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We present a new computational framework (LEO), that enables us to carry out the very first
large-scale, high-resolution computations in the context of the characteristic approach in numerical
relativity. At the analytic level, our approach is based on a new implementation of the “eth”
formalism, using a non-standard representation of the spin-raising and lowering angular operators
in terms of non-conformal coordinates on the sphere; we couple this formalism to a partially first-
order reduction (in the angular variables) of the Einstein equations. The numerical implementation
of our approach supplies the basic building blocks for a highly parallel, easily extensible numerical
code. We demonstrate the adaptability and excellent scaling of our numerical code by solving,
within our numerical framework, for a scalar field minimally coupled to gravity (the Einstein-Klein-
Gordon problem) in the 3-dimensions. The nonlinear code is globally second-order convergent, and
has been extensively tested using as reference a calibrated code with the same boundary–initial data
and radial marching algorithm. In this context, we show how accurately we can follow quasi-normal
mode ringing. In the linear regime, we show energy conservation for a number of initial data sets
with varying angular structure. A striking result that arises in this context is the saturation of the
flow of energy through the Schwarzschild radius. As a final calibration check we perform a large
simulation with resolution never achieved before.
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I. INTRODUCTION

The characteristic approach has been used successfully
to carry out numerical simulations of space-times with
and without sources [1, 2, 3, 4, 5, 6, 7, 8]. A significant
computational effort is nevertheless necessary to extend
its range of applicability to the simulation of astrophys-
ically relevant sources of gravitational radiation, such as
the black hole - neutron star binary problem, where the
approach can be most useful. As work on the charac-
teristic formulation to date illustrates [6, 9, 10, 11], it is
clear that most three-dimensional characteristic simula-
tions, even vacuum simulations [9] are resolution-limited.
This is particularly true of three-dimensional simulations
of systems containing compact matter sources [10], even
when the matter source is an extended one. In general,
all these simulations have been limited in resolution pri-
marily because of the time required to integrate the equa-
tions numerically. For instance, at the finest resolution
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simulation considered in [10], tracking a neutron star in
(close) orbit around a black hole requires approximately
1.5 months even on one of the fastest processors cur-
rently available. This is so even though the grid in ques-
tion (81× 81 angular points, 123 points radially) is fairly
moderate by today’s standards. To a lesser extent, char-
acteristic simulations are also limited because of mem-
ory requirements, although the characteristic scheme is
particularly economic in this regard. Even though it is
feasible to equip a single-processor workstation with the
1.4 Gbytes of memory required by that moderate grid
size, the time required for the numerical solution on even
the fastest processor would make such serial simulations
highly impractical.

Most of the past code development in the character-
istic approach [3, 6] has been geared towards vector or
single processor machines. The computational platforms
available today require instead a parallel programming
approach in order to perform large resolution simulations
in a reasonable time, thus a parallel version of the char-
acteristic code is clearly needed. In the present work we
show how, with a well thought out yet modest program-
ming effort, it is not only possible to produce an efficient,
highly scalable parallel implementation of characteristic
codes, but to do so in such a way that it becomes straight-
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forward to extend our parallel implementation to new
physical models.

We aim for our numerical implementation to be partic-
ularly useful for long–time simulations of sources of as-
trophysical interest, which are very demanding in terms
of the number of grid points on which to advance the
solution, and thus on the number of floating point oper-
ations required. With that end in mind, our numerical
code must scale well in platforms with a large number of
processors. We show here that our implementation meets
this goal, making it a potentially valuable tool when ap-
plied to some of the most interesting astrophysical ap-
plications of numerical relativity, such as the study of
black hole–neutron star binary systems, in the close or-
bit regime up to the tidal disruption of the companion
star.

The first astrophysical application we have in mind is
a characteristic simulation of boson stars in orbit about
a black hole. For that purpose we calibrate the current
code for a massless scalar field minimally coupled with
gravitation. This let us, beyond numerical tests, compare
and calibrate our code with linear versions of it, radial
codes, and analytic (perturbative) results reported in the
literature about quasi-normal modes. The extension to a
black hole–boson star system is straightforward but not
trivial, deserving a detailed study of its own and enor-
mous computational resources. We want to stress that
the production of gravitational waves by the scattering
of scalar waves has many mathematical features in com-
mon with the production of gravitational waves by the
motion of fluid bodies.

The article is organized as follows: In Sec. II we re-
view briefly the standard numerical implementation of
the eth approach [1], and discuss some of its drawbacks
when applied to high resolution simulations in the char-
acteristic approach to numerical relativity. In Sec. III
we present an implementation of the ð and ð̄ operators
which combines their standard description in terms of
stereographic coordinates with their numerical represen-
tation on non–conformal grid coordinates on the sphere.
As this approach differs significantly from our previous
work, we provide further motivation for this departure.
Sec. IV provides a detailed description of the numerical
implementation of the approach outlined in Sec. III. In
Sec. V we illustrate how the parallel, scalable character-
istic code framework (LEO) that we have developed, can
be used to implement the model problem of a scalar field
minimally coupled to gravity in three dimensions. Sec. VI
expands on additional numerical considerations specific
to the hypersurface and evolution equations, and to the
boundary conditions, and presents convergence tests of
our numerical implementation. In Sec. VII, the viabil-
ity of the approach is demonstrated by clearly resolving
several problems which could not be tackled previously.
We close in Sec. VIII with concluding remarks and an
outline of future work.

II. THE STANDARD ETH APPROACH IN
CHARACTERISTIC NUMERICAL RELATIVITY

The characteristic approach to numerical relativity is
based on null coordinates xα = (u, r, xA), with u the
retarded time, r a luminosity distance and xA coordi-
nates on the sphere [1, 2, 3, 4, 5, 6, 7, 8, 12, 13]. In its
3-dimensional implementation, the angular coordinates
chosen are stereographic coordinates xA = (ζ, ζ̄) on the
sphere, which is covered with two stereographic coordi-
nate patches, as first presented in Ref. [1]. We summarize
here the salient aspects of the approach to provide the
motivation for (and highlight the differences with), the
implementation described in this article. The standard
eth approach [1] is a straightforward numerical implemen-
tation in stereographic coordinates xA = (ζ, ζ̄) of the ð,
ð̄ operators introduced by Newman and Penrose [14, 15].
Two stereographic patches are used to cover the unit
sphere, with coordinates ζN = tan(θ/2)eiφ in the north
patch and ζS = 1/ζN in the south patch, respectively,
where (θ, φ) are standard angular coordinates.
In terms of the dyad qA = P (1, i), where P = 1 + ζζ̄,

vectors UA on the sphere are represented by a spin-weight
1 field U = qAUA (or alternatively, by a spin-weight -1
field Ū = q̄AUA). This treatment generalizes to tensors
on the sphere TA...N+M , which are represented in terms
of spin-weighted functions obtained by contracting them
with the dyad qA and its complex conjugate q̄A, i.e.

Ψ = qA1 . . . qAN q̄AN+1 . . . q̄AN+M

×TA1...AN AN+1...AN+M
. (1)

The spin of the resulting scalar function is s = N −M .
Angular derivatives of tensor fields are represented by the
action of the spin-raising and lowering operators ð and
ð̄. For example, the angular derivatives of a vector field
∇AUB, where∇A are the derivatives compatible with the
flat sphere metric in the coordinates xA, are represented
by the spin-2 field ðU and spin-0 field ð̄U given by

ðU = qAqB∇AUB, ð̄U = q̄AqB∇AUA. (2)

The ð and ð̄ operators acting on a spin-weight s function
Ψ are equivalently defined by

ðΨ = P 1−s∂ζ̄ (P
sΨ) = (1 + ζζ̄)∂ζ̄Ψ+ sζΨ, (3a)

ð̄Ψ = P 1+s∂ζ (P
−sΨ) = (1 + ζζ̄)∂ζΨ− sζ̄Ψ, (3b)

where, in terms of the (real) coordinates (q, p), ζ = q+ip,
∂ζ = ∂q − i∂p, ∂ζ̄ = ∂q + i∂p. Functions on the sphere
with spin-weight s transform between patches according
to

ΨN =

(

− ζ̄S
ζS

)s

ΨS . (4)

We implement this numerically by laying down a
two-dimensional grid on each patch, with coordinates
(qm, pn), ζm,n = qm+ipn, such that qm = −1+(m−3)∆,
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pn = −1 + (n− 3)∆, ∆ = 2/(N − 5), and with the grid
point indices in the range m,n = 1 . . .N . This grid cov-
ers the coordinate range −1 − 2∆ ≤ (q, p) ≤ 1 + 2∆.
Ghost zones are used on each side of the grid for the
discretization of angular derivatives by centered, second-
order-accurate finite difference stencils. Function values
at these ghost zones are obtained by interpolation from
the function values on the opposite patch. In order to
compute second angular derivatives to second order ac-
curacy, the interpolations must be evaluated to fourth-
order accuracy, which can be readily attained using a
sixteen-point stencil in two dimensions [1], provided the
grid covers no less than the range indicated above. For
some applications [9], we find it necessary to extend the
grid to a finite overlap, i.e. |q| ≤ 1 + ǫ, with ǫ ≥ 2∆.
The set of ghost zones required for the north patch,

maps onto the south patch (and vice-versa) as per the
transformation ζN = 1/ζS , into a cloverleaf shape. Re-
gardless of the number of grid points (or of ghost zones),
there is a finite overlap between the north and south
patches. While the points in the overlap area of each
grid are redundant, we carry them all because we find it
more efficient to work with rectangular grids. A potential
problem of doing so is the development of two different
numerical solutions in the overlap area of each patch,
only loosely coupled at the stereographic patch edge.
We now discuss briefly some of the drawbacks of the

standard “eth” approach when applied to high resolution
simulations in the characteristic approach to numerical
relativity, and the motivation for the changes that we
propose in the next section.

