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We consider gauge vortices in symmetry breaking models with a non-canonical kinetic term. This
work extends our previous study on global topological k-defects (hep-th/0608071), including a gauge
field. The model consists of a scalar field with a non-canonical kinetic term, while for the gauge
field the standard form of its kinetic term is preserved. Topological defects arising in such models,
k-vortices, may have quite different properties as compared to “standard” vortices. This happens
because an additional dimensional parameter enters the Lagrangian for the considered model — a
“kinetic” mass. We briefly discuss possible consequences for cosmology, in particular, the formation
of cosmic strings during phase transitions in the early universe and their properties.
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I. INTRODUCTION

Vortices are a class of topological defects which may
form as a result of symmetry-breaking phase transitions.
In condensed matter physics linear defects arise rather
commonly. Well-known examples are flux tubes in su-
perconductors [1] and vortices in superfluid helium-4. In
cosmology topological defects attract much interest be-
cause they might appear in a rather natural way during
phase transitions in the early universe. The breaking of
discrete symmetries leads to the appearance of domain
walls, while the breaking of a global or a local U(1)-
symmetry is associated with global [2] and local [3] cos-
mic strings, respectively. Localized defects or monopoles
may form in gauge models possessing a SO(3) symmetry
which is spontaneously broken to U(1) [4, 5].

Many properties of topological defects arising in
symmetry-breaking models with a canonical kinetic term
are well-known, see, e.g. [6, 7]. Adding non-linear terms
to the kinetic part of the Lagrangian has interesting con-
sequences for topological defects. For example, defects
can exist without a symmetry-breaking potential term
[8]. Non-standard kinetic terms in the form of some non-
linear function of the canonical term may arise in string
theory, due to the presence of higher-order corrections
to the effective action for the scalar field. Non-canonical
kinetic structures appear also commonly in effective field
theories.

During the last years Lagrangians with non-canonical
fields were intensively studied in the cosmological con-
text. So-called k-fields were first introduced in the con-
text of inflation [9] and then k-essence models were sug-
gested as solution to the cosmic coincidence problem
[10, 11]. Tachyon matter [12] and ghost condensates [13]
are other examples of non-canonical fields in cosmology.
An interesting application of k-fields is the explanation of
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dark matter as a self-gravitating coherent state of k-field
matter [14]. The production of strong gravitational waves
in models of inflation with nontrivial kinetic term was
considered in [15]. The effects of scalar fields with non-
canonical kinetic terms in the neighborhood of a black
hole were investigated in [16].
Recently, symmetry-breaking models with k-essence-

like terms have been discussed in literature. General
properties of global topological defects appearing in such
models were studied in [17]. It was shown that the prop-
erties of such defects (dubbed k-defects) are quite differ-
ent from “standard” global domain walls, vortices and
monopoles. In particular, depending on the concrete
form of the kinetic term, the typical size of such a de-
fect can be either much larger or much smaller than the
size of a standard defect with the same potential term.
A detailed study of global defect solutions for one space
dimension was carried out in [18]. A self-gravitating k-
monopole was considered in [19]. In [20] the authors
argued that a special type of k-defects may be viewed
as “compactons”, i.e. solutions with a compact support.
Global strings with a Dirac-Born-Infeld (DBI) term were
considered in [21].
In this paper we study properties of gauge vortices aris-

ing in a model with a k-essence-like kinetic term and
a symmetry breaking potential. We dubb such defects
“gauge k-vortices”, in analogy to global k-defects. We
extend our previous investigation on k-defects [17] in-
cluding a gauge field into the model. As for the global
k-defects, the scalar field has a non-canonical structure
of the kinetic term, while for the gauge field we keep
the canonical form of the kinetic term. The existence
of non-trivial configurations is ensured by the symmetry-
breaking potential term. The generic feature of the model
with a non-canonical kinetic term is the appearance of a
new scale — the kinetic “mass”. The presence of a new
mass scale in the model radically changes basic properties
of vortices.
We show that generally the size of the scalar core of

