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Abstract

In gravitational Higgs mechanism graviton components acquire mass via
spontaneous diffeomorphism breaking by scalar vacuum expectation values.
We point out that in the massless limit the resulting theory is not Einstein-
Hilbert gravity (EHG) but constrained gravity (CG). Consequently, massive
solutions in the massless limit must be compared to those in CG (as opposed
to EHG). We discuss spherically symmetric solutions in this context. The
Schwarzschild solution in EHG can be coordinate-transformed such that it
is also a solution in CG. The resulting solutions are non-perturbative in the
asymptotic regime, and are reproduced in the massless limit of asymptotic
massive solutions, hence no van Dam-Veltman-Zakharov discontinuity. We
point out that higher curvature terms must be included to obtain non-singular
spherically symmetric massive solutions and discuss a suitable framework.

http://arxiv.org/abs/0711.0386v4


1 Introduction and Summary

In gravitational Higgs mechanism [1] graviton components acquire mass via sponta-
neous breaking of diffeomorphisms by scalar vacuum expectation values1. Recently,
gravitational Higgs mechanism was revisited in the context of obtaining massive
gravity directly in four dimensions [16, 17, 18, 19]. A general Lorentz invariant mass
term for the graviton hMN is of the form

− m2

4

[
hMNh

MN − β(hM
M)2

]
, (1)

where β is a dimensionless parameter. For β 6= 1 the trace component hM
M , which is

a ghost, is a propagating degree of freedom, while it decouples for the Pauli-Fierz
mass term with β = 1. Massive gravity in Minkowski space with β = 1 can be
obtained via gravitational Higgs mechanism by including higher derivative terms in
the scalar sector and appropriately tuning the cosmological constant [19].

The framework of [19] provides a ghost-free, non-linear and fully covariant def-
inition of massive gravity via gravitational Higgs mechanism with spontaneously
(as opposed to explicitly) broken diffeomorphisms. In this paper we discuss the
massless limit of gravitational Higgs mechanism within this framework. Our key
observation is that in the massless limit the resulting theory is not Einstein-Hilbert
gravity (EHG) but constrained gravity (CG). Consequently, massive solutions in the
massless limit must be compared to those in CG (as opposed to EHG). For exam-
ple, the usual Schwarzschild solution in EHG does not satisfy the constraint in CG,
so we cannot compare massive solutions in the massless limit to the Schwarzschild
solution in EHG. On the other hand, the Schwarzschild solution in EHG can be
coordinate-transformed such that it is also a solution in CG. The resulting solutions
are non-perturbative in the asymptotic regime, and are reproduced in the massless
limit of asymptotic massive solutions. Therefore, there is no van Dam-Veltman-
Zakharov (vDVZ) discontinuity [20, 21] in the massless limit of gravitational Higgs
mechanism in the spirit of [22]2.

We also study massive solutions in the limit corresponding to the near-horizon
regime in massless solutions. We point out that in the lowest-curvature approxima-
tion (Einstein-Hilbert term) massive solutions have a naked singularity. This implies
that the lowest-curvature approximation breaks down, and higher curvature terms
must be included to obtain non-singular solutions. Adding higher curvature terms
does not modify the no vDVZ conclusion in the asymptotic regime. We discuss a
framework for constructing non-singular solutions for all values of the graviton mass
in the context of gravitational Higgs mechanism.

1For earlier and subsequent related works, see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. For
a recent review of massive gravity in the context of infinite volume extra dimensions, see [14] and
references therein. For a recent review of spontaneous breaking of diffeomorphism symmetry in the
context of Lorentz violating Chern-Simons modification of gravity, see [15] and references therein.

2In the context of brane induced gravity no vDVZ discontinuity was argued in [23, 24, 25, 26]
by studying non-perturbative solutions.
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2 Gravitational Higgs Mechanism

In this section we review the construction of [19], and discuss the massless limit of
gravitational Higgs mechanism. We consider gravity in D dimensions coupled to
scalar fields φA, A = 0, . . . , D− 1. We will take the metric ZAB for the global scalar
indices A,B, . . . to be the Minkowski metric: ZAB = ηAB.