A. Parallelization of existing characteristic codes

The first objection that we encounter is in the pro-
cess of parallelizing our characteristic codes. Because of
the radial march implicit in the radial integration of the
hypersurface equations, the natural way to parallelize a
characteristic simulation is to distribute the angular grid
among processors, which would integrate the equations
along a “pencil” of null rays. In the computational “eth”
approach this means assigning the computation of the so-
lution over a subset of each stereographic patch to a given
processor. A similar arrangement, in the context of ax-
isymmetric simulations, was explored earlier by Bishop
et. al. [16].
Thus, givenM×M processors, we can simply partition

the N × N stereographic grid on each patch, assigning
equal square subgrids of extent N/M on each direction
to each processor. Load-balancing (the requirement that
all processors in a parallel computation do approximately
the same amount of work) would in principle be achieved,
so long as we restricted ourselves to explicit methods,
thus guaranteeing that the time spent per subgrid re-
mains constant. The communication pattern imposed
by the two stereographic patches implementation of the
“eth” approach [1] does present an obstacle to effective

scaling. The mapping of ghost zones at the edge of the
grid to grid points in the opposing patch is not restricted
to nearest neighbors. To provide values for these ghost
zones requires data from a set of grid points whose values
are scattered among processors in an irregular pattern (in
the sense that, depending on its location on the angular
grid, the ghost zones may be obtained from one, two, or
more processors). This procedure is not only cumber-
some to program, but intrinsically inefficient.
If the data required for these ghost zones could be ob-

tained just from grid points at the edge of an adjoin-
ing grid, the procedure would simplify considerably. The
time spent in communication would be substantially re-
duced and remain constant over the set of processors,
with a significant impact on the scalability and overall
efficiency of a code. Unfortunately such an arrangement
is not possible with a stereographic grid. In addition, as
we point out at the end of Sec. II, because of the fixed
overlap between patches, a significant portion of the grid
is wasted. While this might be acceptable in small scale
simulations [6, 9, 10, 11], it needs to be addressed in
the context of large scale computations as in that case
it translates into a serious waste of computational re-
sources.
Yet another problem that arises from the angular grid

layout is that of highly non-uniform angular resolution,
as a direct consequence of using a stereographic grid.
Considering the expression for the area element in stere-
ographic coordinates,

ds2 =
4

(1 + ζζ̄)2
dζdζ̄, (5)

it can be seen that there is a marked disparity between
the resolution at grid points at various places on the
sphere. Considerable better resolution is attained near
the equator than at the poles, with the largest disparity
between a grid zone at the pole (ζζ̄ = 0) and a point at
a corner of the grid (ζζ̄ = 2) where the respective area
elements have a ratio of 9:1. For some situations, such
as the case of a matter source in equatorial orbit around
a black hole, this feature works to our advantage. Con-
versely, for a matter source in a polar orbit, the matter
source would be resolved three times as poorly when it
lies along the z axis (q = p = 0) compared to the res-
olution obtained when it crosses the equator, which in
a second-order accurate code translates into a nine-fold
increase in the intrinsic error in the numerical solution.
One possible correction for this effect would be to main-
tain the standard stereographic grid as the basic compu-
tational grid, but introduce a physical grid related to the
computational grid by a fish-eye stretch in the angular
coordinates, and allow the refined portion of the grid to
follow the compact object.
A related issue is that of proper resolution of angular

features, which is critical for characteristic simulations of
compact objects in orbit around a black hole. In spherical
coordinates, angular resolution decreases with distance to
the center, as pointed out in [10]. There is then a limit
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to the distance at which we can initialize a characteris-
tic simulation, a limit which is not dictated by physical
considerations, such as the need to avoid the formation of
caustics, which would lead to a break down of the coordi-
nate system. We are also limited by the number of points
which can in practice be devoted to resolve a companion
object.
A proposed extension to the characteristic ap-

proach [10] would include an adaptive mesh refinement
(AMR) strategy, which indirectly would address both
grid resolution issues mentioned. While this extension
may prove necessary in simulations of the last stages of
capture or disruption of a companion star by a black
hole, the necessary technology has not yet been devel-
oped in the context of the characteristic approach; to
our knowledge, applications of AMR in the character-
istic framework have been made only in simplified one-
dimensional models [17]. The intermediate stages of the
black hole–neutron star problem, where the companion
remains approximately contained in a finite region could,
at least in principle, be equally well resolved with fixed
mesh refinement, an approach successfully used, for ex-
ample, in [18, 19, 20]. The introduction of AMR carries
with it a whole new set of issues, not the least of which
is the problem of load-balancing in a massively parallel
computer. Current characteristic codes present serious
obstacles to the implementation of an AMR strategy by
the nature of the angular grid alone. To be effective, an
AMR implementation would have to be capable of deal-
ing with refined meshes in multiple coordinate patches.
To our knowledge, few existing implementations have this
capability [21], and none have been applied in numerical
relativity. In the present work we present a parallel im-
plementation on a single distributed grid, and we defer
the discussion of possible techniques for fixed and adap-
tive mesh refinement for future work.

III. AN ð OPERATOR BASED ON
NON-CONFORMAL PROJECTIONS

A key consideration for the present work is that dif-
ferent numerical representations of the eth approach can
be developed by laying down different types of grids on
the sphere. We consider here an alternative to the stan-
dard “eth” approach, based on the “cubed sphere” or
“gnomic” covering of the sphere introduced by Ronchi
et al. [22], based on earlier work of Sadourny [23]. This
approach is now in common use in global weather simu-
lations, such as in the MIT General Circulation Model
(MITgcm), for example [24]. It has also been ap-
plied in astrophysical simulations [25, 26], in the study
of wave propagation methods on the sphere [27], and
more recently, in the evolution of scalar fields in a fixed
background [28]. While preparing this manuscript, we
learned [29] of work being carried out by Bishop et

al. [30], on a similar grid arrangement, based on work
by Thornburg [31].

FIG. 1: The cubed–sphere: covering of the sphere with six
non–overlapping gnomic patches.

In the ‘cubed sphere’ method, a covering of the unit
sphere with six non-overlapping patches results from pro-
jecting the sphere from its center onto the six faces of a
circumscribing cube, whose edges have length two. For
example, for points on the sphere with Cartesian coordi-
nates (x, y, z) and angular coordinate −π/4 ≤ θ ≤ π/4
(where z = cos θ), we project the point by tracing a line
from the center of the sphere though the point (x, y, z)
to the z = 1 face of the circumscribing cube, determin-
ing a point with Cartesian coordinates (U, V, 1), we then
label the point on the sphere according to the Cartesian
coordinates (U, V ) of its projection on the plane z = 1.

In order to obtain a covering of the sphere with nearly
uniform area, we label the points on the sphere by an-
gular coordinates (α, β), where U = tan(α), V = tan(β),
introducing an equally spaced grid in the angular coor-
dinates (α, β), i.e. (αi, βj) = (i∆ζ , j∆ζ), i, j = −N...N ,
∆ζ = π/(4N). Similar projections from the center of the
sphere to the other faces of the cube provide a covering
of the sphere with six patches.

For a finite-difference code, this arrangement is ideal,
as the grid on each patch is equally spaced in the angu-
lar coordinates, and the same angular coordinate is used
on any two patches in the direction perpendicular to a
boundary. Thus any additional layers of ghost zones in
the adjacent grid will fall on coordinate lines parallel to
the boundary. Evaluating function values at those ghost
zones requires only one–dimensional interpolation along
coordinate lines parallel to the boundary. For example,
an N -th order centered stencil requires N/2 additional
layers of ghost cells to be supplied along the edge of each
spherical cap. The order of the interpolations used to
supply these points can be selected so as to preserve the
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accuracy and maintain the desired dissipation proper-
ties of the numerical scheme. In the standard configura-
tion [22], the spherical caps share common points along
the edges of the grid, where two grids abut, and at the
corners of each patch, where three grids meet. These
common points must have a unique value on each of the
grids that share them. An approach advocated in the
literature [27] is to replace the function values at these
shared points by some form of weighted average. Here we
dispense with this procedure, by carefully selecting the
range of the angular coordinates in each patch, in a way
that precludes the existence of points common to two (or
three) cubed–sphere patches.
An advantage of a gnomic decomposition of the sphere,

crucial to an efficient parallel implementation of the nu-
merical ð approach, is that the patches can be laid out so
that they are non-overlapping. In contrast, in a stereo-
graphic covering, there is a finite overlap, which does not
shrink in size as we increase the grid resolution. Although
it is possible to construct a six–patch stereographic cov-
ering of the sphere, in which the amount of overlap is
reduced with respect to the two–patch covering, the area
of the overlap zone remains constant, regardless of grid
size.

A. Non-conformal projections of the sphere

Non-conformal projections are based on non-
orthogonal coordinates, thus there is no symmetry
in some operators such as the Laplacian on the sphere.
It is still straightforward to couple a gnomic grid layout
with the existing ð approach, i.e. while continuing to
express the ð and ð̄ operators of Ref. [1] on stereographic
coordinates. In the following we detail how this is im-
plemented by expressing the angular (stereographic)
derivatives in terms of angular derivatives in gnomic
coordinates. A gnomic covering of the sphere is given by
six coordinate patches

(x1, y1, z1) =
1

D1
(1, U1, V1) , (6a)

(x2, y2, z2) =
1

D2
(U2, 1, V2) , (6b)

(x3, y3, z3) =
1

D3
(−1,−U3, V3) , (6c)

(x4, y4, z4) =
1

D4
(U4,−1, V4) , (6d)

(x5, y5, z5) =
1

D5
(−V5, U5, 1) , (6e)

(x6, y6, z6) =
1

D6
(V6, U6,−1) , (6f)

where (xi, yi, zi), i = 1 . . . 6 are the Cartesian coordi-
nates of the points, (Ui, Vi) are coordinates on the sphere

in the range −
√
2 − 1 ≤ Ui, Vi ≤

√
2 − 1, and Di =

√

1 + U2
i + V 2

i . (Numerical grid points can be set equally
spaced in the coordinates (α, β), related to (Ui, Vi) by

Ui = tan(αi), Vi = tan(βi) with −π/4 ≤ αi, βi ≤ π/4).
The coordinate lines at Ui = const. (Vi = const.) are
great circles on the sphere which pass through the points
where the Cartesian axis intersect the sphere. For in-
stance, the lines at U3 = const. are great circles spun
around the x axis, while those of V3 = const. are great
circles rotated around the y axis, with α3, β3 the respec-
tive rotation angles. Similarly, on each patch, we define
stereographic coordinates ζi = ui + i vi, where the an-
gular coordinates (ui, vi) on each patch are related to
Cartesian coordinates by

(x1, y1, z1) =
1

P1
(2− P1, 2 u1, 2 v1) , (7a)

(x2, y2, z2) =
1

P2
(−2 u2, 2− P2, 2 v2) , (7b)

