for the input beam jitter [16] which are beyond the scope of this article.
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5.4. Four-port grating and beam splitters

When a four-port grating is used for a beam splitter (as shown in Figure 2) the
outgoing beams are given by the interference between a zero-order and a first-order
diffracted beam. Any translation of the grating or the incoming beams along their
respective x-axis results in phase noise in the first-order beams causing the interference
to be directly affected by the translation. The effect is comparable to a translation
of a standard beam splitter along its surface normal. If a four-port grating was
used as a central beam splitter in a VIRGO-like optical layout any translation of
the beams impinging on this beam splitter would be caused primarily by changes in
the optical axes of the arm cavities as computed above. We can thus derive alignment
specifications for the arm cavity mirrors, and again, the specifications are relaxed by
the cavity finesse because the phase noise originates outside the arm cavities. In the
example of the VIRGO interferometer this translates into the same alignment limits
for the far mirror as given in Equation 44.

6. Conclusion

Diffraction gratings have been proposed as replacements of traditional mirrors and
beam splitters for interferometric gravitational-wave detectors. However, so far only
draft optical layouts have been published without an in-depth analysis of their noise
performance. To our knowledge we have for the first time presented the effects of
beam and grating alignment on the outgoing beam in a form required to estimate
the sensitivity and performance of a long-baseline laser interferometer with reflective
diffraction gratings as core optical elements. Diffraction gratings differ from traditional
mirrors and beam splitters in several ways; in particular they reduce the symmetry
between the interacting beams. Comparing ideal diffraction gratings with traditional,
ideal mirrors and beam splitters shows that the reduced symmetry results in extra
coupling of geometry changes of the grating or the incoming beam into alignment
and phase changes of the outgoing beam. In particular, a displacement of the grating
along the x-axis (perpendicular to the grating normal and to the grating grooves, see
Figure 3) introduces a periodic change of the optical path length while a displacement
of the incoming beam along x′ (perpendicular to the beam axis and to the grating
grooves) introduces a continuous change of the optical path length. The optical path
length change is proportional to the order of the diffracted beam, especially it is zero
for the zeroth order.

The extra alignment changes are of the same magnitude and quality as the normal
alignment effects. The additional coupling of a roll motion into beam misalignment
probably requires a careful design of the suspension system of diffraction gratings.
However, the additional coupling of beam alignment noise into phase noise at a
grating results in much more stringent alignment specification for main interferometer
components if a grating is used either as coupling mirror for arm cavities or as the main
beam splitter. By analysing a simplified example, using VIRGO-like parameters for the
optical system, we could show that the currently proposed draft topologies for the use
of diffraction gratings would result in challenging requirements for the alignment of the
optical components - the grating as well as the other main interferometer mirrors. Even
considering the ongoing development of suspension systems [17] for the core optical
elements of future gravitational-wave detectors, the all-reflective topologies discussed
so far would very likely be limited by alignment noise. In order to benefit from
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advantages of diffraction gratings, these optical layouts of refractive interferometers
must be designed carefully, and topologies with higher symmetry found, in order to
minimise the alignment related phase noise. Furthermore, new suspension systems
should be investigated, which could provide a reduction of alignment noise to the
required level.
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