Coordinate-dependent scalar VEVs break diffeomorphisms spontaneously. This
results in massive gravity. To obtain a unitary theory (i.e., the Pauli-Fierz mass
term for the graviton in the linearized theory), we must include higher derivative
terms in the scalar sector. In fact, adding four-derivative terms suffices, but for now
we will keep our discussion here more general.

Thus, consider the following action:

SY = MD−2

P

∫
dDx

√
−G [R− V (Y )] , (2)

where a priori V (Y ) is a generic function of Y , and

YMN ≡ ZAB∇MφA∇Nφ
B , (3)

Y ≡ YMNG
MN . (4)

The equations of motion read:

∇M
(
V ′(Y )∇MφA

)
= 0 , (5)

RMN − 1

2
GMNR = V ′(Y )YMN − 1

2
GMNV (Y ) , (6)

where prime denotes derivative w.r.t. Y. Multiplying (5) by ZAB∇Sφ
B and con-

tracting indices, we can rewrite the scalar equations of motion as follows:

∂M

[√
−GV ′(Y )GMNYNS

]
− 1

2

√
−GV ′(Y )GMN∂SYMN = 0 . (7)

Since the theory possesses full diffeomorphism symmetry, (7) and (6) are not all
independent but linearly related due to Bianchi identities. Thus, multiplying (6) by√
−G, differentiating w.r.t. ∇N and contracting indices we arrive at (7).
We are interested in finding solutions of the form:

φA = m δAM xM , (8)

GMN = ηMN . (9)

These exist for a class of “potentials” V (Y ) such that the following equation

Y V ′(Y ) =
D

2
V (Y ) (10)
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has non-trivial solutions3. Let us denote such a solution by Y∗. Then we have

m2 = Y∗/D . (11)

Note that (10) is not a tuning condition on couplings in V . Rather, it fixes the
scalar VEVs (whose slopes are given by m) in terms of various couplings in V .

The equations of motion (5) and (6) are invariant under the full diffeomorphisms
of the theory (GMN ≡ ηMN + hMN ):

δϕA = ∇MφAξM = m δAM ξM , (12)

δhMN = ∇MξN +∇NξM . (13)

The scalar fluctuations ϕA around the background (8) can be gauged away (set to
zero) using the diffeomorphisms (12). Once we gauge away the scalars, diffeomor-
phisms can no longer be used to gauge away any of the graviton components hMN .
After setting ϕA = 0, in the linearized approximation we have (h ≡ hM

M):

∂NhMN − β∂Mh = 0 , (14)

RMN − 1

2
GMNR =

M2

h

2
(βηMNh− hMN) , (15)

where

β ≡ 1

2
− 2m4

V ′′(Y∗)

V (Y∗)
, (16)

M2

h ≡ V (Y∗) . (17)

In particular, for a special class of potentials with

4Y 2

∗
V ′′(Y∗) = −D2V (Y∗) , (18)

we have β = 1, and the correct tensor structure for massive gravity without non-
unitary states. In this case the explicit form of the equations of motion is given
by:

h = 0 , (19)

∂NhMN = 0 , (20)

∂S∂ShMN = M2

hhMN , (21)

In particular, the ghost state h decouples, and we have massive gravity with (D +
1)(D − 2)/2 propagating degrees of freedom.

Thus, we can get the Pauli-Fierz combination of the mass terms for the graviton
if we tune one combination of couplings. In fact, this tuning is nothing but tuning of

3This condition is not particularly constraining. Such solutions exist even for linear potentials
V = Λ+ Y . In this case the restriction is that the cosmological constant be negative.
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the cosmological constant - indeed, (18) relates the cosmological constant to higher
derivative couplings.

Thus, consider a simple example:

V = Λ + Y + λY 2 . (22)

The first term is the cosmological constant, the second term is the kinetic term for
the scalars (which can always be normalized such that the corresponding coefficient
is 1), and the third term is a four-derivative term. We then have:

Y∗ = − D

2(D + 2)
λ−1 , (23)

which relates the mass parameter m to the higher derivative coupling λ:

m2 = Y∗/D = − 1

2(D + 2)
λ−1 . (24)

The graviton mass in this case is given by:

M2

h = − 2

(D + 2)2
λ−1 . (25)

Note that we must have λ < 0. Moreover, the cosmological constant Λ must be
tuned as follows:

Λ =
D2 + 4D − 8

4(D + 2)2
λ−1 , (26)

which implies that the cosmological constant must be negative.