(x3, y3, z3) =
1

P3
(−2 + P3,−2 u3, 2 v3) , (7c)

(x4, y4, z4) =
1

P4
(2 u4,−2 + P4, 2 v4) , (7d)

(x5, y5, z5) =
1

P5
(−2 v5, 2 u5, 2− P5) , (7e)

(x6, y6, z6) =
1

P6
(2 v6, 2 u6 − 2 + P6) , (7f)

with Pi = 1 + u2i + v2i . The gnomic coordinates (U, V )
and stereographic coordinates (u, v) on each patch are
related by

U =
2u

1− u2 − v2
, V =

2v

1− u2 − v2
, (8)

or, in more compact form, in terms of a complex gnomic
coordinate ξ = U + i V ,

ξ =
2ζ

1− ζζ̄
, ζ =

ξ

1 +
√

1 + ξξ̄
. (9)

B. The eth operator on the cubed sphere

We can express the angular derivatives in stereographic
coordinates, ∂ζ , ∂ζ̄ that enter into the ð and ð̄ operators
in terms of angular derivatives (u, v) through the rela-
tions

∂

∂ζ
=

1

2

(

∂

∂u
− i

∂

∂v

)

,
∂

∂ζ̄
=

1

2

(

∂

∂u
+ i

∂

∂v

)

(10)

and with the Jacobian









∂U

∂u

∂U

∂v

∂V

∂u

∂V

∂v









=
2

(1− u2 − v2)2
×





1 + u2 − v2 2uv

2uv 1− u2 + v2



(11)
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we cast derivatives with respect to stereographic (u, v) in
terms of derivatives with respect to gnomic coordinates
(U, V ), which are in turn related to derivatives with re-
spect to gnomic coordinates (α, β), by

∂

∂U
=

1

(1 + U2)

∂

∂α
,

∂

∂V
=

1

(1 + V 2)

∂

∂β
, (12)

The spin-raising and lowering operators ð and ð̄ [32] act-
ing on a spin s function Ψ, Eq. (3), can be written as

ðΨ = (1 + ζζ̄)

(

1

1 + ζ̄2
∂Ψ

∂α
+

i

1− ζ̄2
∂Ψ

∂β

)

+ sζΨ, (13)

ð̄Ψ = (1 + ζζ̄)

(

1

1 + ζ2
∂Ψ

∂α
− i

1− ζ2
∂Ψ

∂β

)

− sζ̄Ψ, (14)

where the values of (ζ, ζ̄) for each grid point are computed
from the respective (ξ, ξ̄) values as per Eq. (9).
To complete the prescription of the ð operator on the

cubed sphere we must specify the transformation rule for
spin-weighted functions on the sphere. The stereographic
coordinates on the various patches transform according
to

ζ1 =
ζ4 − 1

ζ4 + 1
, ζ2 =

ζ1 − 1

ζ1 + 1
,

ζ3 =
ζ2 − 1

ζ2 + 1
, ζ4 =

ζ3 − 1

ζ3 + 1
, (15a)

ζ1 = −i ζ5 + i

ζ5 − i
, ζ2 = −i ζ5 − 1

ζ5 + 1
,

ζ3 = −i ζ5 − i

ζ5 + i
, ζ4 = −i ζ5 + 1

ζ5 − 1
, (15b)

ζ1 = i
ζ6 − i

ζ6 + i
, ζ2 = i

ζ6 − 1

ζ6 + 1
,

ζ3 = i
ζ6 + i

ζ6 − i
, ζ4 = i

ζ6 + 1

ζ6 − 1
, (15c)

ζ6 =
1

ζ5
, ζ3 = − 1

ζ1
,

ζ4 = − 1

ζ2
, (15d)

where Eqs. (15a) relate neighboring equatorial patches,
Eqs. (15b) and (15c) supply the coordinate transforma-
tions between equatorial patches and the north and south
patch, respectively. Eqs. (15d), which relate diametri-
cally opposed patches on the sphere, are not strictly nec-
essary for a numerical implementation and can be de-
duced from (15b) and (15c). Our convention for the
gnomic parameterization follows Ref. [22], and it has
the advantage that the orientation of the (u, v) axes on
each patch is chosen so as to reduce the amount of book
keeping needed to transfer information between patches.
From Eq. (15), adjacent patches with coordinates ζi and

ζj are related by Aζi = (Bζj − 1)/(Bζj + 1), where
A = 1,±i and B = 1,±i, while opposite patches are
related by ζi = C/ζj, with C = ±1, in particular, we
recover the coordinates transformation between “north”
(ζN = ζ5) and “south” (ζS = ζ6) patches, ζN = 1/ζS, as
in Ref. [1].
Given the dyad qA = P (1, i), P (ζ, ζ̄) = 1 + ζζ̄, and

expressing q = qA∂A ≡ P (ζ, ζ̄)∂ζ̄ in two coordinate sys-

tems xA = (ζ, ζ̄) and xA
′

= (ζ′, ζ̄′), it can be seen that

q =W (ζ, ζ̄)q′,

where

W (ζ, ζ̄) =
P (ζ, ζ̄)

P (ζ′, ζ̄′)

∂ζ̄′

∂ζ̄
, (16)

and where the substitution ζ′ = ζ′(ζ) is understood in
the right hand side of (16). From this we deduce the
transformation rule for spin-s functions on the sphere,
given here only for the case of adjacent patches

Ψ1 =

(

ζ1 − 1

ζ̄1 − 1

)s

Ψ4, Ψ2 =

(

ζ2 − 1

ζ̄2 − 1

)s

Ψ1,

Ψ3 =

(

ζ3 − 1

ζ̄3 − 1

)s

Ψ2, Ψ4 =

(

ζ4 − 1

ζ̄4 − 1

)s

Ψ3,

Ψ1 =

(

−ζ1 + i

ζ̄1 − i

)s

Ψ5, Ψ2 =

(

i
ζ2 + i

ζ̄2 − i

)s

Ψ5,

Ψ3 =

(

ζ3 + i

ζ̄3 − i

)s

Ψ5, Ψ4 =

(

−i ζ4 + i

ζ̄4 − i

)s

Ψ5,

Ψ1 =

(

−ζ1 − i

ζ̄1 + i

)s

Ψ6, Ψ2 =

(

−i ζ2 − i

ζ̄2 + i

)s

Ψ6,

Ψ3 =

(

ζ3 − i

ζ̄3 + i

)s

Ψ6, Ψ4 =

(

i
ζ4 − i

ζ̄4 + i

)s

Ψ6. (17)

For the case of functions with spin-weight zero the trans-
formations reduce to Ψj(ζj , ζ̄j) = Ψi(ζi, ζ̄i).

IV. NUMERICAL IMPLEMENTATION

We give here a summary of the numerical techniques
used so far in the LEO framework. It is worth noting that
the framework is easily extensible, and thus we are not
restricted, for instance, to the particular choice of radial
grid made here, nor to the choice of radial or time integra-
tion schemes used in the present work. In the subsection
on finite-difference operators on the sphere, for instance,
we describe higher–order extensions that we have elected
not to use in the example application considered here, as
they are inconsistent with the radial and time integration
schemes, which we have taken unchanged from [3].

A. Radial grid and finite difference operators

Following [33], we take the computational radial grid
to be equally-spaced in the compactified coordinate x =
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r/(R + r), restricted to the range xB ≤ x ≤ 1, i.e. xk =
xB +(k− 1)∆x, k = 1, . . . , Nx, ∆x = (1−xB)/(Nx− 1),
with xB = rB/(R + rB). We express radial derivatives
in terms of the compactified grid xi, via the relation
∂x/∂r = (1− x)2/R, e.g.

f,r|k+ 1
2

=
(1− xk+ 1

2
)2

R

(fk+1 − fk)

∆x
, (18)

f,r|k =
(1− xk)

2

R

(fk+1 − fk−1)

2∆x
. (19)

B. Centered finite difference operators on the
sphere

We construct an equally-spaced grid on the gnomic
coordinates xA = (α, β), with αi = −π/4 + (i − 1

2 )∆,

βj = −π/4+ (j− 1
2 )∆, and ∆ = π/(2Nξ), i, j = 1 . . .Nξ.

The useful part, exclusive of ghost zones, for each of the
coordinates ranges from −π/4+∆/2 to π/4−∆/2. With
this arrangement, the points with |u| = π/4 or |v| = π/4
are excluded, and thus we avoid storing double values for
the points at the edges of each patch, and triple values
for the points on the corners where three patches meet.
Adding Ng ghost zones on each side of the grid allows us
to evaluate derivatives to order N = 2Ng with centered
stencils of the form

∂f

∂α

∣

∣

∣

∣

i,j

=
1

∆

N/2
∑

k=1

ck (fi+k,j − fi−k,j) . (20)

The coefficients for the derivatives, up to 8-th order, are
given in Table I. We can verify that the coefficients of

Ng c1 c2 c3 c4

1 1/2

2 8/12 -1/12

3 3/4 -3/20 1/60

4 4/5 -1/5 4/105 -1/280

TABLE I: Coefficients for centered angular derivatives.

Table I for each of the derivatives are correct by not-
ing that the numerical error of derivatives of order N is
within the level of round-off when applied to a polyno-
mial test function F of order N or lower. We have also
verified the proper convergence rate of the numerical ð
and ð̄ operators when applied to spin-weighted spheri-
cal harmonics [9]. Fig. 2 shows the proper convergence
rates of the ð operators constructed from derivatives of
second, fourth, sixth, and eighth order when applied to
the spin-2 spherical harmonic 2Y4 3 on grid sizes ranging
from Nζ = 16 to Nζ = 128.

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
log10(∆)

−12

−8

−4

0

lo
g

1
0
(ε

(e
th

( 2
Y

4
 3
))

)

Convergence of eth[2Y4 3]

2
nd

 order
4

th
 order

6
th
 order

8
th
 order

FIG. 2: Convergence rate of the ð operator, built upon angu-
lar derivatives of order 2, 4, 6, and 8 (indicated in the graph
as circles, squares, diamonds and triangles, respectively), act-
ing on 2Y4 3, and with grid sizes ranging from Nζ = 16 to
Nζ = 128.

C. One-dimensional interpolation of ghost zones

Since the ghost zones required to evaluate derivatives
fall on coordinate lines parallel to the boundary, we can
obtain function values at these ghost zones with one–
dimensional interpolations. We use standard Lagrangian
interpolation formulae to N -th order accuracy,

f(x) =

N
∑

i=1

fi
∏

j 6=i

(x− xj)

(xi − xj)
, (21)

adapted to equally spaced grids, i.e. xj = x0+j∆. Fig. 3
shows the calibration of the interpolation routines with a
test function consisting of a polynomial of order 15, i.e.

PN (α) =

N
∑

i=0

ci α
i, −π

4
≤ α ≤ π

4
(22)

for N = 15, where the coefficients ci, i = 1 . . .N are cho-
sen randomly, subject to the condition |ci| ≤ 1. The in-
terpolants display convergence to the correct order (3, 5,
7, and 9-th order, respectively), for grid sizes in the range
8 ≤ Nζ ≤ 256. For this range of values (8 ≤ Nζ ≤ 256),
there are from 32 to 1024 points in the great circles deter-
mined by the intersection of the sphere with any of the
Cartesian coordinate planes. As expected, for smooth
data such as our test function, for sufficiently large grid
sizes, the error goes down to round-off level when using
the higher-order schemes. This saturation effect is al-
ready visible in the plot for the 9-th order interpolator
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FIG. 3: Convergence rate of the various interpolation schemes
used. Shown in the graph are the 3rd order (circles), 5th or-
der (squares), 7th order (diamonds), and 9th order (triangles)
interpolators. For the highest order interpolator used (9-th
order), the error goes down to double-precision round-off level
(∼ 10−16) when more than Nζ = 100 angular points per patch
are used.

when angular grid sizes reach approximately Nζ = 100.
As indicated in Sec. III, we have chosen the range of the
spherical coordinates (α, β) so that there are no over-
lapping points at the edge of each patch. This avoids
the awkward procedure of averaging values from differ-
ent patches to obtain a single-valued function throughout
the computational grid.

The number of ghost zones, the order of the finite dif-
ference approximations and the order of interpolation,
while related, are not directly tied to each other. One re-
quirement is that we must have enough ghost zones (Ng)
to compute the finite-difference approximation to the de-
sired order, NF ; and since in general we want to use
centered differences, the relation NF ≤ 2Ng must hold.
If we wish to maintain the symmetry of the interpolation
stencils, NI ≤ 2Ng + 1 must also hold. For the cases we
have considered, we find that our algorithms are stable
if NI ≥ NF + 1, with the inequality required only in the
case of NF = 2, the lowest order of finite-differences that
we considered. We are otherwise free to vary the number
of ghost zones as dictated by efficiency considerations.

D. Integrals over the sphere and volume integrals

Integrals over the sphere and volume integrals arise
naturally, in particular when computing norms of various
quantities. We evaluate integrals on the sphere to second

order accuracy by evaluating the area element in gnomic
coordinates,

dΩ =
(1 + U2)(1 + V 2)

(1 + U2 + V 2)3/2
∆α∆β, (23)

evaluating the function value on grid cell centers, fi,j =
f(Ui, Vj), and summing over grid cells,

∫

S

f dΩ =

Nζ
∑

i=1

Nζ
∑

j=1

fi,j
(1 + U2

i )(1 + V 2
j )

(1 + U2
i + V 2

j )
3/2

∆2, (24)

where ∆ stands for the grid spacing on both coordinates
(α, β), which we have taken to be the same. Note that
since the spherical patches do not overlap, the integral
over the sphere is just the sum of the integrals over the
individual patches. Fig. 4 shows the converge of the in-
tegral of the area element itself to the correct answer
of

∫

dΩ = 4π for grid sizes in the range of Nζ = 8 to
Nζ = 512. The measured convergence rate is 2.0, in full

−3 −2.5 −2 −1.5 −1 −0.5 0
log10(∆ξ)

−7

−6

−5

−4

−3

−2

lo
g

1
0
(|

|A
re

a
/(

4
π)

 −
 1

||
)

FIG. 4: Convergence rate of the integral of the area element
over the sphere, for grid sizes ranging from Nζ = 8 to Nζ =
512. The markers indicate the error of the area element at
the corresponding resolution, the line is the least-squares fit,
yielding a convergence rate of 2.0.

agreement with the expected result.
Volume integrals are computed similarly to integrals

over the sphere, but in this case evaluating the spherical
contributions mid-point in between radial points, i.e.

∫

S

dΩ

∫ rn

rm

fr2 dr =

Nζ
∑

i=1

Nζ
∑

j=1

(1 + U2
i )(1 + V 2

j )

(1 + U2
i + V 2

j )
3/2

∆2

×
n−1
∑

k=m

x2
k+ 1

2

(1− xk+ 1
2
)4

(fi,j,k + fi,j,k+1)

2
∆x . (25)
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We replace the flat volume element, dV = r2dr dΩ, with
the volume element corresponding to a Bondi metric,
dV = r2e2βdr dΩ, when appropriate. To speed up the
evaluation of integrals, we pre-compute the area element
on the sphere, Eq. (23).

E. Accuracy of the spin-weighted spherical
harmonic decomposition

We make use of spin-weighted spherical harmonics

sYlm throughout this paper, following the convention
of [9]. In order to estimate the error introduced when we
perform a spin-weighted spherical harmonic decomposi-
tion, we look at how well the orthonormality condition

∫

S
sYlm sȲlmdΩ = δl,l′δm,m′ , (26)

is preserved (at the numerical level) for spherical har-
monics with spin-weight s = 0, 1 and 2, for a range of
values of ℓ and m and angular grid sizes. As expected,
the numerical value of the integral converges to the ana-
lytic result to second order on the grid spacing, since we
have chosen to use a second-order integration algorithm.
Fig. 5 illustrates one instance, where we have taken s = 0,
ℓ = 6, with m = −6 . . . 6, and varied the angular grid size
from Nζ = 32 to Nζ = 64. We can also place an esti-

−1.7 −1.6 −1.5 −1.4 −1.3
log(∆ξ)

−6

−5.5

−5

−4.5

−4

−3.5

−3

lo
g

(ε
)

Ylm l=6, m=0...6

m=0
m=1
m=2
m=3
m=4
m=5
m=6

FIG. 5: Convergence of the orthonormality condition,
illustrated here by computing the convergence rate of
R

S 0Ylm0Ȳlm ≡ 1, for the case l = 6, m = 0 . . . 6, on grid
sizes ranging from Nζ = 32 to Nζ = 64

mate on the accuracy of the projection of a spin–weight

s function,

clm[F ] =

∫

S

F sȲlmdΩ, (27)

based on the magnitude of the off-diagonal values in (26)
for a given grid size. When projecting the test functions
Yl′ m′ into the spherical harmonics Yl m for l = 0 . . . lmax,
m = −l . . . l, at the analytic level we would expect to ob-
tain zero for all coefficients, except for cl′ m′ which would
be identically one. We find that grid sizes of Nζ = 64 and
larger are sufficient to keep the error in the coefficients
to within one part in 104, which again is consistent with
our integration scheme being second-order in the angu-
lar discretization. Fig. 6 shows the error in the coeffi-
cients computed for Yl′ m′ , l′ = 6, m′ = 3 on a grid with
Nζ = 64 points. We have omitted from the graph those
coefficients for which the error is already at the level of
round-off.

−8 −6 −4 −2 0 2 4 6 8
m

−5e−05

0e+00

5e−05

1e−04

c
lm

projection of Y6,3 

l=2
l=3
l=4
l=5
l=6
l=7
l=8

FIG. 6: Error in the coefficients clm when the function being
projected is the spherical harmonic Y6 3, on a grid of Nζ = 64
points. Coefficients whose error is at round–off level are not
shown.

The preceding description of the numerical implemen-
tation is complete but for one key aspect, namely our
parallelization strategy. In our framework, the six cubed-
sphere grid patches are decomposed into computational

sub-patches, each with the same number of points on
the angular directions, for efficiency reasons. These
sub-patches are distributed among processors, and the
ghost-zone values required for the computation of angu-
lar derivatives are communicated by the use of message-
passing calls [34]. The radial direction is not distributed,
as the characteristic algorithm requires a radial march
for the integration of the hypersurface equations as well
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as the evolution equations [33]. The computational com-
plexity of a parallel implementation via message pass-
ing lies in that, knowing the location of its assigned grid
sub-patch on the global grid, each processor must deter-
mine which processors are its nearest neighbors, i.e. to
which processes it must supply ghost-zone information
(and also receive that information from). Due to the rel-
ative orientation of the cubed-sphere patches, we need
to know whether the order in which the ghost zones are
traversed must be reversed for sub-patches on the edge
of a cubed-sphere patch. Since the sub-patch to proces-
sor mapping remains constant during a simulation, the
relevant information needs to be computed only once,
and at any rate, it incurs no measurable overhead in the
computation involved in a simulation. An efficient and
scaling implementation of the message passing itself re-
quires only a small subset of the full MPI functionality:
a few calls to set up the appropriate groups of processors;
sends, receives and waits (for ghost zone communication);
some additional reduction operations (to accumulate in-
tegrated values), and some broadcasts (to propagate pa-
rameters). Exclusive of file access operations, only 14
MPI functions in all are invoked.
Having established that all the key computational as-

pects of the framework are in place, and have been cor-
rectly implemented, we proceed next to consider specific
applications of the framework to systems of physical in-
terest.

V. A THREE–DIMENSIONAL MASSLESS
SCALAR FIELD SCATTERED OFF A
SCHWARZSCHILD BLACK HOLE

We use the numerical formalism developed in the pre-
ceding sections to solve numerically a model problem con-
sisting of a self-gravitating massless scalar field in three
dimensions. Our starting points are Ref. [8] for a descrip-
tion of the vacuum problem, and Ref. [11] for the coupling
of the scalar field to the gravitational metric fields. We
use coordinates based upon a family of outgoing null hy-
persurfaces, and we let u label these hypersurfaces, xA

(A = 2, 3) label the null rays and r be a surface area
coordinate. In the resulting xα = (u, r, xA) coordinates,
the metric takes the Bondi–Sachs form [35, 36]

ds2 = −[e2β(1 +W/r) − r2hABU
AUB]du2 − 2e2βdudr

− 2r2hABU
BdudxA + r2hABdx

AdxB , (28)

where W is related to the more usual Bondi–Sachs vari-
able V by V = r +W , and where hABhBC = δAC and
det(hAB) = det(qAB), with qAB a unit sphere metric,
given in terms of a complex dyad qA satisfying qAqA = 0,
qAq̄A = 2, qA = qABqB, with qABqBC = δAC and
qAB = 1

2 (qAq̄B + q̄AqB). We also use the intermedi-

ate variable QA = r2e−2βhABU
B
,r . We represent ten-

sors on the sphere by spin-wighted variables [1]. The
conformal metric hAB, is represented by the complex

function J = hABq
AqB/2, and by the real function

K = hABq
Aq̄B/2, where K2 = 1+ JJ̄ . The metric func-

tions UA are similarly encoded in the complex function
U = UAqA. Thus, it is necessary to introduce the inter-
mediate spin-weighted variable Q = QAq

A, as well as the
(complex differential) operators ð and ð̄ (see [1] for full
details).