the gauge vortex solution is almost independent on the
presence of the gauge field. Its value can be approxi-
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mated by the core’ size of the global k-vortex with the
same kinetic structure [17]. With an additional, natu-
ral assumption we find that the vector core has roughly
the same size as a standard vortex. A particularly inter-
esting result is that the mass of a vortex radically vary
depending on the choice of kinetic term. As the concrete
examples we study numerically the vortex solutions for
the models with DBI and with a power-law kinetic terms.
The paper is organized as follows. In Sec. II, we de-

scribe our model and derive its equations of motion and
the energy functional for a vortex solution. General prop-
erties of k-vortices are studied in Sec. III. In Sec. IV we
find constraints on the parameters of the model. Numer-
ical solutions for particular choices of the non-canonical
kinetic term are presented in Sec. V. We summarize and
discuss results and cosmological applications in the con-
cluding Sec. VI.

II. MODEL

We consider the action

S =

∫

d4x

[

M4K(X/M4)− U(f)− 1

4
FµνFµν

]

, (1)

with

X = (Dµφ)(D
µφ)∗, Fµν = ∂µAν − ∂νAµ ,

and

Dµ ≡ ∂µ − ieAµ .

The potential term which provides the symmetry break-
ing is given by

U(φ) =
λ

4
(| φ |2 −η2)2 ,

where η has dimension of a mass, while λ is a dimension-
less constant. Note that throughout this paper we use
a metric with signature (+,−,−,−). The kinetic term
K(X) in (1) is in general some non-linear function of X .
The action (1) contains three mass scales: The “usual”

scalar and vector masses,
√
λη and eη correspondingly,

and the “kinetic” mass M . It is worth to note that a ki-
netic term that is non-linear in X unavoidably leads to a
new scale in the action. In the standard case K = X/M4

and the kinetic mass M drops out from the action. For
non-trivial choices of the kinetic term, the kinetic mass
enters the action and changes the properties of the re-
sulting topological defects.
In what follows it is convenient to make the following

redefinition of variables to dimensionless units,

x → x

M
, φ → Mφ, Aµ → MAµ .

In terms of the new variables the energy density ǫ is
also dimensionless: ǫ → M4ǫ. It is easy to see that

Dµ → MDµ, X → M4X and the action (1) becomes

S =

∫

d4x

[

K(X)− V (φ)− 1

4
FµνFµν

]

, (2)

where

V (φ) =
λ

4
(| φ |2 −v2)2, (3)

with v ≡ η/M being a dimensionless quantity. One can
calculate the energy-momentum tensor from the action
(2),

Tµν = 2KX | Dµφ |2 −gµν [K(X)− V (f)]

− FµαF
α

ν +
1

4
gµνF

αβFαβ ,

where we denoted KX ≡ dK/dX , KXX ≡ d2K/dX2

etc. In the gauge A0 = 0, the energy density for a static
configuration, φ̇ = 0, ∂Ai = 0, is

T 0
0 = −K(X) + V (φ) +

1

4
F 2
ij . (4)

Note also that for static configurations X =
−Diφ(Diφ)

∗. The mass per unit length of a vortex, E,
can be expressed as:

E =

∫
[

−K
(

−|Diφ|2
)

+ V (φ) +
1

4
FµνFµν

]

d2x. (5)

From the variation of the action (2) with respect to φ∗

and Aµ we obtain as equations of motion (EoM)

KXDµD
µφ+KXXX,µD

µφ+
dV

dφ∗
= 0, (6)

∂µF
µν = ejν , (7)

where the current jµ is given by

jµ = −iKX

[

φ∗Dµφ− φ (Dµφ)
∗
]

.

