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Abstract

Dirac equation written on the boundary of the Nutku helicoid space con-

sists of a system of ordinary differential equations. We tried to analyze

this system and we found that it has a higher singularity than those of

the Heun’s equations which give the solutions of the Dirac equation in the

bulk. We also lose an independent integral of motion on the boundary.

This facts explain why we could not find the solution of the system on the

boundary in terms of known functions. We make the stability analysis of

the helicoid and catenoid cases and end up with an appendix which gives

a new example where one encounters a form of the Heun equation.

PACS: 04.62.+v, 02.30.Hq

1E-mail addresses: hortacsu@itu.edu.tr, birkandant@itu.edu.tr

1

http://arxiv.org/abs/0711.0612v3


1 Introduction

Although one usually needs only different forms of the hypergeometric equa-
tion or its confluent forms to describe many different phenomena in theoretical
physics, functions with higher singularity structure are seen more and more in
the literature [1-12]. A common form is the Heun function [13], which is studied
extensively in the books by Ronveaux and Slavyanov et al [14][15], the seminal
book by Ince [16] as well as in several articles [17-20]. Although for linear equa-
tions both Ince and Slavyanov et al end their singularity analysis with Heun
type functions, sometimes equations with even more singularities are needed for
relatively simple situations, which lack some symmetries.
As an example of such a case, here we study the singularity structure of the
Dirac equations, written in the background of the Nutku helicoid solution[21],
restricted to the boundary of the helicoid. This metric was formerly studied
by Lorenz-Petzold [22]. One can study the scalar field in this background and
obtain the propagator in a closed form [23], thanks to four integrals of mo-
tion allowed by the metric. One can also write the Dirac equation and obtain
the solutions in terms of Mathieu functions [24-26]. One needs to study the
eigenvalue problem on the boundary to impose the boundary conditions in this
problem. The similar problem in the bulk, using partial differential equations,
can be solved in terms of known functions. On the boundary, we get a system
of ordinary differential equations. At first glance, this system seems to be easier
to analyze. When we investigate the system further, we find that this system
has higher form of singularities and fewer integrals of motion. These turn out
to be the reasons why we cannot express the solution in terms of the functions
cited in Ince’s book[16].
In this note, we comment on the symmetries of the new problem and study the
singularity structure of the new system. We show that one gets an equation of
higher form of singularity. Since we do not have closed solutions, we then use
stability analysis to see if this system describes a stable system. To our surprise
we find that although the answer is not affirmative for the helicoid case, we get
a limit cycle for the related catenoid solution.
Below we summarize our results. In an appendix, we show a new example where
one encounters a form of the Heun equation. This is the solution of the laplacian
in the background of the Eguchi-Hanson solution [27], trivially extended to five
dimensions.

2 Our Analysis

The Nutku helicoid metric is given as
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ds2 =
1

√

1 + a2

r2

[dr2 + (r2 + a2)dθ2 +

(

1 +
a2

r2
sin2 θ

)

dy2

−a
2

r2
sin 2θdydz+

(

1 +
a2

r2
cos2 θ

)

dz2]. (1)

where 0 < r <∞, 0 ≤ θ ≤ 2π, y and z are along the Killing directions and will
be taken to be periodic coordinates on a 2-torus [23]. This is an example of a
multi-center metric. This metric reduces to the flat metric if we take a = 0.

ds2 = dr2 + r2dθ2 + dy2 + dz2. (2)

If we make the following transformation

r = a sinhx, (3)

the metric is written as

ds2 =
a2

2
sinh 2x(dx2 + dθ2)

+
2

sinh 2x
[(sinh2 x+ sin2 θ)dy2 (4)

− sin 2θdydz + (sinh2 x+ cos2 θ)dz2].