Treating the Einstein-Klein-Gordon model problem
consistently within the LEO framework requires some
modifications to [11], specifically to the wave equation for
the scalar field (�φ = 0) which is given by Eqs. (21)-(27)
of [11]. We substitute all second-order angular deriva-
tives of the metric fields in terms of ð and ð̄ operators
acting on the additional fields ν = ð̄J , k = ðK and
B = ðβ introduced in Ref. [8], whenever possible. A
consistent treatment is obtained by introducing the ad-
ditional variable

ψ = ðχ, (29)

where χ = rφ, so that the scalar field equation is also in
first-order differential form in the angular variables, on
a par with the approach of [8] for the metric equations.
The Bondi–Sachs hierarchy of hypersurface equations,

ν,r = ð̄J,r , (30)

k,r = ðK,r , (31)

β,r =
r

8

(

J,rJ̄,r −K2
,r

)

+ 2πr(φ,r)
2, (32)

B,r = ðβ,r , (33)

(r2Q),r = r2
[

−K(k,r + ν,r) + ν̄J,r + J̄ðJ,r + νK,r

+Jk̄,r − J,rk̄

]

+
r2

2K2

[

ν̄
(

J,r − J2J̄,r
)

+ ðJ
(

J̄,r − J̄2J,r
)]

+2r2B,r − 4rB + 16πrφ,rψ , (34)

r2U,r = e2β
(

KQ− JQ̄
)

, (35)

(r2W̃ ),r = ℜ
{

e2β
(R

2
−K

(

ð̄B +BB̄
)

+ J̄
(

ðB +B2
)

+ (ν − k)B̄
)

− 1 + 2 rð̄U +
r2

2
ð̄U,r

−e−2β r
4

4
Ū,r

(

KU,r + JŪ,r

)

}

− 2π
e2β

r2
[

2Kψ̄ψ − Jψ̄2 − J̄ψ2
]

, (36)

ψ,r = ðχ,r , (37)

now includes an additional consistency condition,
Eq. (37), and the equations for β, Q and W̃ = W/r2

are modified to include the source terms as shown above.
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The evolution equation for the metric field J is given by

2 (rJ),ur −
(

r−1V (rJ),r

)

,r
= −K (rðU,r + 2 ðU)

+
2

r
e2β

(

ðB +B2
)

−
(

rW̃,r + W̃
)

J + JH + JPu

+
8π

r3
e2βψ2, (38)

with the quantities R, JH and Pu as in Eqs. (24)–(26)
of [8]. The scalar field evolution equation follows from
Eq. (21) of [11],

2χ,ur −
(

V

r
χ,r

)

,r

= −
(

W

r

)

,r

χ

r
+Nφ. (39)

The source term Nφ is

Nφ =
e2β

r

[

− 1

2r

(

J̄ðψ + J ð̄ψ̄
)

+
K

r
ð̄ψ

+

(

KB̄ − J̄B − 1

2
(KQ̄− J̄Q)− ν̄

2

+
1

4K
(J̄ν + Jµ̄)

)

ψ

r

+

(

KB − JB̄ − 1

2
(KQ− JQ̄)− ν

2

+
1

4K
(Jν̄ + J̄µ)

)

ψ̄

r

]

−1

r
(Uψ̄ + Ūψ)− r

2
φ,r(ð̄U + ðŪ)

−[U(ψ̄,r − ψ̄) + Ū(ψ,r − ψ)]. (40)

Following [13], we have used the shorthand µ = ðJ ,
and eliminated the radial derivatives U,r and Ū,r using
Eq. (35),

Q = r2e−2β(KU,r + JŪ,r). (41)

The data required on the initial null cone are the evo-
lution variables J and φ. Given boundary values at a
fixed value of r, the remaining variables (ν, k, β, B, Q,

U and W̃ ) can be determined on the initial null cone
by explicit integration of the hypersurface equations (see
[11] for details). The evolution equations (38) and (39)
can then be used to find J and φ on the next null cone,
and the process repeated to determine the spacetime to
the future of the initial slice.

A. Scalar field on a fixed background

The above system of equations describes a self–
gravitating scalar field. In the limit of small amplitudes,
|φ| << 1, the scalar field can be treated as a pertur-
bation propagating on a fixed background. This consid-
erably simpler model is contained in the fully nonlinear
case, and is implemented in our code by integrating only

Eqs. (37) and (39). For a Scharwzschild background,
the metric fields J , β, U , ν, k and B are zero, and
V = r − 2M . The source term in Eq. (40) reduces to
Nφ = ð̄ψ/r, and we are left with the system

2χ,ur −
((

1− 2M

r

)

χ,r

)

,r

= −2Mχ

r3
+

ð̄ψ

r
,

ψ,r = ðχ,r , (42)

For the simulations we discuss in the present work, we
will be interested in solutions of the scalar field on a
fixed background with definite angular dependence, as
discussed in the next sub-section.

B. Quasi-normal modes in a Schwarszchild
background

The linear equation for the scalar field on a fixed back-
ground, Eq. (42) is separable, i.e. its solutions can be
written in the form

φ(u, r, xA) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

χℓm(u, r)
Yℓm(xA)

r
, (43)

with the xA coordinates in the sphere, and where each of
the χℓm satisfies the one-dimensional wave equation in
the plane (u, r)

2χ,ur −
((

1− 2M

r

)

χ,r

)

,r

=

−
(

2M

r3
+
ℓ(ℓ+ 1)

r2

)

χ. (44)

where we have used the property ðð̄χ = −ℓ(ℓ+ 1)χ [37].
Eq. (44) is the usual equation governing the scalar per-
turbations of a Schwarzschild black hole [38], written here
in characteristic coordinates (u, r, xA). It can be put in a
more familiar form by writing it in the coordinates (t, r∗),
with u = t− r∗, and where r∗ is the usual “tortoise” co-
ordinate, r∗ = r + 2M ln(r/2M − 1).

χ,tt − χ,r∗r∗ + V̂ (r)χ = 0, (45)

where χ = rφ and the potential V̂ (r) is given by

V̂ (r) =

(

1− 2M

r

)[

2M

r3
+
ℓ(ℓ+ 1)

r2

]

χ, (46)

and we have denoted it by V̂ to avoid confusion with
Bondi’s V which we use throughout this paper. Eq. (45)
has been studied extensively [38, 39, 40], its most salient
feature being the existence of quasi-normal modes, whose
frequencies have been tabulated, see for example [40].
Note that the right-hand side of Eq. (44) is the correct
form of the potential in (u, r) coordinates. It differs by
a factor of (1 − 2M/r) from the potential as given in
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Eq. (45), see [38], because that factor is precisely the
Jacobian of the coordinate transformation, ∂r/∂r∗ = 1−
2M/r.

In the remainder of the present work we will use both
the quasi-normal mode equation, Eq. (44), and the linear
system, Eq. (42), as tests of the validity of our numerical
implementation. We do this in an incremental fashion,
solving Eq. (44) for fixed values of ℓ, and comparing the
effectiveness of the numerical integration scheme and of
our boundary conditions in reproducing the quasi-normal
modes. To this end, we implement a purely radial code
for Eq. (44) that employs the same numerical integration
scheme that is used in the “linear” code (which solves
Eq. (44) and Eq. (42)), and in the full nonlinear code.
Using this radial code, we can isolate the effects arising
from the inner-boundary treatment at r = 2M by imple-
menting Eq. (44) as indicated, in outgoing null coordi-
nates, using both a non-compactified coordinate r, with
a simple extrapolative boundary condition at the outer
boundary rout > 2M , and the compactified coordinate
x = r/(r + R), where the outer boundary lies at future
null infinity. The use of a non–compactified coordinate
allows us to isolate any effects that may arise due to the
non-uniform coordinate velocity introduced by the com-
pactified coordinate x. Conversely, simulations using the
compactified coordinate avoid the effects of placing the
outer boundary at a finite distance.

We also implement the equivalent of Eq. (44) in ingoing

null coordinates, (v, r), with v = t+ r∗, namely

2χ,vr +

[

(1− 2M

r
)χ,r

]

,r

=

[

2M

r3
+
ℓ(ℓ+ 1)

r2

]

χ. (47)

In ingoing null coordinates, the slices at v = const pene-
trate the event horizon r = 2M , effectively providing for
an excision scheme, where evolution can be stopped at a
finite number of points inside the boundary, because the
behavior of the field inside the horizon does not affect the
solution outside. Evolutions in ingoing coordinates are
carried out on a non-compactified radial grid, for which
boundary data are required at a fixed value of rout > 2M .
Because of the presence of this outer boundary, simula-
tions in ingoing coordinates can only be run for a limited
time, typically u ∼ 2 rout, before outer boundary effects
influence the signal extracted. A similar effect is seen
when using outgoing, non–compactified null coordinates.
When using compactified coordinates, no such effects are
seen, as expected. A detailed comparison between in-
going and outgoing versions of characteristic systems of
equations, in compactified as well as non–compactified
coordinates, along with their relative advantages and dis-
advantages for specific applications, is worthwhile but lies
outside the scope of the present work and will be reported
elsewhere. We will refer only briefly to these issues in the
remainder of this work.