(Note the additional KX in the above expression as com-
pared to the standard case.) One can check that the
current jµ is conserved,

∂µj
µ = 0,

similar to the standard case. To obtain the solution de-
scribing a vortex we use the following ansatz,

φ(x) = eiθf(r), (8)

Ai(x) = − 1

er2
ǫijrjα(r) ,

where r =
(

x2 + y2
)1/2

. It is worth to note that we use
the same ansatz (8) as in the standard case. Substituting
(8) into (6) and (7) we obtain the EoM for the functions
f(r) and α(r),

−KX

[

1

r

d (rf ′)

dr
− f(1− α)2

r2

]

−KXXX ′f ′ +
λ

2

(

f2 − v2
)

f = 0, (9)

− d

dr

(

α′

r

)

− 2e2f2

r
(1− α)KX = 0. (10)
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One can check that in the standard case, K(X) = X ,
Eqs. (9) and (10) take the familiar form of EoMs for
“usual” vortices.
We assume that the kinetic term K(X) has the stan-

dard asymptotic behavior at small X . This means that
in the perturbative regime in trivial backgrounds the dy-
namics of the considered system is the same as with a
canonical kinetic term. This requirement is introduced
to avoid troubles at X = 0: In the case of Xδ with δ < 1
there is a singularity at X = 0, while for δ > 1 the system
becomes non-dynamical at X = 0 [17]. One can under-
stand this better in terms of an “emergent geometry”:
Because of the non-linearity of the EoMs, small fluctua-
tions of the scalar field feel an “effective” metric, which
in general differs from the gravitational one (in our case
— from the Minkowski metric). As it was shown in [23],
in the case when a kinetic term does not coincide with
the canonical one (probably, up to some constant) in the
limit of small X , the effective metric for small perturba-
tions diverges as X → 0. This means that such models
are physically meaningless.
In the opposite limit, X ≫ 1, we restrict our atten-

tion to the modifications of the kinetic term having the
following asymptotic,

K(X) = − (−X)n .

Note that for a static configuration X < 0 and a minus
sign in the expression above for K(X) provides a positive
contribution to the energy density (4). Below we find the
criteria for the Lagrangians to have the desired asymp-
totic X ≫ 1 in the core of a vortex. Summarizing, we
will consider kinetic terms with the following asymptotic
behavior,

K(X) =

{

X, X ≪ 1,
− (−X)

n
, X ≫ 1.

(11)

Assuming X ≫ 1, one can easily obtain from (11), (9)
and (10) EoMs in this regime,

[

1

r

d (rf ′)

dr
− f(1− α)2

r2

]

+ (n− 1) (lnX)′ f ′

− (−X)
1−n λ

2n

(

f2 − v2
)

f = 0,(12)

d

dr

(

α′

r

)

+
2ne2f2

r
(1− α) (−X)

n−1
= 0.(13)

As a particular example we choose a DBI-like kinetic
term for the scalar field,

K(X) = 1−
√
1− 2X. (14)

It is easy to see that for this choice in the limit X ≫ 1
the kinetic term is of form (11) with n = 1/2. Another
particular example we will study is a power-law form of
the Lagrangian:

K(X) = X +X3. (15)

III. GENERAL PROPERTIES

The EoMs (12), (13) for arbitrary K(X) are highly
non-linear and cannot be solved analytically. We restrict
our attention to the study of vortices arising from La-
grangians having the asymptotic behavior (11) for the
kinetic term. Although the EoMs can not be integrated
even in this case, some general features can be extracted
without the knowledge of explicit solutions.
At some point of our estimations we will use an ad-

ditional simplifying assumption, which makes the under-
standing of the results more transparent. We will assume
that the parameters of the Lagrangian satisfy the follow-
ing natural relation,

e ∼
√
λ, (16)

which means that in the linear regime for the kinetic
term, K(X) = X , the “scalar” and “vector” masses are
of the same order. Thus the assumption (16) reduces the
number of different scales in the model from 3 to 2: one
is the usual “scalar” or “vector” mass, eη ∼

√
λη, and

the other is a new kinetic mass M .

A. The region r → 0

We start our study from the region close to the center
of a vortex, r → 0. As we assume that in the core of
a defect the kinetic term can be approximated by (11),
we must require that for models (14) and (15), X ≫ 1.
In the opposite case, X . 1, we end up with a solution
which does not deviate much from the standard one. For
r → 0 we search a solution in the following form,

f(r) = Afr +Bfr
3 +O(r5),

α(r) = Aαr
2 +Bαr

4 +O(r6)

with unknown constants Af , Bf , Aα, Bα. Substituting
the above expressions into (12) and (13) we find that Af

and Aα are arbitrary, while the others are

Bα = −2n−3e2nA2n
f ,

Bf = −2n−5

n2
λv2A2n−1

f +
n(n− 2)

4
AfAα.

The standard asymptotics for K(X) = X are recovered
from the above expression by setting n = 1. Note that
the constants Af and Aα are left undetermined, which
means that the size of a defect and its mass are unde-
termined too. It is possible, however, to estimate these
quantities without solving explicitly EoMs, as we will see
in III B and III C.

B. Structure of a vortex

The model (1) contains a complex scalar field and a
gauge vector field. In accordance to this, there are two
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distinct cores for a vortex solutions: One is associated
with the scalar field and the other with the vector field.
The typical sizes of the cores depend on the parameters
of the Lagrangian. In this subsection we will estimate
the typical sizes of cores without explicitly solving EoMs.
In what follows it will be helpful to use an additional
rescaling:

f → vf, r → r LH , (17)

where

LH = v ǫ−1/2n, (18)

and ǫ was defined as

ǫ ≡ λv4, (19)

in analogy with global defects [17]. Later we will see that
the quantity ǫ (19) corresponds to the energy density
inside the scalar core of a vortex. The rescaling (17)
brings the EoMs (12), (13) to the following form,

[

1

r

d (rf ′)

dr
− f(1− α)2

r2

]

+ (n− 1) (lnX)′ f ′

− 1

2n
(−X)

1−n (
f2 − 1

)

f = 0, (20)

d

dr

(

α′

r

)

+
2n

γ
(−X)

n−1 f2(1− α)

r
= 0, (21)

where

γ =
λ

e2
ǫ−2(n−1)/n. (22)

Notice that in the standard case, n = 1, the parameter γ
coincides with the usual parameter, defined as the ratio of
the scalar and vector masses. The EoM for f(r), Eq. (20),
contains parameters of order of 1 as well as the function
α, going from 0 to 1. Therefore one can guess that the
typical scale on which the function f(r) varies is of the
order LH . Thus the typical size of the scalar core, lH , is
given by

lH ∼ LH , (23)

and is almost independent on γ and e. In fact, the value
lH (23) coincides (up to an irrelevant numerical factor of
order of 1) with the size of the core in the case of a global
k-string, found in [17]. Very roughly speaking, the scalar
core remains unaffected by the gauge field. Intuitively it
can be understood as follows. Topological defects exist
due to the presence of a potential, which provides sym-
metry breaking for the scalar field φ; the gauge field is in
a sense merely an auxiliary component. Therefore, the
presence of the gauge field should not radically change
the size of the scalar core.
To estimate the size of the vector core is a more tricky

task. First of all we note that when γ ∼ 1, i.e.

e√
λ
ǫ(n−1)/n ∼ 1, (24)

the size of the vector core, lV , is of order of the size of
the scalar core,

lV ∼ lH , (25)

since in this case the EoMs (20), (21) do not contain any
large or small parameters.
To consider other cases, when the vector core is much

larger/smaller than the scalar core, let us turn back to
Eq. (13). The inflection point for the function α(r) is at
the point r ∼ lV . Then, taking also into account that
α′(r) ∼ 1/lV at r ∼ lV , we obtain from (13),

1

l2V
∼ e2f2 (−X)

n−1
. (26)

Let us now assume that the vector core is much smaller
than the scalar one, lV ≪ lH . From (26) using the es-
timates, f ∼ v lV /lH and (−X)n ∼ λv4 at r ∼ lV , we
find

lV ∼ 1

(e2ǫ)
1/4

. (27)

Note, that the above result is valid if lV ≪ lH , which can
be recasted as follows, using (27):

e√
λ
ǫ(n−1)/n ≫ 1. (28)

In the opposite case, lV ≫ lH , the non-linearity in X is
negligible, i.e. one has to set n = 1 in (26). Then we
immediately find the size of the vector core as

lV ∼ 1

ev
. (29)

