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Gravitational Lensing Analyzed by Graded Refractive Indexof Vacuum
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(Dated: November 13, 2018)

We found strong similarities between the gravitational lensing and the conventional optical lensing. The
similarities imply a graded refractive index description of the light deflection in gravitational field. We got
a general approach to this refractive index in a static spherically symmetric gravitational field and obtained its
exterior and interior solutions exactly through the general relativity. In weak field case, the two solutions come to
a simple unified exponential function of the gravitational potential. With these results, the gravitational lensing
can be analyzed in a convenient optical way. Especially, thelong puzzling problem of the central image missing
can be solved easily. We also pointed out that the graded refraction property of the gravitational spacetime is
related to the vacuum influenced by the gravitational matter.

PACS numbers: 98.62.Sb, 42.25.Bs, 42.50.Lc

I. INTRODUCTION

Gravitational lensing is an effect predicted by general rel-
ativity [1, 2, 3]. It has been now a powerful tool for the
study of the so intractable problems in astrophysics and cos-
mology such as the value of Hubble constant [4], the physics
of quasars [5], the mass and mass distribution of a galaxy or
a galaxy cluster[2], the large scale structure of the universe
[6, 7], the existence of dark matter [8, 9, 10], the nature of
dark energy [11, 12] and so on.

It is told that, the light deflection of a gravitational lens is
caused by the gravity or in Einstein’s words the curved space-
time, while the light deflection of an optical lens is caused by
the variance of refractive index of the medium. But is there
any deeper similarity between the two lenses besides the de-
flection of light? Can we analyze the gravitational lensing as
the conventional optical one?

In fact, people have long tried an optical description of the
lensing effect. In 1920, Eddington [13] suggested that the light
deflection in solar gravitational field can be conceived as a
refraction effect of the space in a flat spacetime. The idea
was further studied by Wilson [14], