arXiv:0711.0313v1 [gr-qc] 2 Nov 2007

Black holes as local horizons

Alex B. Nielsen
Center for Theoretical Physics,
Seoul National University, Seoul 151-747, Korea

June 6, 2018

Abstract

This talk gives a brief introduction to black hole horizons and their role in
black hole thermodynamics. In particular a distinction is made between quasi-
locally defined horizons and event horizons. Currently some new techniques have
led to interesting developments and the field seems to be growing in two distinct
directions. We will show how thermodynamics can equally well be applied to
locally defined horizons and discuss some recent results. The emphasis is on
giving simple intuitive pictures and mathematical details are largely omitted.

1 Introduction

Black holes play a huge role in contemporary physics. Within the past fifteen years or so,
a great deal of astrophysical data has accumulated that black holes are physical objects
within our universe, ranging from solar-mass sized black holes to the giant objects that
inhabit the centres of galaxies and quasars. However, on closer inspection one notices
that the astrophysical data only provides evidence for black hole-like spacetimes exterior
to the black hole and that current observations are unable to demonstrate that the
objects within these regions are “true” black holed]. In fact, due to the definition of an
event horizon, it would seem virtually impossible to demonstrate that these objects are
truly black holes, since no signal will ever reach us from the black hole itself.

This is of course related to the issue of what the definition of a black hole should
be. Most lay people have heard of black holes and most physicists think they know

!This fact has, for example, allowed some speculation on the possibility that the sources of these
gravitational fields might be something like gravastars instead of black holes.
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what they are. The most common response to the question "what is a black hole?”
would probably be ”an object whose gravitational field is so strong not even light can
escape from it”. A slightly more technical response might be ”the region inside an event
horizon”, where the event horizon is understood as the past causal boundary of some
region, usually future null infinity. In fact, in most people’s minds black holes have
become almost synonymous with event horizons. This fact is important to remember
as event horizons are by their very definition, non-local structures. In some sense, they
‘know’ about the full global causal structure of space-time, and in particular they know
about the future causal structure.

Event horizons are however, not the only way of defining black holes in general
relativity. In fact, they are not even the first formal definition appearing in the literature
of what it means to be a ‘black hole’. A number of local, or quasi-local definitions of
black holes have been given by various authors and the main aim of this talk is to review
some of these ideas and discuss what implications they may have for our understanding
of black hole thermodynamics.

The debate about the correct definition may seem like so much semantic quibbling.
Clearly, once we have an ‘intuitive’ idea of the physical system we want to describe as
a black hole, we can merely search for the most appropriate formal definition. But the
definition we choose may have subtle effects on the physical properties we ascribe to the
object in question. A non-local definition may eventually lead us to associating these
objects with non-local physics. In this way, it seems that local definitions of black holes
are more in keeping with the formal local nature of general relativity and quantum field
theory. It remains to be seen whether such ‘localness’ will also be a feature of a full
theory of quantum gravity.

Since the surprising discovery of black hole thermodynamics a lot of work has gone
into discovering what are the microstates responsible for gravitational entropy and what
is the end-point of black hole evaporation. In this talk I will describe how the thermo-
dynamic analogy can be applied to local horizons as well as event horizons and that
the issue of which horizon best describes the thermal properties of the black hole is not
entirely moot.

In order to understand how we came to our present situation we will first discuss
some of the history of black holes. We will then discuss various definitions that have been
given for black hole horizons and focus on the use of locally defined horizons and their
relation to thermodynamics. Finally, we will conclude with some speculative remarks
on how this might shed light on various black hole questions.



2 Brief history

The idea of a black hole has a long history. The idea of an object so heavy that
corpuscular light cannot escape it dates back Reverend John Mitchell in 1783 and Pierre-
Simon Laplace in 1795. Newtonian black holes are somewhat different to their relativistic
counterparts. While the light particles were able to escape off the surface of the object,
they were eventually pulled back down by gravity and this Newtonian picture relies
critically on the idea that light particles cannot escape to infinity from the black hole.
We thus already see in this some beginning to the global conception of what a black
hole should be.

The idea of a black hole in general relativity had a slow start from the original
mathematical solution by Karl Schwarzschild 1916, through the work of Oppenheimer
and colleagues in the 1930’s and Wheeler and colleagues in the 1950’8, This era was
chiefly concerned with black holes as the endpoint of stellar collapse and it took the
community some time to accept that these objects may actually exist.