Eq. (29) is valid for lV ≫ lH , or

e√
λ
ǫ(n−1)/2n ≪ 1. (30)

For us the most interesting case is ǫ ≫ 1, as we will
see later, this corresponds to the regime when the non-
linearity in X become important. Taking into account
our assumption (16) we may summarize our results for
ǫ ≫ 1 as follows. The size of the scalar core (with the
restored physical units) is given by

lH =
η

M2

[

λ (η/M)
4
]

−1/2n

, (31)

and the size of the vector core is

lV ∼ 1

eη
. (32)

It is worth to note that the vector core in our model is
roughly as large as in the standard case. This is what
one can naively expect from the action (1): The kinetic
term for the vector field is unchanged as compared with
the standard Lagrangian, so it is unlikely that the vector
core varies much.
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C. Vortex’ mass

Another way to see how the parameter γ (22) appears
in the model is to make the change of variables in the
action (2) as follows:

φ = vf, x = LH y, Aµ =
Bµ

eLH
, (33)

with LH given by (18). Substituting the rescaling (33)
into (2) we immediately find the functional of the energy
density (with the restored physical units):

E = η2
[

λ (η/M)4
](n−1)/n

F(n, γ), (34)

where

F(n, γ) =

∫

d2y
[γ

4
FµνF

µν + (Dif)
2n +

(

| f |2 −1
)2
]

.

(35)
Is it important to note that the above expression is only
valid in the non-linear regime in X , i.e. when X ≫ 1
inside the scalar core. In addition, we have to require
that the vector core is not larger than the scalar one,
lV ≪ lH ; otherwise the vector core is partly outside the
scalar one and Eq. (34) is inapplicable.
To find the energy density of the vortex for particular

parameters of the Lagrangian, one needs to calculate the
functional of the energy density (34) applied to a solu-
tion. An alternative way is to minimize this functional.
All these methods require numerical methods to involve.
It is possible, however, to roughly estimate the energy
density of a vortex, based on the results of the previous
subsection III B.
There are three different contributions to the energy

density of the vortex, each associated with different terms
in the action (2): The kinetic energy of the scalar,

ǫs ≡ −K(X), (36)

the potential energy,

ǫpot ≡ V (φ), (37)

and the kinetic energy of the gauge field,

ǫV ≡ 1

4
F 2
ij . (38)

First we note that the energy density inside the scalar
core associated with the kinetic term K(X) is approxi-
mately equal to the potential energy:

ǫs ∼ ǫpot ∼ ǫ, (39)

while the energy density of the gauge field is given by

ǫV ∼ F 2
ij ∼

1

e2l4V
. (40)

Using (39), (40) and taking into account (23), (27) and
(29) it is easy to estimate the energy density of the vortex
for different forms of the kinetic term K(X):

E ∼
{

η2, n ≤ 1,

η2
(

λv4
)1−1/n

, n > 1.
(41)

Notice that Eq. (41) is in agreement with Eq. (34). For
n > 1 the non-linearity in X is important for both the
scalar and the vector fields, thus (34) is directly applica-
ble. For n < 1 the vector core spreads wider than the
scalar one, so in the region r & lH the kinetic term takes
the standard form, therefore we set n = 1 in (34) and
arrive at Eq. (41).
An important consequence of Eq. (41) is that for a par-

ticular choice of the non-canonical kinetic term (namely,
n > 1), the energy per unit length of a vortex can be
(much) larger than that for the standard vortex. The
opposite is impossible: There is no Lagrangian that leads
to vortices with small energy per unit length. One can
understand this as follows: Although the scalar core can
be adjusted to have a small size, (exactly as in the case of
global defects [17]), the vector core nevertheless spreads
widely, with the configuration close to the standard case.
Thus the contribution of the vector field to the energy
is roughly the same as for an usual vortex, as Eq. (41)
shows.