2.1 Constrained Gravity as the Massless Limit

Here we would like to begin addressing the question of what happens in the limit
where the graviton mass goes to zero. A naive expectation that one recovers
Einstein-Hilbert gravity in this limit does not hold. Instead, we get constrained

gravity.
To see what happens in the massless limit, for illustrative purposes, let us con-

sider the example with the quartic potential given by (22). (The analysis in the
general case completely parallels our discussion here, so we will not repeat it.) To
obtain the massless graviton limit, we must take λ → −∞. In this limit both Y∗

and Λ go to zero, and so does m2. Let us gauge fix the scalars to zero via (8). We
then have:

YMN = m2EMN . (27)

Here EMN is the Minkowski metric in the coordinate frame given by xM . It coincides
with the flat Minkowski metric ηMN if xM are Minkowski coordinates. However, in
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the general case the metric EMN is not flat. For instance, in spherical coordinates
we have

EMNdx
MdxN = −dt2 + dr2 + r2γabdx

adxb , (28)

where γab is a metric on the unit sphere Sd−1, d ≡ D − 1.
In the massless limit we then have the following equations of motion:

∂M

[√
−GQGMNENS

]
− 1

2

√
−GQGMN∂SEMN = 0 , (29)

RMN − 1

2
GMNR = 0 , (30)

where

Q ≡ 1− 1

D + 2
GMNEMN . (31)

Note that (29) and (30) are not linearized but exact. Eqn. (30) is just the Einstein
equation of motion without the cosmological constant. However, gravity in the
massless limit is not Einstein-Hilbert gravity as we have a constraint (29).

The fact that we obtain constrained gravity in the massless limit is important.
In particular, if we take, say, a spherically symmetric solution in massive grav-
ity and consider the massless limit, we should not expect it to coincide with the
Schwarzschild solution of Einstein-Hilbert gravity. That would be like comparing
apples to oranges. Instead, it should coincide with the corresponding spherically
symmetric solution in constrained gravity. The latter will look very different from
the Schwarzschild solution of Einstein-Hilbert gravity. One way to construct so-
lutions in constrained gravity is to start with known solutions in Einstein-Hilbert
gravity and coordinate-transform them to satisfy the constraint (this is similar to
[27]). In other words, to compare apples to apples, we can, for example, compare the
massless limit of a spherically symmetric solution in massive gravity to an appro-
priately coordinate-transformed Schwarzschild solution of Einstein-Hilbert gravity
such that it satisfies the constraint.

3 Spherically Symmetric Solutions

Before we discuss explicit solutions, let us cover some generalities. We will be
interested in spherically symmetric solutions to massive and massless equations of
motion (A,B,C are functions of r only):

ds2 = −A2dt2 +B2dr2 + C2γabdx
adxb . (32)

In the massive case, the Einstein equations read (for definiteness, we focus on the
quartic potential (22)):

RMN = m2QEMN +
1

D − 2

[
Λ− λY 2

]
GMN , (33)
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where Q was defined in (31), Y is given by

Y = m2
[
A−2 +B−2 + (D − 2)r2C−2

]
, (34)

and we gave Λ, λ and m2 in the previous section.
The non-vanishing components of RMN are given by (prime denotes derivative

w.r.t. r):

R00 = A2B−2

[
A′′

A
− A′B′

AB
+ (D − 2)

A′C ′

AC

]
, (35)

Rrr = −
{
A′′

A
− A′B′

AB
+ (D − 2)

[
C ′′

C
− B′C ′

BC

]}
, (36)

Rab = −γabR∗ , (37)

R∗ ≡ C2B−2

{
C ′′

C
+ (D − 3)

(
C ′

C

)2

+
C ′

C

[
A′

A
− B′

B

]}
− (D − 3) . (38)

The scalar equations of motion (7) reduce to a single equation:

∂r
[
AB−1CD−2Q

]
− (D − 2)rABCD−4Q = 0 . (39)

We will now discuss solutions to these equations. In D = 4 we have some simplifi-
cations, so we will focus on D = 4 for the remainder of this paper.