The solutions of the Dirac equation, written in the background of the Nutku
helicoid metric, can be expressed as a special form of Heun functions [25][26].
We could reduce the double confluent Heun function obtained for the radial
equation to the Mathieu function with coordinate transformations. Mathieu
function is a related but much more studied function with similar singularity
structure. In the work cited above, [25][26], we tried to get the solution of the
little Dirac equation, the name used for the equation restricted to a boundary
of the helicoid. We needed this solution also to be able to calculate the index of
the differential operator. For a fixed value of the radial coordinate we had only
a coupled system of ordinary differential equations, which, in general, should be
much simpler to solve than the coupled system of partial differential equations
obtained for the full Dirac equation, written for the bulk. We were successful to
obtain the solution in this latter case in terms of Mathieu functions. We were
not able to identify the solutions for the little Dirac equation , though.
The first thing we check is whether we lose any of the three Killing vectors and
one Killing tensor. For the metric in question, one has three integrals of motion,
[23] namely py, pz and gµνpµpν = µ2, namely

(

dSx

dx

)2

+

(

dSθ

dθ

)2

+a2
(

p2y + p2z
)

sinh2 x−µ
2 a2

2
sinh 2x+ a2 (cos θ py + sin θpz)

2
= 0,

(5)
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and an extra integral of motion, the Killing tensor [23] ,

K = −p2θ − a2(cosθpy + sinθpz)
2 (6)

which gives us the angular equation for a fixed value of the constant λ . See
eq.s (46) and (47) of [23]. When one restricts the solution to a fixed value of
the radial coordinate, the value of gµνpµpν is not an independent constant of
motion from the other two Killing vectors and the Killing tensor.
Trying to see the effect of this result on our problem, we investigate the singu-
larity structure of the equation we get for the little Dirac operator. Here we
study the simplest case, where the eigenvalue λ is equal to zero, since the an-
swer to our problem is already apparent here. For this case, instead of getting
a system of four coupled equations we get coupling only between two of them
at a time. When we analyze the system by reducing them to a second order
equation for a single dependent variable, we find an operator with two irregular
and one regular singularities, which is one more than allowed for the equations
considered among the Heun functions. The double confluent Heun function, the
solution one obtains for the full Dirac equation, has two irregular singularities,
missing the extra regular singularity of the case studied here.
To make our discussion concrete we explicitly perform the calculation in the
next section.

2.1 Singularities

The Dirac equation written in the background of the Nutku helicoids metric is
written as

(∂x + i∂θ)Ψ3 + iak[cos(θ − φ+ ix)]Ψ4 = 0, (7)

(∂x − i∂θ)Ψ4 − iak[cos(θ − φ− ix)]Ψ3 = 0, (8)

(−∂x + i∂θ)f1 + iak[cos(θ − φ+ ix)]f2= 0, (9)

(−∂x − i∂θ)f2 − iak[cos(θ − φ− ix)]f1 = 0. (10)

These equations have simple solutions [24] which can also be expanded in terms
of products of radial and angular Mathieu functions [28][25]. Problem arises
when these solutions are restricted to boundary [26].
To impose these boundary conditions we need to write the little Dirac equation,
the Dirac equation restricted to the boundary, where the variable x takes a fixed
value x0. We choose to write the equations in the form,

√
2

a
{i d
dθ

Ψ3 + ikacos(θ − φ+ ix0)Ψ4} = λf1, (11)

√
2

a
{−i d

dθ
Ψ4 − iakcos(θ − φ− ix0)Ψ3} = λf2, (12)

√
2

a
{−i d

dθ
f1 − iakcos(θ − φ+ ix0)f2} = λΨ3, (13)
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√
2

a
{i d
dθ
f2 + iakcos(θ − φ− ix0)f1} = λΨ4. (14)

Here λ is the eigenvalue of the little Dirac equation. We take λ = 0 as the
simplest case. The transformation

Θ = θ − φ− ix0 (15)

can be used. Then we solve f1 in the latter two equations in terms of f2:

− d2

dΘ2
f2−tanΘ

d

dΘ
f2+

(ak)2

2
[cos(2Θ) cosh(2x0)−i sin(2Θ) sinh(2x0)+cosh(2x0)]f2 = 0

(16)
When we make the transformation

u = e2iΘ, (17)

the equation reads,

{4(u+1)u[u
d2

du2
+
d

du
]−2iu(u−1)

d

du
+
(ak)2

2
(u+1)[ue−2x0+

1

u
e2x0+cosh(2x0)]}f2 = 0.