The first general mathematical definition of what we might heuristically call a black
hole was given by Penrose in 1964 [2]. This was in terms of what are called trapped
surfaces and formed part of his famous singularity theorem.

A trapped surface is a compact, two dimensional spacelike surface for which the
forward pointing null normals both have negative expansion. Effectively this means
that null rays that are moving away from the surface are forced to move towards one
another. Since the surface is a two dimensional spacelike surface, there are two distinct
null normal directions. In the following we will think of one of these directions as being
ingoing and the other as being outgoing.

In terms of the two vectors tangent to the ingoing and outgoing null geodesics (n
and [* respectively), the expansions 6,, and 6, can be written as

a

O, = g“°Vany + 10"V ony, + n°Vony, (1)

and
0, = gV ol + 1V o1, + n®1°V,1, (2)

Each of these expansions only depends on a choice of tangent vector and the metric
components at a point in spacetime and so are purely local quantities. To verify that
the expansions of both 6,, and 6, are negative over a compact two surface, requires one
to measure their value over a region of spacetime and hence the definition of a trapped
surface is actually a quasi-local definition.

2 A popular account of the history of black hole physics and how they came to be considered physically
realistic can be found in [IJ.



On a given time-slicing, the boundary of the region containing trapped surfaces came
to be known as a marginally trapped surface. In this case, one of the expansions is zero.
This is usually chosen to be the expansion of the outgoing null normal and hence one
talks of an marginally outer trapped surface. This marginally outer trapped surface is
sometimes called the apparent horizon.

In 1971 Hawking proposed an alternative definition of a black hole based on the
formal idea of an event horizon [4]@ The event horizon was defined as the past causal
boundary of future null infinity and the black hole was defined as the region not con-
tained in the causal past of future null infinity. In practical terms this means that
observers inside the black hole region cannot send causal messages to infinity and thus
they cannot send causal messages to observers outside the black hole either (since these
observers would otherwise be able to just pass the message on to infinity).

What this meant was that black holes were defined in a global sense. It would
never be possible for observers inside the black hole to send causal messages to infinity
no matter how long they waited. Whether you were inside or outside the black hole
depended on events in the far future of which you could have no knowledge.

It is important to realise that the two notions of apparent horizon and event horizon
do not always coincide. In eternally static solutions solutions such as the Schwarzschild
solution and the Reissner-Nordstrom solution the event horizon is also an apparent
horizon. However, in dynamical situations the apparent horizon need not be at the
same location as the event horizon. This can be seen clearly in (the colour version of)
Fig. 2l This means that if one wants to assign an entropy to the horizon of a black hole,
or postulate a set of microstates on or near the horizon that give rise to this entropy,
one must indicate which horizon one is talking about.

The distinction may be lost when considering globally static toy models, but clearly
any physically realistic evaporating black hole spacetime will be dynamic and so in this
case and particularly in this case one must choose whether one wants to focus on a
globally defined concept, the event horizon, or a locally defined concept such as the
apparent horizon.

There were several reasons given by Hawking (and others) for focusing on event
horizons instead of apparent horizons. Chief amongst these was that the evolution of
the event horizon is always continuous. This problem is most clearly demonstrated in
the case of a very thin shell of matter collapsing onto a pre-existing black hole, see Fig[2l
In this case the event horizon evolves continuously, but the apparent horizon does not.

Another related feature of the event horizon is, since it is by definition a null hyper-

3The idea of an event horizon had been around since the time of Finkelstein and appears in many
works prior to Hawking’s formal definition, such as [3].
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Figure 1: Schematic space-time diagram of a black hole collapse followed by the collapse
of a spherical shell onto the black hole (blue shading). Notice that the event horizon
(red line) evolves continuously and moves outwards in anticipation of the collapse of the
spherical shell whereas the local/apparent horizon (green line) does not respond until
it meets the shell itself. Note also that there is a region between the event horizon and
the local horizon where light rays can move outwards locally but they will ultimately be
trapped by the collapsing shell. The diagram assumes that the future development of
the black hole is entirely classical and no further energy is transmitted across the event
horizon.
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Figure 2: Similar to FigP] except this time the collapsing shell is a very thin shell. In
this case the evolution of the local horizon on a foliation by spacelike hypersurfaces
(for example horizontal sections of the diagram) is discontinuous. The area of the
outermost horizon jumps at the point where the outer horizon region appears. However,
the evolution of the event horizon is still perfectly continuous.



surface, it cannot be multiply intersected by a given spatial hypersurface. As we will
see below, locally defined horizons are not always null hypersurfaces. In many cases
they are spacelike hypersurfaces and can thus be intersected multiple times by a given
spacelike, constant time, slicing.