3.1 Four-dimensional Massless Solutions

Let us start by analyzing the above equations in the massless case (m2 = 0) in
D = 4. We have the following equations

A′′

A
− A′B′

AB
+ 2

A′C ′

AC
= 0 , (40)

A′′

A
− A′B′

AB
+ 2

[
C ′′

C
− B′C ′

BC

]
= 0 , (41)

C ′′

C
+

(
C ′

C

)2

+
C ′

C

[
A′

A
− B′

B

]
− B2C−2 = 0 , (42)

plus the constraint
∂r

[
AB−1C2Q

]
− 2rABQ = 0 , (43)

where

Q = 1− 1

6

[
A−2 +B−2 + 2r2C−2

]
. (44)

If it were not for the constraint, we could simply take the Schwarzschild solution:

A = B
−1

=

√
1− r∗

r
, (45)

C = r . (46)
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However, this solution does not satisfy the constraint.
Actually, there is a systematic way of fining solutions that satisfy the constraint

by transforming known solutions that satisfy unconstrained Einstein’s equations.
Thus, we start from a known unconstrained solution given by A,B,C, and transform
the radial coordinate r → f(r). The resulting warp factors are given by

A(r) = A(f(r)) , (47)

B(r) = B(f(r))f ′(r) , (48)

C(r) = C(f(r)) , (49)

and they still satisfy the equations of motion. This is because the massless equations
of motion possess full reparametrization invariance. The constraint then produces
a second order differential equation for the function f(r). Thus, starting with the
Schwarzschild solution, we can obtain solutions satisfying the constraint by setting
f(r) = C(r) in the above expressions, which gives a differential equation for C. We
have:

A =
√
1− r∗/C , (50)

B =
C ′

√
1− r∗/C

, (51)

and the differential equation for C reads:

∂r
[
A2C2Q/C ′

]
− 2rQC ′ = 0 . (52)

While (52) is highly non-linear, we can solve it in two regimes: near the horizon
(C → r∗), and asymptotically (r ≫ r∗).

3.1.1 Asymptotic Behavior

In the asymptotic regime we have r ≫ r∗. We can find a solution via the following
Ansatz:

C = r

[
1 + α

(r∗
r

) 1

2

+ β
r∗
r
+O

(r∗
r

) 3

2

]
, (53)

where α and β are numerical coefficients to be determined. This indeed solves (52):

A = 1− r∗
2r

+O
(r∗
r

) 3

2

, (54)

B = 1 +

√
8

39

(r∗
r

) 1

2

+
r∗
2r

+O
(r∗
r

) 3

2

, (55)

C = r

[
1 +

√
8

39

(r∗
r

) 1

2

+ β
r∗
r
+O

(r∗
r

) 3

2

]
, (56)
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and β is an integration constant. This is because we started with the Schwarzschild
solution and transformed it via r → C(r). The constraint (52) is a second order
differential equation for C, whose solution contains two integration constants. How-
ever, because we drop subleading terms, the resulting equation actually is effectively
only a first order equation for C, so we have one integration constant (and the sec-
ond integration constant controls the subleading terms). It simply parameterizes
the Schwarzschild solution in the transformed coordinate frame.

Note that the above asymptotic solution is non-perturbative in the following
sense. If we write

C = r(1 + c) , (57)

in the asymptotic regime c is small, so we can try to solve (52) in the linearized
approximation. However, one finds no solution when keeping only linear terms, so
one must also keep quadratic terms in c.

3.1.2 Near-horizon Behavior

In the near-horizon regime we have C → r∗. In fact, in this case we have r → 0,
and:

C = r∗ + γr +O(r/r∗)
2 , (58)

A =
√

γr/r∗ [1 +O(r/r∗)] , (59)

B =
√

γr∗/r [1 +O(r/r∗)] . (60)

These warp factors satisfy (52) for any positive integration constant γ. The near-
horizon metric reads:

ds2 = −γr

r∗
dt2 +

γr∗
r

dr2 + (r∗ + γr)2γabdx
adxb . (61)

This is the metric we ought to compare the massless limit of massive solutions to,
and not to the Schwarzschild metric, in the near-horizon regime.

3.2 Four-dimensional Massive Solutions

Let us now go back to the massive equations of motion. In four dimensions we have:

A2B−2

[
A′′

A
− A′B′

AB
+ 2

A′C ′

AC

]
= m2

{
A2

[
1− X2

24

]
−
[
1− X

6

]}
, (62)

A′′

A
− A′B′

AB
+ 2

[
C ′′

C
− B′C ′

BC

]
= m2

{
B2

[
1− X2

24

]
−
[
1− X

6

]}
, (63)

C2B−2

{
C ′′

C
+

(
C ′

C

)2

+
C ′

C

[
A′

A
− B′

B

]}
− 1 =

m2

{
C2

[
1− X2

24

]
− r2

[
1− X

6

]}
, (64)
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plus the scalar equations of motion:

∂r
[
AB−1C2(6−X)

]
− 2rAB(6−X) = 0 , (65)

where

X ≡ A−2 +B−2 + 2r2C−2 . (66)

Just as in the previous subsection, here we are interested in studying solutions
to these equations in the asymptotic and near-horizon regimes. We will discuss
perturbative asymptotic solutions first.

3.2.1 Perturbative Asymptotic Solutions

Here our goal is to discuss the vDVZ discontinuity in perturbative asymptotic solu-
tions. Let

A = 1 + a , (67)

B = 1 + b , (68)

C = r(1 + c) . (69)

Here we assume that a, b, c go to zero asymptotically, and in the equations of motion
we keep only linear terms in a, b, c. As we will see in a moment, this approximation
breaks down for small graviton mass, hence the vDVZ discontinuity.

The above four equations of motion in the linearized approximation read:

a′′ +
2

r
a′ =

m2

3
[3a+ b+ 2c] , (70)

a′′ + 2c′′ +
4

r
c′ − 2

r
b′ =

m2

3
[a + 3b+ 2c] , (71)

c′′ +
4

r
c′ +

1

r
[a′ − b′]− 2

r2
[b− c] =

m2

3
[a + b+ 4c] , (72)

a′ + 2c′ − 2

r
[b− c] = 0 . (73)

The solution is given by:

a′′ +
2

r
a′ = µ2a , (74)

b = − a′

µ2r
, (75)

c = −1

2
(a+ b) , (76)

where

µ2 =
2m2

3
(77)
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is the mass squared of the graviton. Note that we have

a+ b+ 2c = 0 , (78)

which is simply a manifestation of the fact that the trace of the graviton is not a
physical degree of freedom.

Thus, we have:

a =
ζ

r
e−µr , (79)

b =
ζ

µ2r3
[1 + µr] e−µr , (80)

c = − ζ

2µ2r3
[
1 + µr + µ2r2

]
e−µr , (81)

where ζ is an integration constant. The only way to have a smooth massless limit
would be to take µ → 0 and ζ → 0 with |ζ |/µ2 ≡ r3

1
fixed. In this case we would

have vanishing a in the massless limit, i.e., only b and c would be non-vanishing

a = 0 , (82)

b = −2c =
r3
1

r3
. (83)

However, the corresponding metric is equivalent to a coordinate-transformed flat
metric (in spherical coordinates).

Above we assumed that A, B and C/r all asymptotically go to 1. In fact, there
are no asymptotic solutions other than those where A, B and C/r all go to 1. To
see this, let us assume that A, B and C/r asymptotically go to some constant values

Ã, B̃ and C̃. Eqn. (65) then implies that B̃ = C̃, and the equations (62) and (63)

imply that Ã = B̃. Noting that asymptotically we then have X → 4/Ã2, Eqn. (62)

implies that Ã = 1.
Thus, as we see, perturbative asymptotic massive solutions do not have a smooth

massless limit (except for trivial solutions equivalent to coordinate-transformed flat
solutions). This is the well-known vDVZ discontinuity [20, 21]. However, this dis-
continuity is an artifact of the perturbative approximation, which breaks down at
r ∼ r1. Note that |ζ | is expected to be of order of the Schwarzschild radius r∗, so we
have r1 ∼ (r∗/µ

2)1/3. This scale goes to infinity when µ goes to zero, so one must
consider non-perturbative solutions [22].

3.2.2 Non-perturbative Asymptotic Solutions

The correct way to think about the massless limit is therefore to consider non-
perturbative massive solutions. In the massless limit they smoothly go to the asymp-
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totic massless solutions we discussed in Subsection 3.1.2. Thus, we have:

A = 1− r∗
2r

+O
(r∗
r

) 3

2

+O(µ2
√

r∗r3) , (84)

B = 1 +

√
8

39

(r∗
r

) 1

2

+
r∗
2r

+O
(r∗
r

) 3

2

+O(µ2
√

r∗r3) , (85)

C = r

[
1 +

√
8

39

(r∗
r

) 1

2

+ β
r∗
r
+O

(r∗
r

) 3

2

+O(µ2
√
r∗r3)

]
, (86)

where β is an integration constant. Note that the expansion in µ2 is valid at distance
scales r ≪ 1/µ. As µ → 0, we have a smooth massless limit for all r.

3.2.3 Singular Solutions

Let us finally comment on what happens in massive solutions in the analog of the
near-horizon regime in the massless case. Recall that in the massless case at the
horizon, which in the coordinate-transformed Schwarzschild solution is located at
r → 0, we had A → 0, B → ∞, C → r∗, with vanishing scalar curvature. In the
massive case the situation is different. The scalar curvature is given by:

R = m2(X − 4) . (87)

If A goes to zero, then X diverges, and so does R, which implies that if A goes to
zero, we have a naked singularity instead of a horizon.

Here we can try to look for solutions where A goes to a constant instead. In this
case X goes to a constant as well, so the scalar curvature is finite. However, here
we argue that such solutions cannot reproduce the massless near-horizon behavior
in the massless limit.

Thus, let us assume that in the massive case A goes to a constant A0 at the
horizon. To have a smooth massless limit we must assume that A0 goes to zero
in the massless limit, and X0, the value of X at the horizon, then goes to infinity
(which is the behavior we have in the massless case). For sufficiently small graviton
mass we can then assume that X0 6= 6.

Next, (65) can be written as:

A′

A
− B′

B
+

2C ′

C
− X ′

6−X
= 2r

B2

C2
. (88)

In the near-horizon regime we are assuming that C also goes to a constant C0. We
then have the following leading behavior for B:

B ∼ C0

2
√
r0(r − r0)

, (89)

where r0 > 0 is the location of the horizon. Recall that in the massless case the
horizon is located at r = 0. If we assume that r0 = 0, then we have B divergent as 1/r

11



instead of 1/
√
r (which is the near-horizon behavior in the massless case). Moreover,

according to (89) we cannot assume that r0 goes to zero in the massless limit.
Therefore, solutions where A goes to a constant at the horizon cannot reproduce
the massless solutions in the massless limit.

4 Non-singular Massive Solutions

As we saw in the previous section, there is a smooth massless limit in the asymp-
totic regime in the massive spherically symmetric solutions. On the other hand,
massive spherically symmetric solutions are singular4. This simply means that the
approximation we are using breaks down. In particular, appearance of a naked
singularity implies that higher curvature terms become important and should be
included. Conceptually, this is similar to the appearance of naked singularities in
higher codimension brane solutions in Einstein-Hilbert gravity [29]. Once we include
higher curvature terms, we expect to find smooth solutions, in particular, by using
the smoothing out procedure of [30]. In the context of higher codimension branes
explicit non-singular solutions were indeed found in [31].

Similarly, we expect that non-singular spherically symmetric solutions also exist
in the context of massive gravity once we add higher curvature terms. The latter
generally make the problem technically challenging. However, there are special
higher curvature combinations, in particular, (lower-dimensional) Euler invariants,
one can add that are sufficient to get rid of singularities, yet are simple enough to
keep the problem computationally tractable.

Thus, we can add a Gauss-Bonnet combination of quadratic in curvature terms,
whose simplifying property is that all equations of motion still remain second or-
der differential equations and no third or forth derivatives appear. However, the
Gauss-Bonnet combination is topological in D = 4, so for it to contribute we must
consider D > 4. In fact, in D = 5 completely smooth spherically symmetric ana-
logues of the Schwarzschild solution were explicitly constructed in [32] for massless
Einstein-Hilbert-Gauss-Bonnet gravity (EHGBG) in D = 5 in a different context.
We therefore expect non-singular spherically symmetric solutions in massive (via
gravitational Higgs mechanism) EHGBG in D = 5 to exist, and perhaps even be
computationally tractable. Note that adding higher curvature terms only affects
high curvature regions, so it does not modify the no vDVZ conclusion in the asymp-
totic regime, while it should allow for a smooth massless limit at all distance scales.
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