(18)
This equation has irregular singularities at u = 0 and∞ and a regular singularity

at u = −1. If we try a solution in the form
∞
∑

n=−∞

anu
n around the irregular

singularity u = 0 we end up with a four-term recursion relation as

an−1[4(n
2 − 2n+ 1)− 2i(n− 1) +

(ak)2

2
(
3

2
e−2x0 +

1

2
e2x0)]

+an[4n
2 + 2in+

(ak)2

2
(
3

2
e−2x0 +

1

2
e2x0)] + (19)

an−2[
(ak)2

2
e−2x0] + an+1[

(ak)2

2
e2x0 ]

As it is known, in the Heun equation case, this kind of series solution gives a
three-term relation [29].
If we search for a solution of the Thomé type we may try a solution of the form

f2 = e
A
√

u g(u). This form does not allow us to get a Taylor series expansion
around the irregular point u = 0 [5] [30].
If we try a series solution around the regular singularity at u = −1 as
∞
∑

n=0
an(u+ 1)n+α we find a relation between five consecutive coefficients for the

solution. Therefore, we may conclude that the solution of this equation cannot
be written in terms of Heun functions or simplier special functions.
To check this further, we first set the coefficient of 1

u
term in equation 18 equal

to zero to change our irregular singularity at zero to a regular one. Then we
keep this term and discard the ue−2x0 term to reduce the singularity structure of
infinity. In both cases one can check that the solution can be expressed in terms
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of confluent Heun functions. This shows that reducing one of the singularities
yields a Heun function. Thus, we conclude that the full equation 18 is not one of
the better known equations in the literature, which are included in the computer
packages like Maple, cited in the seminal book by Ince [16].
To investigate the type of our equation we try to get a confluent form of a new
equation,

y′′(z) + (
1− µ0

z
+

1− µ1

z + 1
+

1− µ2

z − a
)y′(z) +

β0 + β1z + β2z
2

z2(z − a)
y(z) = 0 (20)

with regular singularities at 0, −1 and a and an irregular singularity at infinity.
This equation differs from the generalized Heun equation [7][17]:

y′′(z) + (
1− µ0

z
+

1− µ1

z + 1
+

1− µ2

z − a
− α)y′(z) +

β0 + β1z + β2z
2

z(z + 1)(z − a)
y(z) = 0 (21)

which also has regular singularities at 0, −1 and a and an irregular singularity
at infinity. These two equations both have four-term recursion relations. They,
however, have different singularity ranks according to the classification given in
[31]. When we put a = 0 in equation 20, we get

y′′(z) + (
2− µ0 − µ2

z
+

1− µ1

z + 1
)y′(z) +

β0 + β1z + β2z
2

z3
y(z) = 0. (22)

We get a singularity structure as a regular singularity at −1 and two irregular
singularities at zero and infinity like the equation 18.
Both equations 18 and 22 have four-term recursion relations when a Laurent
power series solution is attempted. We may name this equation as the confluent
form of the equation 20. It is in the same form as our original equation rewritten
as

{ d
2

du2
+ [

1

u
(1+

i

2
)+

i

u+ 1
]
d

du
+

(ak)2

2
[
e−2x0

u
+
e2x0

u3
+

cosh(2x0)

u2
]}f2 = 0. (23)

Both of these equations have s-rank multisymbols {1, 32 , 32} referring to the sin-
gularities at {−1, 0,∞} [31].
We could not obtain a confluent equation similar to the equation 18 from the
generalized Heun equation 21. If we simply put a = 0 in this equation we get the
confluent Heun solution. We can obtain an equation with the same singularity
structure as our equation only if we write the equation,

y′′(z)+(
1− µ0

z
+
1− µ1

z + 1
+
1− µ2

z − a
)y′(z)+

β−1

z
+ β0 + β1z + β2z

2

z(z + 1)(z − a)
y(z) = 0, (24)

and make a approach zero. Then we end up with an equation having the same
singularity structure as in equation 18.
If we want to compare equation 18 with equation 21 we have to form a confluent
form of the latter equation. To coalesce the singularities at zero, we make a
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detour and then use standart techiques [32]. We first translate the singularity
at zero to a singularity at b,

y′′(z)+(
1− µ0

z − b
+
1− µ1

z + 1
+
1− µ2

z − a
−α)y′(z)+ β0 + β1z + β2z

2

(z − b)(z + 1)(z − a)
y(z) = 0 (25)

This equation has regular singularities at z = −1, a, b and an irregular singu-
larity at infinity. We make the transformation z = 1

v
. Then, the equation 25

becomes,

y′′(v) + (
2 − (1− µ0)− (1− µ1)− (1− µ2)

v
+
α

v2

−1− µ0

1
b
− v

− 1− µ1

v + 1
− 1− µ2

1
a
− v

)y′(v)

+
β0

v
+ β1

v2 + β2

v3

(1 − bv)(1 + v)(1 − av)
y(v) = 0 (26)

We set µ0 = −µ1 = 1/b = 2/a = ǫ and take the limit ǫ→ ∞. Then we transform
back to the original variables using v = 1

z
to obtain

y′′(z) + (
3− µ1

z
− α− µ1 − 1

z(z + 1)
+

1

z2
)y′(z) +

β0 + β1z + β2z
2

z2(z + 1)
y(z) = 0 (27)

This equation is a confluent form of the equation 25. It has a regular singularity
at−1 and two irregular singularities at zero and infinity and a four-way recursion
relation when expanded around zero using a Laurent expansion. This equation
has s-rank multisymbols {1, 2, 2} referring to singularities at {−1, 0,∞} [31].
Here we get the rank-2 irregular singularities at zero and infinity only from the
coefficient of the first derivative whereas in equation 18 and in equation 22 the
coefficient of the term without derivatives gives us these singularities. They
also have different ranks. Even if we set α = 0 in equation 27 then we get
rank={1, 2, 32} which is different from the rank of our original equation. Hence,
our equation 18 may be a confluent form only of a variation of the equation 21,
like equation 24.

2.2 Stability analysis for the little Dirac Equation

The little Dirac equation is a system of linear differential equations with periodic
coefficients. Then we can write the system as [33][34]:

∂θψ = P (θ)ψ (28)

Here P (θ+τ) = P (θ) and τ is the period of the coefficients. (τ 6= 0). According
to Bellman, if ψ(0) = I , we can write

ψ(θ) = Q(θ)eBθ. (29)

7



The matrix Q(θ) is also periodic with the period τ . Then we have

ψ(θ + τ) = Q(θ + τ)eBθeBτ

= Q(θ)eBθeBτ (30)

= ψ(θ)eBτ .

We can define eBτ ≡ C and use

C = ψ(θ)−1ψ(θ + τ) (31)

to obtain C. The Jordan normal form of C, T being the transformation matrix,

C = T







L1

. . .

Lr






T−1 (32)

gives us the B matrix:

B =
1

τ
lnL (33)

The eigenvalues of B give us the characteristic roots. We will use these charac-
teristic roots with different parameters in our stability analysis. The character-
istic roots are given by αi, (i = 1..4).

Table 1. The change in the characteristic roots with respect to parameters
(helicoid case)

a k x0 λ
real parts of the
characteristic roots (×2π)

signs of the
characteristic roots

1 1 1 1 α1,2,3,4 = 9.25029 + +−−
0.5 ” ” ” α1,2,3,4 = 4.03926 ”
0.8 ” ” ” α1,2,3,4 = 7.2163 ”
1.1 ” ” ” α1,2,3,4 = 10.2542 ”
1.5 ” ” ” α1,2,3,4 = 14.2215 ”
1 0.5 1 1 α1,2,3,4 = 5.8327 ”
” 0.8 ” ” α1,2,3,4 = 7.75421 ”
” 1.1 ” ” α1,2,3,4 = 10.0319 ”
” 1.5 ” ” α1,2,3,4 = 13.2745 ”
1 1 0.5 1 α1,2,3,4 = 6.56206 ”
” ” 0.8 ” α1,2,3,4 = 7.91586 ”
” ” 1.1 ” α1,2,3,4 = 10.0632 ”
” ” 1.5 ” α1,2,3,4 = 14.4648 ”
1 1 1 0.5 α1,2,3,4 = 8.30164 ”
” ” ” 0.8 α1,2,3,4 = 8.81342 ”
” ” ” 1.1 α1,2,3,4 = 9.49249 ”
” ” ” 1.5 α1,2,3,4 = 10.5888 ”
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Ȯur calculations indicate that f1 and f2 solutions are not stable (positive char-
acteristic root) while, Ψ3 and Ψ4 solutions are stable (negative characteristic
root). As it is seen in Table 1, when we keep all the other parameters constant
and vary only a, the value of the roots are influenced most, whereas the effect
of the variation in the value of λ changes the value of the roots least. We also
find that when these parameters exceed unity in absolute value, we encounter
inconsistencies in the numerical values. The separation between consecutive
roots increase and some negative roots go to positive values for large values of
the parameters. If we keep the values of the parameters in the range [−1, 1], we
seem to have no such problems.
The periodicity of the defined Q can be checked using numerical means.
We use