Perhaps the biggest weakness of apparent horizons and other similarly defined local
horizons is their reliance on a particular foliation of the spacetime. For a given foliation of
spacetime one can search for compact spacelike two-surfaces. However, not all foliations
necessarily give rise to trapped compact surfaces, a point made by Wald and Iyer [5]
and not all foliations that give rise to trapped surfaces give rise to trapped surfaces in
the same location. This issue is related to a conjecture by Eardley that will be discussed
below.

For these reasons apparent horizons were largely ignored in future work by black
hole researchers and the concept of an event horizon became synonymous with a black
hole in most people’s minds. Historically it is important to realise that these definitions
were laid down and accepted by the community before anyone started taking seriously
the possibility that black holes might have entropy and that they might evaporate by
Hawking radiation.

However, as noted by Hayward [6] and Ashtekar and colleagues (see [7] and refer-
ences therein), there are also a number of features of event horizons that make them
objectionable as the tangible physical boundary of a black hole. Firstly, there are prac-
tical considerations for researchers investigating black holes numerically on computers.
Locating event horizons in dynamical simulations is notoriously difficult, that is to say
time consuming (see for example [8]). In addition, finding event horizons in numerical
solutions requires a solution that is stable all the way to ‘infinity’, or at least until it
settles down to an approximately stationary state. It is far easier numerically to locate
apparent horizons on a given hypersurface and in many cases, use this as a ‘proxy’ for
the event horizon.

But this is merely a matter of technical convenience. What is important physically
is identifying the mathematical structures that will best allow us to predict the outcome
of experiments. Because of the global nature of their definition, classically one cannot
detect an event horizon using local measurements. This means that there is no finite
experiment one can perform that will demonstrate the physical existence of an event
horizon. Such a demonstration would require knowledge of the full future evolution of
the universe all the way out to infinity. Defining black holes by event horizons means
that physics is no longer concerned solely with the elements of the physical world that
can be measured and tested with realistic laboratory equipment of a finite size.

Of course, this inability to detect an event horizon only holds classically. But even
if one claimed that the event horizon is the structure that is responsible for Hawking
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radiation, and one was able to detect Hawking radiation, one could still not unequiv-
ocally demonstrate that the Hawking radiation was associated with the event horizon,
since one would still not be able to prove where the event horizon would be.

Further mischief occurs when we realise that event horizons can occur perfectly well
in flat spacetime. Consider a hollow, spherically symmetric shell of matter collapsing
spherically symmetrically onto itself. By the shell theorem we know that the metric
inside the hollow shell must be that of flat spacetime. But we also know that at some
point it will not be possible to send a photon to infinity from within the shell since
if we wait too long the escaping photon will reach the collapsing shell after the shell
has crossed its Schwarzschild radius and the photon will not be able to escape. Thus
there must also be an event horizon inside the collapsing shell, growing out through flat
spacetime. This leaves open the possibility that there is an event horizon passing through
us at this very moment due to some exceptionally large shell of matter collapsing down
on us from beyond our past light cone. Could it be that my last chance to send a signal
to infinity has passed just this very moment and all that I wish to say is now doomed
to collapse with me into some future black hole?

Were we to argue that quantum mechanics would endow such event horizons with
physical properties we should in principle be able to detect these horizons. The non-
existence of these effects would therefore allow us to infer information about events
occurring beyond our past light cone. Note also that there would be no local backscatter
for such an event horizon in flat space since there is no curvature near the horizon and
thus any radiation produced would not have any grey-body factors.

In addition, and perhaps most importantly, there are a number of simple derivations
of the Hawking effect that do not require event horizons, indeed depend on local horizons
for their derivation [9] 10]. Indeed, it would be very strange if the combination of two
local theories, namely general relativity and quantum field theory could give rise to
non-local particle creation, based purely on event horizons, at the semi-classical level.
It’s possible that these theories require non-locality for their ultimate consistency and
that a fully consistent unification of these two theories does lead to such acausal effects,
but developing such a unification is left as an exercise for the reader.