IV. CONSTRAINTS ON THE PARAMETERS

OF THE ACTION

Let us now discuss constraints on the parameters of the
model. In this section we will closely follow the similar
consideration for the case of global k-defects [17] with
necessary adjustments.
First of all we must satisfy the hyperbolicity condi-

tion. Physically it means that small perturbations on
the background solution do not grow exponentially. As
applied to our problem, we have to check that the per-
turbed Eqs. (6), (7) give hyperbolic EoMs for the propa-
gation of small perturbations. Note that for small enough
wavelengths the gauge derivative Dµ is replaced by the
partial derivative ∂µ. The Eq. (6) for high wave-numbers
becomes the EoM for a global scalar k-field. The hy-
perbolicity condition for perturbations for k-essence field
reads [14, 22]

K,X(X)

2XK,XX(X) +K,X(X)
> 0. (42)

It is easy to check that for the Born-Infeld-like kinetic
term (14) the hyperbolicity condition (42) is met for X <
1/2, while for the second example we consider, Eq. (15),
inequality Eq. (42) is always true.
Meantime the EoM for the gauge field (7) in the limit

of small wavelengths coincides with the standard EoM
for the normal electromagnetic field, since the r.h.s of (7)
can be neglected in this limit.
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FIG. 1: Constraints on the parameters λ and v for the model
(11) are shown. There are three regions in the plane of pa-
rameters: i) standard vortex solution, when the non-linearity
in X inside the core is small and the standard solution is re-
stored; ii) quantum defect, when the classical picture is not
valid; iii) k-vortex, when the non-linearity in X is large and
the properties of a vortex are considerably different from the
standard case.

Thus we have proved that the system of equations (6),
(7) is hyperbolic provided that the inequality (42) holds,
and therefore there are no instabilities for small wave-
lengths. It is worth to note that with the above argu-
mentation we have not proved the stability of the system
for long wavelengths. This problem, however, deserves a
separate investigation and is not addressed in this paper.
As the second constraint on the parameters of the

model we demand that the nonlinear part of K(X) dom-
inates inside the core of the defect. Otherwise we end up
with a “standard” solution arising in the model with the
canonical kinetic term. Thus we require X & 1, which
can be brought to

λ
( η

M

)4

& 1. (43)

Finally, the third restriction comes from the validity of
the classical description. We consider vortices as classical
objects, neglecting quantum effects. This picture is valid
if the Compton wave length of the cube with the edge lH
is smaller than the size of a scalar core lH , and similar
must be true for the vector core. This gives

l4Hǫs & 1, (44)

and

l4V ǫV & 1. (45)

Eq. (44) can be rewritten as follows:

λ . ǫ2−2/n, (46)

while (45) gives simply

e . 1. (47)

It is interesting to note that the only additional con-
straint, as compared to the global k-vortices [17], is a
natural inequality Eq. (47). We summarize the require-
ments (43) and (44) in Fig. 1.

V. NUMERICAL SOLUTIONS

In this section we present the numerical solutions for
the vortices in the model (1) [or, equivalently, (2)] with
different choices of the non-canonical kinetic term K(X).
We compare the obtained solutions to the standard ones.
With the help of these explicit solutions we verify our
general results on the properties of the gauge k-vortices,
presented in Sec. III.
We solve numerically the system of ordinary differen-

tial equation (9), (10) for the model (2) with the following
kinetic terms, K(X):

• canonical term, K(X) = X ;

• DBI-like term, K(X) = 1−
√
1− 2X;

• the power-law kinetic term, K(X) = X +X3.

In Fig. 2 the functions f(r) and α(r) are shown for the
vortex solution in the case of canonical, DBI and power-
law kinetic terms. We have chosen the parameters of the
Lagrangian as λ = e = 1/4 and v = 5, thus providing the
non-linear in X regime for the model with non-canonical
terms (14) and (15), since for these parameters X ∼ 102.
One can see that the results of our general consideration,
Sec. III, are in a perfect agreement with the numerical re-
sults [compare Eqs. (31), (32) with the numerical values
for the sizes of the scalar and vector cores]. The proper-
ties of k-vortices are indeed quite different from those for
a standard vortex in the regime when the non-linearity
in K(X) is important. We also have found the functions
f(r), α(r) for such parameters of the model, that X ≤ 1
inside the core of the defect. As it was expected on gen-
eral grounds, the obtained solutions do not deviate much
from the standard vortex solutions, since in this regime
the kinetic terms (14), (15) have almost the canonical
form.