C. Energy carried out by the scalar field

As a useful physical indicator we calculate the balance
of the scalar field energy contained between the inner
boundary and null infinity. The expressions we give here
are valid in the linear case, where the background metric
is that of Schwarzschild. For a more general approach
to this issue, the linkage integrals have to be calculated,
specifically the asymptotic Killing vector field must be
parallely propagated from null infinity [41].
Restricted to the background case then, given a Killing

vector field ξν of the metric gµν , £ξgµν = 0, we can define
the conserved quantity

C =

∫

T µ
ν ξ

νdΣµ. (48)

In particular, selecting the time–like Killing vector ξν =
δνu, and for a surface of constant u, C is the energy con-
tained on the surface,

E(u) =

∫

T u
u dV, (49)

where dV is the volume element of the surface at constant
u. For a sphere at constant r, C represents the energy
flux across the surface,

P (u) =

∫

T r
ur

2dΩ, (50)

with dΩ the solid angle element. The relevant compo-
nents of the stress–energy tensor for a massless scalar
field are

T u
u = e−2β V

2r
(φ,r)

2
+

K

2 r2
ðφð̄φ

− 1

4 r2

[

J̄ (ðφ)
2
+ J

(

ð̄φ
)2
]

− 1

2
e−2βφ,r

(

Ūðφ+ U ð̄φ
)

, (51)

T r
u = e−2βφ,u

×
[

φ,u − V

r
φ,r +

1

2

(

Ūðφ+ U ð̄φ
)

]

. (52)

In the case of a linear scalar perturbation on a
Schwarzschild background, the energy content of a hy-
persurface at constant u is given by

E(u) =
1

2

∫ [(

1− 2M

r

)

(rφ,r)
2
+ ðφð̄φ

]

drdΩ . (53)

The power radiated at time u across a surface of constant
r, such as the inner boundary, which in our simulations
we place close enough to the Schwarzschild black hole, is

Pin(u) =

∫

φ,u

[

φ,u −
(

1− 2M

r

)

φ,r

]

r2dΩ . (54)

For the flux across the inner boundary, the integral as
well as the spatial and time derivatives are to be taken
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as evaluated at r = rin. Analogously, the power radiated
at time u at null infinity is the limiting form (as r → ∞)
of the above expression, i.e.

Pout(u) =

∫

(rφ,u)
2dΩ , (55)

where we have used the behavior of the scalar field near
null infinity I to simplify the expression. With these
definitions, the following global energy conservation law
holds

Σ(u) = E(u) +

∫ u

u0

[Pout(u
′)−Pin(u

′)]du′ ≡ const. (56)

Even though the expressions given above hold only in
the limit in which ∂t is a Killing vector of the metric,
we expect them to hold in an approximate sense for our
nonlinear evolutions, so we use them as a criterion for
code testing.
As stated previously, we use the radial code to calibrate

the fully nonlinear, three-dimensional LEO code in the
linear regime. When computing the energy in the radial
code, we make use of the property

∫

ðφ ð̄φdΩ = −
∫

φðð̄φdΩ. (57)

(see [37]). Since the data we pose are pure spherical har-
monics, the integral in the right–hand side is proportional
to the norm

∫

φφ̄ dΩ. Eq. (57) allows us then to properly
account for the contribution of the angular derivatives of
the field to the energy (49) when using only the radial
code.

VI. ADDITIONAL NUMERICAL
CONSIDERATIONS

A. Hypersurface equations

The integration of the hypersurface equations does not
present any inherent difficulty as they are discretized at
mid-point between grid points as per [8, 11]. An impor-
tant issue which arises because of the parallel implemen-
tation of our algorithm is that after each step in the ra-
dial march, that is, after each hypersurface equation has
been advanced radially one grid point, we must synchro-
nize the variable which has just been integrated. By this
we mean that we communicate the ghost zone values to
the processors carrying out the integration in neighboring
patches. Since communication is an expensive operation
even on the most tightly coupled parallel computers, we
take the approach of explicitly synchronizing a variable
only if an ð (or ð̄) operator will be applied to the vari-
able in question. An alternative approach would be to
incorporate the synchronization into the ð (and ð̄) op-
erators. The first approach requires more book-keeping
on our part, whereas the second is more straightforward.
Because of the number of ð (or ð̄) operations that appear

in the full nonlinear equations, however, the performance
difference between these two approaches is significant.
For this reason we take the first approach, reducing to
the minimum possible the amount of communications,
with a substantial increase in performance.

B. Evolution equations

The evolution equation (38) for J is treated as reported
in [11], except that the first two radial points are subject
to the boundary condition explained below. The evolu-
tion equation for the scalar field is recast in terms of the
two–dimensional wave operator

�
(2)χ = e−2β [2χ,ru − (r−1V χ,r),r], (58)

where χ = rφ and Eq. (39) reduces then to

e2β�(2)χ = H, (59)

where

H = −(W/r),rχ/r +Nφ. (60)

Since all two–dimensional wave operators are conformally
flat, with conformal–weight −2, we can apply to (59) a
flat–space identity relating the values of χ at the four cor-
ners P , Q, R and S of a null parallelogram A, with sides
formed by incoming and outgoing radial characteristics.
In terms of χ, this relation leads to an integral form of
the evolution equation for the scalar field

χQ = χP + χS − χR +
1

2

∫

A

du drH. (61)

The corners of the null parallelogram cannot be chosen
to lie exactly on radial grid points, thus the values of χ
at the vertices of the parallelogram are approximated to
second–order accuracy by linear interpolations between
nearest neighbor–grid points on the same outgoing char-
acteristic. Approximating the integrand by its value at
the center C of the parallelogram (evaluated using aver-
age values between the points P and S), we have then

χQ = χP + χS − χR

+
∆u

4
(rQ − rP + rS − rR)HC . (62)

The evolution algorithm for the metric function J follows
the procedure outlined in [3, 8, 11]. As with the hyper-
surface equations, we synchronize the fields φ and J , i.e.
we communicate the ghost zone information from each
patch to their neighbors, immediately after advancing
radially these two fields with their respective evolution
equations.

C. Boundary treatment for the evolved fields

For the ingoing formulation, we set the field values
φ(v, r = rout) = 0, and we march inwards until a few
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points beyond the black hole horizon (r = 2M). Since
the past light cones tilts outwards once inside the horizon,
the values computed just inside the horizon can never af-
fect those points of the grid that lie outside. This scheme
provides then an extremely simple and effective form of
excision, as discussed in [4, 5, 42] in the context of char-
acteristic evolution, and in [43] in the context of 3+1
simulations in the Bondi-Sachs gauge.
For the outgoing formulation on a non–compactified

radial grid, we use simple extrapolative boundary condi-
tions at the outermost point, i.e.the field χ at the last
point is set equal to the value of χ at the point imme-
diately before. This approximation is justified for suffi-
ciently large r as the field φ behaves, to leading order,
as φ ∼ O(1/r). Our treatment of the inner boundary is
motivated by physical considerations that arise naturally
in the study of quasi-normal modes. It can be seen from
Eq. (46) that when the potential V̂ (r) goes to zero, as
it does in the limits r → 2M and r → ∞, the solutions
to Eq. (45) are traveling waves, χ− = FL(t + r∗) and
χ+ = FR(t − r∗). In the linear approximation then, it
is consistent to apply an open boundary condition to the
the scalar field φ based on the assumption that, at the in-
ner boundary, the field behaves as a left-travelling wave,
χ = FL(t + r∗). It follows also that the same condition
must be applied to the spin-weight 2 metric field J . In the
linear approximation, Eq. (38) reduces to Eq. (45), with

the potential V̂ (r) corresponding to that of a spin–weight
2 field, see [38]. This open boundary condition is equiv-
alent to stating that the fields χ = rφ and rJ propagate
towards the horizon along the incoming characteristics
of the two-dimensional wave operator, Eq. (58). In prac-
tice, we implement this condition for the first two points
of the radial grid, and use the evolution equations for χ
and J elsewhere.
In the non-linear case, the horizon can no longer be as-

sumed to be static, rather it is dynamically distorted and
grows as the scalar field accretes into the black hole. Our
boundary condition is applied always to the same set of
points, which are subsequently enveloped by the growing
horizon, thus any inaccuracy we might have introduced
in those first two points can not have any effect on the
exterior spacetime.
Our approach suggests the following iterative method

to treat the inner boundary, in a manner which is con-
sistent with the open boundary condition: (1) as a first
approximation, solve the homogeneous equation (45) for
the first two radial points, i.e. assume the evolved fields
propagate along incoming characteristics up to the re-
tarded time u + ∆u, and (2) with the values predicted
for the fields at time u+∆u, correct the right-hand side
of the full evolution equations.

D. Tests of second order convergence

The simulations for the tests reported in the remain-
der of this section are conducted in compactified outgoing

(retarded) null coordinates. To verify that the numerical
algorithm is globally second-order convergent, we com-
pute the L2 norm of the relative residuals for three grid
sizes, e.g.

Qcm =

∫

[χc − χm]2dx dΩ,

Qmf =

∫

[χm − χf ]
2dx dΩ, (63)

where the c, m and f subscripts denote the field as com-
puted on coarse, medium and fine grids, respectively.
The field is evolved from an initial retarded time u = 0
and the integrals (63) are calculated at the same final re-
tarded time u, using the same set of spatial grid points,
obtained by appropriately subsampling from the fine and
medium grids to the coarse grid. Here we take the angu-
lar (and radial) grids to be in a proportion of 1 : 3 : 5.
Grids in these ratios have a common set of points that
align directly, and thus do not require interpolating cell
values from the finest to the coarser grids. In this case,
given the values Qcm and Qmf , it can be shown that the
order of convergence O(∆n) of the algorithm can be read
by solving for n the following equation

(Qcm/Qmf )
1/2 =

1− 1/3n

1/3n − 1/5n
. (64)