ψ(θ + τ) = Q(θ + τ)eBθC (34)

and for θ = 0, ψ(θ) = Q(θ)eBθ to give,

ψ(τ)C−1 = Q(τ) = Q(0) = ψ(0) = I. (35)

We check numerically that this equation is satisfied; hence, Q is periodic.
For the catenoid case, one replaces a with ia in the metric. The same stability
procedure is performed for this case and we find the characteristic roots given
in the Table 2.

Table 2. The change in the characteristic roots with respect to parameters
(catenoid case)
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a (× i) k x0 λ characteristic roots (×2π)
signs of the
characteristic roots

1 1 1 1
α1,2 = −5.84543× 10−8 + 2.08426i
α3,4 = −6.40967× 10−8 + 0.72266i +−+−

0.5 ” ” ”
α1,2 = −2.40553× 10−7 − 1.19724i
α3,4 = −2.49225× 10−7 − 2.3721i −+−+

0.8 ” ” ”
α1,2 = −5.63046× 10−7 − 0.233835i
α3,4 = −5.78178× 10−7 − 2.42696i −+−+

1.1 ” ” ”
α1,2 = −7.82856× 10−7 + 2.9982i
α3,4 = −7.88358× 10−7 − 0.186969i +−+−

1.5 ” ” ”
α1,2 = −7.53539× 10−7 − 0.526163i
α3,4 = −7.7255× 10−7 − 2.35978i −+−+

1 0.5 1 1
α1,2 = 3.49081× 10−8 + 0.661356i
α3,4 = 2.02794× 10−8 − 1.31726i +−−+

” 0.8 ” ”
α1,2 = −4.04957× 10−7 + 0.864554i
α3,4 = −4.22823× 10−7 + 2.3638i +−+−

” 1.1 ” ”
α1,2 = −2.2577× 10−7 + 2.7328i
α3,4 = −2.30929× 10−7 + 0.120058i +−+−

” 1.5 ” ”
α1,2 = −1.33916× 10−7 + 0.715427i
α3,4 = −1.38904× 10−7 − 2.75007i +−−+

1 1 0.5 1
α1,2 = −4.68625× 10−8 − 0.232525i
α3,4 = −5.34771× 10−8 − 2.02431i −+−+

” ” 0.8 ”
α1,2 = −4.69901× 10−7 − 1.06977i
α3,4 = −4.72986× 10−7 − 2.11709i −+−+

” ” 1.1 ”
α1,2 = −6.06425× 10−7 − 2.74153i
α3,4 = −6.14188× 10−7 − 0.143986i −+−+

” ” 1.5 ”
α1,2 = −4.26375× 10−7 + 0.299098i
α3,4 = −4.4214× 10−7 + 1.55822i +−+−

1 1 1 0.5
α1,2 = −4.67773× 10−7 + 0.761149i
α3,4 = −4.69627× 10−7 + 0.741915i +−+−

” ” ” 0.8
α1,2 = −2.82256× 10−7 − 1.5208i
α3,4 = −2.86571× 10−7 − 0.79892i −+−+

” ” ” 1.1
α1,2 = −4.14479× 10−7 + 2.38047i
α3,4 = −4.1985× 10−7 + 0.650337i +−+−

” ” ” 1.5
α1,2 = −3.33914× 10−7 − 2.62503i
α3,4 = −3.42067× 10−7 − 0.145628i −+−+

We see that the real parts of these roots are compatible with assigning to value
zero within numerical errors. This corresponds to a limit cycle[35][36].