VI. SUMMARY AND DISCUSSION

We have studied topological linear gauge defects
(gauge vortices), in the model with a non-canonical ki-
netic term. The action for the model (1) contains ki-
netic terms for the scalar and gauge vector fields and a
symmetry-breaking potential. The principal difference of
the studied model from the standard one is the presence
of a non-standard kinetic part for the scalar field. The
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FIG. 2: The numerical solutions for the field profiles f(r)/v
(solid), α(r) (dashed) are shown for different choice of the
kinetic term K(X). From the up to bottom: the standard
case, K(X) = X; DBI term, K(X) = 1 −

√
1− 2X ; power-

law term, K(X) = X + X3. The parameters of the model
are chosen such that the non-linearity in X inside the core of
a vortex is large, λ = e = 1/4, v = 5, The field profile for
the vector part α, is roughly the same for the different kinetic
terms, in accordance with (32). While one can notice a strong
dependence of the scalar field profile f(r) on the choice of
K(X). The size of scalar core is in a good agreement with
our estimations (31).

term K(X) in the action is in general some non-linear
function of canonical kinetic term X .
A remarkable feature of the model is that the non-

linearity of the kinetic term inevitably leads to the ap-
pearance of a new scale in the action, a “kinetic” mass,
in addition to the “usual” scalar and vector masses. The
presence of another mass scale in the model changes rad-
ically the basic properties of a vortex: the size of the

scalar core and the energy of a vortex per unit length
vary considerably as compared to the standard case.
We have investigated general properties of k-vortices

and found restrictions on the parameters of the model,
having in mind a rather general form of a kinetic term
with the asymptotic behavior K(X) ∼ Xn. Also, for
the sake of simplicity and clarity of results we assumed
that the scalar and vector masses are of the same order,
eη ∼

√
λη. We can summarize our general estimations

as follows. The size of the scalar core, lH , depends on
the coupling λ, and mass scales η and M , Eq. (31). A
remarkable point is that lH roughly coincides with the
characteristic size of the core in the case of a global k-
vortex [17]. The size of the vector core lV does not de-
pend on the kinetic mass M and is roughly the same as
in the standard case, Eq. (32).

Having the values for the core’ sizes one can estimate
the energy of k-vortex per unit length, see Eq. (41). An
important result is that the mass of a vortex radically
vary depending on the choice of kinetic term. In the case
n > 1 and the limit λv4 ≫ 1, we have found a simple
exact expression for the energy functional of k-vortex,
Eqs. (34), (35).

As particular examples, we studied numerically two
concrete models having non-canonical kinetic terms: A
DBI-like term, Eq. (14), and a power-law term, Eq. (15).
The field profiles of domain walls for different choices of
K(X) are shown in Fig. 2: The numerical solutions are
in agreement with our general estimations.

As we already discussed in our previous work [17], in-
teresting properties of k-defects may have important con-
sequences for cosmological applications. Standard cos-
mic strings which might have been formed during phase
transitions in the early universe have a mass scale di-
rectly connected to the temperature of a phase transi-
tion Tc, µ ∼ η2 ∼ T 2

c . By contrast, the mass scale
of a resulting k-string depends both on Tc and the ki-
netic mass M . This means that the tension of k-strings
may not be close to T 2

c , thus helping to avoid constrains
on cosmic strings Gµ . 10−7 [24, 25] (or even stronger,
Gµ < 3 × 10−8, see [26]). Meanwhile theoretical pre-
dictions give Gµ ∼ 10−6 − 10−7 for GUT strings. If,
however, physics at the GUT scale involves non-standard
kinetic terms, then the GUT phase transition may have
lead to the formation of cosmic strings with smaller ten-
sion, Gµ ≪ 10−6, thereby evading conflicts with the
present observations.
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