For this test we evolve the initial data

χ(0, r, xA) = λe−(r−r0)
2/σ2

Yℓm, (65)

with λ = 10−4, whose the radial profile is character-
ized by r0 = 3M , σ = 1

2M , and whose angular depen-
dence is given by ℓ = 4 and m = 2, from u = 0 up
to u = 1M . We perform three simulations, on the an-
gular grid sizes Nζ = 10, 30, 50 and the corresponding
radial grid sizes Nx = 501, 1501, 2501, for which we take
152, 456, 760 time-steps, respectively. From (64) we find
that the measured order of convergence is n = 2.05, in
excellent agreement with the expected second-order con-
vergence. It should be noted that this procedure tests
the Cauchy convergence of the code, providing a basic
check of the consistency of the discretization. For low
amplitudes (in the perturbative regime), and for a given
value of ℓ, the scalar field profiles computed with the
fully three-dimensional code match, to within second or-
der, the profiles obtained with a purely radial code which
solves Eq. (44), as expected.
We want to stress that the boundary conditions, the

initial data and the marching algorithm for the scalar
field used in this numerical test are all the same as those
which we have used to calibrate the radial code, the solu-
tions of which we use here in place of an analytic solution.
In fact, the convergence rate for the radial code is exactly
2.00 for the radial grid sizes ofNx = 501, 1501, 2501,mea-
sured at u = 1M with its respective subsampling, as per
Eqs.(63)-(64).
For sufficiently low values of (ℓ,m), the angular grid

sizes Nζ used in the convergence test are adequate. For
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a given angular grid size, it is also possible to reduce
the angular error by increasing the order of the angu-
lar derivatives, for example, to fourth order or higher.
The increased computational expense is offset by the in-
creased accuracy obtained; in a parallel application there
is also the potential for additional overhead because more
ghost cells must be communicated. In practice we ob-
serve that, for the smallest angular grid size considered
(Nζ = 10), changing the discretization of the angular
derivatives from second to fourth-order increases the ex-
ecution time by about 20%.
In the work reported here, since the radial and time

integration are carried out with a scheme that is second-
order convergent, we have opted to use second order accu-
rate angular derivatives, as with this choice the nonlinear
code exhibits second-order accurate Cauchy convergence.
For the initial data considered here, the radial reso-

lution must be at least Nx = 501 to guarantee second-
order convergence, as the radial features are the domi-
nant source of numerical error. We note that if we re-
peat the test above using the same angular grid sizes,
Nζ = 10, 30, 50, but using instead radial grids with fewer
points, i.e. Nx = 251, 751, 1250, the measured conver-
gence rate is lower, namely n = 1.56.
For the numerical simulations we present in the re-

mainder of this article we have chosen grid sizes such
that the numerical algorithm is always in the second-
order convergence regime. For more details on the con-
vergence properties of the radial evolution algorithm, see
[44].

FIG. 7: The function χ(u) at I as a function of Bondi time,
showing the quasi-normal mode regime oscillations for ℓ = 1,
m = 0. The solid line is the output from LEO for Nζ = 11 and
Nx = 1001, when the initial data and boundary conditions
are given as for the convergence test, the dashed line is the
quasi-normal mode extracted from the data.

VII. NUMERICAL RESULTS

A. Quasi-normal Modes

FIG. 8: Log of the absolute value of the function χ(u) at I

as a function of Bondi time. Parameters and conditions are
the same of Fig. 7. The solid line is the output from LEO,
dashed)line is the quasi-normal mode extracted the data.

The simulations reported in this and subsequent sec-
tions are all carried out in compactified, outgoing (re-
tarded) null coordinates. Because these coordinates al-
low us to read off scalar radiation patterns at null infinity.
(The treatment of the inner boundary is as described in
Sec. VIC.) The quality of the waveforms extracted de-
pends in part on the location of the inner boundary and
other factors. We describe here the method used and
analyze the sources of error. For the simulations in this
section we use a grid with sizes Nx = 1500, Nζ = 11;
the initial data corresponds to Eq. (65), with λ = 10−4,
r0 = 3M , σ = 1

2M , and M = 1.
To extract the quasi-normal modes we have used the

free software package Harminv [45], which employs a low-
storage filter diagonalization method (FDM) for finding
the quasi-normal modes in a given frequency interval.
This software package is based on the FDM algorithm
described in [46, 47]. The advantage of using Harminv is
that FDM methods provide better accuracy than what
can be obtained with a fast Fourier transform (FFT) [9],
and are more robust than least-squares fit [48]. We find it
surprising that this approach, to our knowledge, has not
been used in the context of reading quasi-normal modes
in gravitational simulations.
In performing a fit with Harminv to the scalar field

waveforms, we find sometimes necessary to factor out,
at least approximately, the exponential decay of the sig-
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FIG. 9: The function χ at I as a function of Bondi time,
showing the quasi-normal mode regime oscillations for ℓ = 2,
m = 0. The solid line is the output from LEO for Nζ = 11 and
Nx = 1001, when the initial data and boundary conditions are
given as for the convergence test, except that rin = 2.13M ;
the dashed line is the quasi-normal mode extracted from the
data.

FIG. 10: Log of absolute value of the function χ(u) at I as
a function of Bondi time. Parameters and conditions are the
same of Fig. 9. The solid line is the output from LEO, the
dashed line is the quasi-normal mode extracted from the data.

nal. This happens when the magnitude of the imagi-
nary part of the frequency (the decay rate) is compara-

ble to the real (oscillatory) part, where the FDM method
fails to find a fitting frequency. In those cases, we pre-
multiply the signal by an exponentially increasing func-
tion f = exp(|ωf |t), perform the fit with Harminv, and
adjust the frequency obtained accordingly. When an an-
alytic value for the frequency is available, we take its
imaginary part as the value for ωf . In general, when the
imaginary part of the frequency is not known, it suffices
to use a rough estimate of the decay rate, which can ob-
tained graphically. We also need to decide what range of
values of u to use to extract this information. We do this
by plotting the signal χ(u) and noting when the waveform
is clearly periodic with an exponentially decaying enve-
lope. For example, in Fig. 8, one can clearly see that this
regime starts at about u = 20M . We take the end of the
fitting interval when the signal no longer appears to be a
damped sinusoidal. For initial data of the form (65), with
ℓ = 1, we use Harminv to extract the frequency, using as
the fitting interval u = [20, 70]. The measured frequency
is ω = 0.3076 (5%) − 0.1064 i (9%). Here the values in
parenthesis indicate the percentage deviation from the
value calculated in [40] via the WKB method to sixth or-
der. A comparison of the signal computed and the quasi-
normal mode fitted is shown in Figs. 7-8. The figures
show the profiles computed with the three-dimensional
code (solid line). These profiles are indistinguishable, at
the resolution of the graph, from the profiles obtained by
solving numerically the perturbative equation (44) for the
same initial data, thus we have opted not to show the per-
turbative solution as is customary. For comparison, we
have shown instead, in the same graph, the quasi-normal
mode χ = expωu (dashed line) extracted, i.e. the fit pro-
vided by Harminv. There is some disagreement initially
between the numerical solution and the fit, as the nu-
merical solution settles into the dominant quasi-normal
mode, a process which takes from one to one and half
cycles of the quasi-normal mode.

For the same initial data, but with ℓ = 2, we read a
frequency ω = 0.4971 (3%)− 0.0992 i (2%), in the range
u = [40, 70], with the comparison between the computed
signal and [40] shown in Figs. 9-10. We have observed
that the relative percent error for the decay rate is larger
for ℓ = 1 because it depends strongly on the value se-
lected for the location of the boundary, rin. Numerical
experiments with the radial code confirm this and sug-
gest that, by carefully tuning the location of the inner
boundary, better accuracy can be achieved for any one
value of ℓ. We have done this only partially in computing
the frequency for the case ℓ = 2. We want to emphasize
that the dependence of the frequency on the boundary is
not a numerical artifact of the code, but a consequence of
the choice of outgoing null coordinates. This is confirmed
by numerical experiments with the radial code in ingoing
coordinates, in which case we find that the frequency can
be read off with an error of less than 0.1% for the same
initial data and grid sizes.
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B. Energy Conservation

FIG. 11: Energy conservation as a function of Bondi time for
ℓ = 0 (solid line); ℓ = 1 (dotted line); ℓ = 2 (long dashed line).
This calculation was done using the same grid parameters as
for Fig. 9 except for rin = 2.3. For each specific ℓ (line type;
color) the descending curve corresponds to energy given by
Eq. (53). The ascending curve corresponds to the algebraic
sum of Ein = −

R

Pindu and Eout =
R

Poutdu. Thus, in
accordance with Eq. (56), the horizontal curve represents the
global conservation of energy.

For initial data of the form (65) with ℓ = 0, 1, 2, Fig. 11
shows that energy is conserved in the linear regime. It
is immediately clear from the graph that the energy con-
tained on the initial slice is larger the larger the value of
ℓ. In all cases energy is clearly conserved, however, we
have seen also that if the resolution is not sufficient for
a given ℓ, this fact shows up clearly in the graph of en-
ergy conservation. Thus, we can use energy conservation,
as well as the results from running the same initial data
on the radial code, to debug and calibrate the nonlinear
code, as well as to estimate the evolution time needed
and its computational requirements. From Fig. 11 alone
the reader might be left to guess as to the extent of the
deviation of the total energy from a straight line, since
that deviation is clearly so small that it does not show
up in the plot for any of three simulations reported in
Fig. 11. Fig. 12 shows the variation in the energy bal-
ance ∆Σ(u), defined as the percentage variation in Σ(u)
relative to the initial value, Σ(u0), i.e.

∆Σ = (Σ(u)/Σ(0)− 1)× 100, (66)

It can be seen from Fig. 12 that the relative change
∆Σ(u) stays below 0.2% during the simulation. We will
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FIG. 12: Percentage variation in Σ(u) with respect to Σ(0) as
a function of Bondi time for ℓ = 0 (circles), ℓ = 1 (squares),
and ℓ = 2 (triangles). The graph shows that energy is con-
served to within less than 0.2% of the energy content of the
initial surface.
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FIG. 13: Energy content E(u) as a function of Bondi time
for: ℓ = 0 (circles), ℓ = 1 (squares), ℓ = 2 (diamonds), ℓ = 3
(triangles), and ℓ = 4 (stars). This calculation was done using
the grid parameters Nζ = 11 and Nx = 1001. The initial data
and boundary conditions are the same as in the convergence
test.

revisit energy conservation in the context of large resolu-
tion simulations in Sec. VIIC.
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FIG. 14: Energy flow to infinity Eout =
R

Pout(u)du as a
function of Bondi time for: ℓ = 0 (circles), ℓ = 1 (squares),
ℓ = 2 (diamonds), ℓ = 3 (triangles), and ℓ = 4 (stars). This
calculation was done using the same conditions of Fig. 13.
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FIG. 15: Energy flow into the black hole, Ein = −

R

Pin(u)du,
as a function of Bondi time for: ℓ = 0 (circles), ℓ = 1
(squares), ℓ = 2 (diamonds), ℓ = 3 (triangles), and ℓ = 4
(stars). Both curves for ℓ = 3 and ℓ = 4 saturate eventually
without crossing for u > 30. This calculation was done using
the same conditions of Fig. 13.