3 Conclusion

Here we performed a systematic analysis of the Dirac equation restricted to the
boundary when it is written in the background of the Nutku helicoid solution

10



[23] We find that the resulting system of ordinary differential equations has a
singularity which is higher than those of the Heun functions which are solutions
for the bulk. We also lose an independent integral of motion. This fact explains
why we could not obtain the solution of the system on the boundary in terms
of well known functions.
The stability analysis we performed shows that although this system is not
stable, a related system, the catenoid solution is. We can, thus, give a meaning
to its solutions, although we can not get explicit solutions for the little Dirac
equation obtained from it too.

4 Appendix: Scalar field in the background of

the extended Eguchi-Hanson solution

To go to five dimensions, we can add a time component to the Eguchi-Hanson
metric [27] so that we have

ds2 = −dt2 + 1

1− a4

r4

dr2 + r2(σ2
x + σ2

y) + r2(1− a4

r4
)σ2

z (36)

where

σx =
1

2
(− cos ξdθ − sin θ sin ξdφ) (37)

σy =
1

2
(sin ξdθ − sin θ cos ξdφ) (38)

σz =
1

2
(−dξ − cos θdφ). (39)

This is a vacuum solution.
If we take

Φ = eikteinφei(m+ 1

2
)ξϕ(r, θ), (40)

we find the scalar equation as

Hϕ(r, θ) = (
r4 − a4

r2
∂rr +

3r4 + a4

r3
∂r + k2r2 +

4a4m2

a4 − r4
+

4∂θθ + 4 cot θ∂θ +
8mn cos θ − 4(m2 + n2)

sin2 θ
)ϕ(r, θ). (41)

If we take ϕ(r, θ) = f(r)g(θ), the solution of the radial part is expressed in
terms of confluent Heun (HC) functions.

f (r) =
(

−a4 + r4
)

1

2
m

HC

(

0,m,m,
1

2
k2a2,

1

2
m2 − 1

4
λ− 1

4
k2a2,

a2 + r2

2a2

)
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+
(

a2 + r2
)−

1

2
m (

r2 − a2
)

1

2
m
HC

(

0,−m,m, 1
2
k2a2,

1

2
m2 − 1

4
λ− 1

4
k2a2,

a2 + r2

2a2

)

(42)

The angular solution is in terms of hypergeometric solutions.

g (θ) =
1

sin θ
{
√

2− 2 cos (θ)

(

1

2
cos (θ)− 1

2

)
1

2
m (

1

2
cos (θ)− 1

2

)

−
1

2
n

[(2 cos (θ) + 2)
1

2
−

1

2
n− 1

2
m

× 2F1 ([−n+
1

2

√
λ+ 1 +

1

2
, −n− 1

2

√
λ+ 1 +

1

2
], [1− n−m],

1

2
cos (θ) +

1

2
)

(43)

+ (2 cos (θ) + 2)
1

2
+ 1

2
n+ 1

2
m

×2F1 ([m+
1

2

√
λ+ 1 +

1

2
,m− 1

2

√
λ+ 1 +

1

2
], [1 + n+m],

1

2
cos (θ) +

1

2
)]}

If the variable transformation r = a
√
coshx is made, the solution can be ex-

pressed as

f (x) =
1

sinhx
{(sinh (x))m+1

HC

(

0,m,m,
1

2
k2a2,

1

2
m2 − 1

4
λ− 1

4
k2a2,

1

2
cosh (x) +

1

2

)

+(2 cosh (x) + 2)
−

1

2
m+ 1

2 (2 cosh (x)− 2)
1

2
m+ 1

2 (44)

×HC

(

0,−m,m, 1
2
k2a2,

1

2
m2 − 1

4
λ− 1

4
k2a2,

1

2
cosh (x) +

1

2

)

}.

We tried to express the equation for the radial part in terms of u = a2+r2

2a2 to
see the singularity structure more clearly. Then the radial differential operator
reads

4
d2

du2
+ 4

(

1

u− 1
+

1

u

)

d

du
+ k2a2

(

1

u− 1
+

1

u

)

+
m2

u2(1− u)2
. (45)

This operator has two regular singularities at zero and one, and an irregular
singularity at infinity, the singularity structure of the confluent Heun equation.
This is different from the hypergeometric equation, which has regular singular-
ities at zero, one and infinity.
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