3 Types of locally defined horizons

We turn now to the definitions of local horizons. The two most studied recent definitions
for local black hole horizons are those of trapping horizons, due to Hayward [6], and
dynamical horizons, due to Ashtekar and collaborators [7]. (The earlier work by Ashtekar
et al. on Isolated Horizons largely refers to a limiting case of a dynamical horizon where



the area of the horizon remains constant.) Both of these definitions are given in terms
of the properties of an outgoing null direction / and an ingoing null direction n.

A future outer trapping horizon is defined by Hayward [6] as the closure of a three-
surface which is foliated by marginal surfaces, for which 8, = 0, and which, in addition,
satisfies

i. 0, <0 (to distinguish between white holes and black holes).

ii. L£,0; < 0 (to distinguish between inner and outer horizons of, for example, the
non-extremal Reissner-Nordstrom solution).

A dynamical horizon H is defined by Ashtekar and Krishnan [7] to have the following
properties;

i. H is a three-dimensional spacelike hypersurface that can be foliated by closed,
spacelike 2-surfaces.

1. The expansion of one null normal to the foliations n® is negative 6, < 0.

i77. The expansion of the other null normal [* is zero 6; = 0.

These definitions are similar to the definition of a marginally trapped surface in that
they rely crucially on the condition ¢, = 0. The definitions are also quite similar to each
other. Most dynamical horizons are trapping horizons, although trapping horizons can
be timelike, null or spacelike hypersurfaces. However, the definitions are subtly different
in intent in that a dynamical horizon does not refer to any behaviour off of the horizon,
while condition (i7) for a future outer trapping horizon refers to the behaviour of 6; as
one moves across the horizon.

As mentioned earlier, one of the chief criticisms of locally defined horizons has been
that they are foliation dependent. Different foliations of the spacetime may give rise to
different local horizons and some foliations may give rise to no local horizons at all. The
definitions of trapping horizons and dynamical horizons sidestep this issue somewhat by
not referring to behaviour on a given spacelike hypersurface but the question of their
uniqueness still remains [11].

In fact, there is an intriguing conjecture due to Eardley [12] that relates local horizons
in their marginally trapped surfaces guise to event horizons.

Eardley showed how one could deform a given smooth marginally trapped surface by
choosing a new foliation in such as way as to move the location of the horizon slightly



outwards. Since one can show that marginally trapped surfaces generally occur inside
event horizons, Eardley conjectured that one could continue this process of ‘moving’ the
horizon outwards until one reached the event horizon.

This would seem to give a central role back to the event horizon even if one initially
focuses on local horizons since, if the conjecture holds, the boundary of the region where
one can find marginally trapped surfaces is precisely the region bounded by the event
horizon.

However a key assumption of the proof that marginally trapped surfaces always lie
inside event horizons is that of the Null Energy Condition. This condition can be written
as

Tl >0 (3)

or, for a perfect fluid
p+p=>0 (4)

While this is a perfectly reasonable assumption for all known classical matter, it is well-
known to be violated by quantum fields during Hawking radiation. Thus, in precisely
the situations one would want to consider in black hole evaporation, the conjecture is
unlikely to hold and the event horizon has no real role.

One way to sidestep these issues is to focus purely on the properties of a given
trapping or dynamical horizon and not to concern oneself too much with how the horizon
itself came about. This is the approach largely adopted by Hayward and Ashtekar and
is the approach we will take for the remainder of the talk.

4 Local horizons and thermodynamics

We turn now to the issue of black hole thermodynamics. The fact that black hole dy-
namics can be cast in an equivalent form to the usual laws of thermodynamics has long
been the subject of much theoretical interest. The laws of black hole thermodynamics
were first demonstrated for event horizons. The initial proofs relied on both the global
Killing vector field of a globally stationary spacetime and asymptotic flatness to nor-
malise the surface gravity (of the Killing horizon) and to define the mass of the black
hole as the asymptotic ADM mass.