Fig. 13 shows the energy content E(u) as a function of
Bondi time u for a sequence of simulations with initial
data (65) with varying values of ℓ. For lower values of

ℓ (ℓ = 0, 1, 2), the energy content E(u) decays slowly at
first, then drops rather sharply, and afterwards it decays
again slowly, at a much lower rate. For higher values of
ℓ, (ℓ = 3, 4), the energy decays approximately monoton-
ically from the beginning of the simulation.
We also observe, see Fig. 14, that in general, increasing

ℓ corresponds to an increase of the energy radiated at I .
The oscillations observed in the profiles are higher the
higher the value of ℓ, as would be expected. The most
interesting observation in the analysis of energy balance
arises from Fig. 15, and is the following: for values of ℓ
from 0 to 2, the total energy flux towards the black hole
(as measured by Ein(u) as u → ∞) increases with the
value of ℓ; however, for values of ℓ ≥ 2, the total flux of
energy towards the black hole diminishes with increasing
values of ℓ. We have confirmed that this is the case with
the radial code, so this is not a non-linear effect. It is also
clear that the sudden change of energy for ℓ ≤ 2 is due
to the energy carried away by the scalar field as it falls
into the black hole. At about ℓ = 2, the radiation into
the black hole saturates, and for higher values of ℓ, i.e.
for ℓ > 2, the centrifugal potential barrier prevents much
of the field from falling into the black hole. Thus, for
the same amplitude, configurations with higher angular
momentum (larger ℓ values) carry more energy, most of
which will be radiated away and less of which will fall
into the black hole, so in that sense these configurations
are proportionally more efficient at carrying energy out
to I .

C. Large resolution simulations

In order to get a first glimpse of the type of simulations
that our framework enables us to perform, and to perform
a final calibration check of the nonlinear code, we select
initial data given by Eq. (65), with λ = 10−4, r0 = 3M ,
σ = 1

2M , ℓ = 8, m = 6, and evolve this configuration un-
til u = 30M . This simulation is performed in compacti-
fied outgoing coordinates, with the treatment of the inner
boundary as described in Sec. VIC. The plots shown are
of quantities computed at null infinity, I . The angu-
lar grid has size Nζ = 93, that is, there are 372 points
on a great circle on the sphere, while the radial grid has
Nx = 1501 points. This simulation requires 27 hours on
54 processors, for a total of 1458 processor–hours, or the
equivalent of two months of a single-processor run. It is
not by far the largest simulation we could run with our
framework: we have performed scaling studies that indi-
cate the code scales linearly well into the 4000+ processor
range, but it suffices as a demonstration of the resolution
that can be achieved and the typical turn–around times.
We assign no particular significance to the initial data
selected, other than the fact that its angular complex-
ity provides an excellent test of the code. On any large
simulation, data analysis and visualization is always a
challenge. In LEO, visualization is performed by having
each processor write its own data set at run time, the
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FIG. 16: Surface plots of χ at I for u = 2.5M (top) and
u = 30M (bottom). The parameters of the initial data are
λ = 10−4, r0 = 3M , σ = 0.5M , ℓ = 8, m = 6. The grid size
is Nζ = 93, Nx = 1501.

individual data files are then post-processed, and graphs
of the desired quantities generated with Paraview [49].
Paraview allows us to easily generate graphs of slices at
constant coordinate lines and volumetric renderings of
various fields. Of particular interest to us is the behavior
of the various metric quantities at null infinity.
Figs. 16-20 display the code variables φ, J , β, U andW

as functions on the sphere at null infinity, at u = 2.5M
and at u = 30M . In each case, the graphs show the cor-
responding field on the six cubed–sphere caps (the gap
between the caps is the actual size of the spacing be-
tween grid cells). The north pole is at the top of the fig-
ure, rotated 45 degrees towards the observer. For those
fields that are complex (and which have spin different
from zero), i.e. J , U , we display for ease of visualization
the combinations JJ̄ and UŪ , which are real and have
spin zero. Clearly visible in Fig. 16 is the m = 6 az-
imuthal dependence of the field, marked by the presence
of six maxima and minima. It is also apparent that χ
oscillates in time, as the maxima and minima alternate
between the top and bottom figures. The angular de-
pendence is preserved by the evolution, as expected, as
the only change between the two figures is in the overall
amplitude (by a factor of ≈ 25 in between the two times
shown). The graphs of JJ̄ , Fig. 17, are clearly different

FIG. 17: Surface plots of JJ̄ at I for u = 2.5M (top) and
u = 30M (bottom). The parameters of the initial data and
grid size are the same as in Fig.16.

in their angular dependence, showing the presence of var-
ious harmonics at earlier time. This can be understood
since in our initial data J(r, xA) = 0, thus J develops
from χ, i.e. J ∼ (ðφ)2, and it is not until later times
that a definite profile for J has formed. The graph of β,
Fig. 18, shows precisely the angular dependence resulting
from the contribution β,r ∼ (φ,r)

2 to the source term in
Eq. (32), and remains constant throughout the simula-
tion, up to an overall amplitude. The graphs of U and
W , Figs. 19-20, show higher order angular dependence
arising from the angular derivatives of U , which in turn
are essentially driven by the source term in the Eq. (34),
i.e. by U ∼ Q ∼ φðφ.
Fig. 21 shows again that energy is conserved during

the entire simulation. The variation in the energy balance
Σ(u) is well below 1%, thus Σ(u) is indistinguishable from
a straight line at the resolution of the graph, as noted
in Sec. VII B. To more fully appreciate to what extent
energy is conserved, the graph insert in Fig. 21 shows
the percentage variation of Σ(u), normalized to its value
at u = 0. From the graph insert we see that the total
energy varies by at most 0.025% during the simulation.
As we stated earlier, energy conservation is a requisite for
accuracy in the waveforms; note that energy is conserved
during this simulation to within tighter limits than in the
simulations of Sec. VIIA, which is due primarily to the



20

FIG. 18: Surface plots of β at I for u = 2.5M (top) and
u = 30M (bottom). The parameters of the initial data and
grid size are the same as in Fig.16.

increased angular resolution. For this simulation we took
Nζ = 93 in order to accurately resolve the higher order
harmonic angular dependence, where in Sec. VIIA we
set Nζ = 11; this amounts to (approximately) an 8-fold
increase in resolution, and for the same radial resolution,
a 64-fold increase on the computing resources required.
We would be remiss if we did not discuss at least briefly

the performance characteristics of our code. As part of
our calibration and testing, we have performed detailed
profiling studies, which we will not go into detail here.
Suffice to say that in its current configuration, the code
performs at approximately 20% of peak on the Cray XT3.
Its weak scaling is linear (that is, its performance solv-
ing progressively larger configurations, while keeping the
load per processor constant, scales linearly with the num-
ber of cores), while running on up to 4056 CPU cores on
the Cray XT3 at PSC.

VIII. CONCLUDING REMARKS AND
OUTLOOK OF FUTURE WORK

We have presented a new computational framework
(LEO), which we can use to perform large–scale, high–
resolution calculations in the context of the charac-
teristic approach in numerical relativity. This highly

FIG. 19: Surface plots of UŪ at I for u = 2.5M (top) and
u = 30M (bottom). The parameters of the initial data and
grid size are the same as in Fig.16.

parallel and easily extensible implementation has been
used to solve the model problem of a massless scalar
field minimally coupled to gravity (the three–dimensional
Einstein–Klein–Gordon problem). We have shown that
the nonlinear code thus implemented is globally second-
order convergent, and how accurately we can follow
quasi-normal mode ringing. We have studied the balance
of energy for a number of initial data sets with different
angular structure. Aside from the interesting result of
energy flow saturation through the Schwarzschild hori-
zon, the LEO framework offers a good prospect to study
new configurations beyond the linear regime and the grid
sizes used in this work.
Future directions we are currently exploring include

the application of the LEO framework to a consistent,
quasilinear, fully first–order formalism derived from [13],
and the extension of the model problem considered here
to massive scalar fields. The later case is particularly
important because it will allow us to simulate a boson
star orbiting a black hole. We will compare the per-
formance of the characteristic framework in ingoing ver-
sus outgoing null coordinates in the extraction of quasi-
normal modes, and in the study of nonlinear effects in the
neighborhood of the central black hole. The underlying
framework can be applied equally well to 3 + 1 formula-
tions of the Einstein equations in spherical coordinates,
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FIG. 20: Surface plots of W at I for u = 2.5M (top) and
u = 30M (bottom). The parameters of the initial data and
grid size are the same as in Fig.16.

in particular to a generalization to three dimensions of
the Bondi–Sachs gauge of [43], and finally to matched
3 + 1 and characteristic evolutions [42, 50, 51].
We have not addressed in the present work some out-

standing problems with the calculation of the News [30],
some of which arise from second angular derivatives of
the metric fields at I entering in the computation of the
News, a feature which can lead to substantial propaga-
tion of errors. We have observed during our simulations
that the metric fields computed at I are smooth, as
evident in Figs. 16-20 (and so are those fields which rep-
resent their angular derivatives, although these are not
shown here). It should be noted that, in our formula-
tion [8], the first angular derivatives of some fields have
been promoted to auxiliary variables, for which a hyper-
surface equation is integrated radially. (We do this for
those fields whose second angular derivatives enter in the
computation of the News). In practice, this means that
only first order angular derivatives of any of the fields
we evolve need to be computed to calculate the news. It
is possible that the cubed-sphere approach leads to sub-

stantial improvements in the computed waveforms, and
this issue remains to be addressed. Although of potential
importance for the accuracy of gravitational waveforms,
such a study lies outside the scope of the present work.

FIG. 21: Energy conservation for the simulation which gen-
erated the results shown in Figs. 16–20. The solid line cor-
responds to the energy content E(u) at successive times, the
dashed line to the sum of the energy radiated through the
inner (Ein(u)) and outer (Eout(u)) boundaries, and the dot-
dashed line to the sum, Σ(u) = E(u) + Ein(u) + Eout(u),
respectively. The insert graph shows the percentage variation
in Σ(u), relative to its final value at u = 30.
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[3] N. T. Bishop, R. Gómez, L. Lehner, M. Maharaj, and
J. Winicour, Phys. Rev. D 56, 6298 (1997), arXiv:gr-
qc/9708065.
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