That the laws of thermodynamics hold for event horizons would seem to suggest
that any investigation into the thermodynamic properties of black holes should focus on
event horizons. But it is now clear that the same laws can be derived for locally defined
horizons too. For our purposes here we will only consider the rather simple proof given
by Hayward [6] of the second law. Since the zeroth law is not expected to hold for
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dynamical black holes and the first law really relates to the conservation of energy the
interested reader is referred to [7] for these cases.
The tangent vector field of a trapping horizon can be written as

r® = al® + fn® (5)

Where will we choose for convenience o > 0 and n®l, = —1. With this choice we
immediately see that the norm of the horizons tangent vector satisfies

rr, = —2af (6)

and thus the horizon can be timelike, null of spacelike depending on the sign of 3. The
change in the area A as we move along the horizon can be computed by

L.A=alA+BLA (7)
We can relate the change in the area to the expansion via the well-known equation
0,A =LA (8)

which holds for any vector, not just the outgoing radial null geodesic [*. Thus, since 6,
is assumed zero on the horizon we have

L, A= B6,A (9)

Since 6,, is assumed negative, we see that a spacelike horizon has an increasing area and
a timelike horizon has a decreasing area. We can also relate the value of § to the value
of a by noticing that we require

L0 = alib) + BLaO =0 (10)

If [* is hypersurface orthogonal (not necessarily hypersurface orthogonal to the horizon
but hypersurface orthogonal to some surface) then by the Raychaudhuri equation we
can write

‘Crel = _02 - Rablalb (11)
and hence we have
(02 + Rabl“lb)

= 12
§—at’ (12)
which gives
B aAb,, (02 + Rabl“lb)

A=
£ L,0,

(13)
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Via the Einstein equations we can cast this in the form

B aAb,, (02 + SWGTabl“lb)

P A
£ L,.0,

(14)

Since o > 0, #,, < 0 and L£,6;, < 0 for all trapping horizons, we see that the second law
of thermodynamics holds as long as the Null Energy Condition is satisfied and would
fail only in situations where the NEC does not hold as indeed is the expected case with
Hawking radiation. That the second law holds equally well for trapping horizons as for
event horizons is the main result of interest.

On a given spatial hypersurface, the area of the trapping horizon and the area of
the event horizon may not be the same. This tells us that any attempt to incorporate
the area of black holes into a generalised entropy function, or identify the microstates
responsible for that entropy must inevitably face the question of which horizon is being
referred to.

5 Local horizons and information loss

We turn finally to a brief discussion of the role that horizons could play in the evaporation
of black holes. While the discussion is brief and heuristic it will hopefully indicate what
role the choice of horizon may play in resolving certain problems.

Firstly we consider the black hole complementarity picture first elucidated in [13]
and displayed in Fig. Bl In this picture one assumes that there is a true event horizon
and that unitarity is preserved. The argument runs, that these two are only compatible
if observers on the outside and observers on the inside see different physics. From the
point of view of an observer who remains outside the horizon, the horizon is represented
by a hot membrane (in the sense of the stretched horizon) that strongly interacts with
all infalling matter, eventually re-emitting the matter as Hawking radiation. However,
complemetary to this, from the point of view of observers that fall over the horizon with
the infalling matter, nothing unusual occurs at the horizon and the infalling matter
carries on its path towards the central singularity.

This picture appears to be entirely consistent in that there is no experiment that
could be performed to inform either of the causally disconnected observers of what the
other observer has seen. There is no way to experimentally verify the duplication of
matter. This feature seems to depend on the ‘hot membrane’ being associated with
the event horizon and thus the picture seems to rely from the outset on a non-local
description. In fact, the whole rationale for considering what to some may seem an
extreme solution is predicated on considering event horizons in the context of unitary
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evolution. As we will see below, it may not be necessary to go this far if one is willing
to consider spacetimes without true event horizons.

The picture also raises a number of questions. For example, would an observer that
initially follows a path that keeps them out of the black hole and observes matter being
thermalised by the hot membrane suddenly see the membrane disappear if they choose
to allow themselves to fall freely into the black hole? And how would the picture look
if we consider, as we did earlier, an event horizon forming in an empty region of space,
with a shell of matter collapsing down from beyond the past light cone? Would an
observer in the flat region outside the event horizon still ‘see’ a hot membrane forming
on the event horizon?

A more straightforward approach is that of Hayward [14] and Fig. Bl Hayward argues
that the details of what is occuring near the singularity should not make a difference to
the general picture of Hawking radiation and also that one should think of a black holes
in terms of trapping horizons rather than event horizons. To this end Hayward proposes
a model that contains a black hole with two trapping horizons, an inner and an outer
trapping horizon and a timelike r = 0 region. His spacetime contains no event horizon
and Hayward argues that information that fell into the black hole can be returned to
the exterior region whilst the trapping horizon is timelike and evaporating.

The original spacelike singularity that appears in the semi-classical picture has now
been modified to be everywhere timelike and there is no real mechanism proposed to
account for the production of Hawking radiation and how it should be correlated to
infalling material. Rather Hayward makes the point that the existence of an event
horizon is not strictly necessary to understand black hole formation and evaporation,
much as we have here in this talk.

Another possibility is that of Ashtekar and Bojowald [15] and Fig. [l Based on
calculations using the loop quantum gravity formalism Ashtekar and Bojowald claim
that it is possible to extend spacetime through the central singular region. Of course
the spacetime is not smooth all the way through this extension but it is claimed that a
classical smooth manifold is eventually reached on the other side. This means that one
can extend the usual semi-classical picture of black hole evaporation in the way depicted
in the figure. This avoids the extreme modification made in the Hayward picture to the
central region since the formally singular region is still spacelike, only now it does not
form a true boundary to the spacetime and geodesic curves do not necessarily end when
they intersect it. The geometry is also not smooth here, something that one might
reasonably expect from a theory of quantum gravity.

This means that there is no true event horizon in the spacetime, only a dynami-
cal /trapping horizon, and the event horizon is instead replaced by a ‘quantum horizon’
which denotes the boundary of the region within which one cannot avoid meeting the
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Figure 3: Penrose diagram of black hole evaporation according to the black hole com-
plementarity picture. Infalling matter is somehow ‘duplicated’ at the horizon such that
observers both inside and outside the horizon have access to the information it con-
tained. Unitarity is preserved for both observers and only violated for a ‘superobserver’
who can see the whole spacetime, something that precludes them from being a true
observer.
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Figure 4: Penrose diagram of black hole evaporation according to Hayward. The central
singularity no longer exists, the centre of the spacetime is timelike and there is no event
horizon. Only the trapping horizon (green line) exists and information will be able to
travel freely out of the black hole when the trapping horizon is timelike.
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formally singular area. While the model appears to have some attractive features, it is
fair to say that more work remains to be done to see if it is truly viable. For example,
one should calculate whether correlations between matter that fell in to the black hole
and matter that stayed outside can be sustained whilst the infalling matter crosses the
central region.

6 Conclusions

The issue of what is the most useful description of a black hole depends on the context.
In many astrophysical situations one may be happy thinking of a black hole as merely
"the end-point of gravitational collapse of a sufficiently massive object”. This definition
may not preclude several exotica that one might not be willing to call a black hole
in a theoretical context. In this case it would be perfectly reasonable to invoke the
event horizon as a defining boundary. This is undoubtedly a perfectly reasonable, self-
consistent definition.

However, one should remember that this definition is not the only possible definition
and may not be the most useful when considering semi-classical effects such as Hawking
radiation. In fact its causal nature may eventually lead to one entertaining causally
separated views of reality such as are seen in the black hole complementarity picture.
As we have seen above, it is possible to consider spacetimes that do not contain event
horizons but act essentially like black holes. That fact that one will probably never
be able to prove that a true event horizon exists in nature may ultimately force us to
consider this option. Moreover, if one wants to assign an entropy to the event horizon
merely because ”information is eternally lost behind it” one has a consistency issue if
one simultaneously wants to argue that the information is eventually returned to the
universe.

Adopting quasi-local definitions of horizons doesn’t necessarily solve all of the above
problems. Since marginally trapped surfaces are not unique, trapping and dynamical
horizons may not be unique either. Whether one wants to consider the outermost pos-
sible local horizon or some other restriction will need to be carefully studied. Spacelike
horizons may also intersect a given constant time surface multiple times giving the sense
of multiple horizons.

As we have seen above, these issues are far from settled and may have to wait until
we understand better what exactly occurs near the centre of the black hole, where
classically one would expect a singularity to form. Until then we should be wary of
assigning too much physical significance to what are essentially just definitions.
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Figure 5: Penrose diagram of black hole evaporation according to Ashtekar and Bo-
jowald. The central singularity is resolved by quantum gravity effects and it is possible
to continue the ‘spacetime’ through the formally singular region (thick dotted line).
There is no true event horizon but there is a region within which one cannot avoid
falling through the quantum spacetime region indicated by the lower dotted red line.
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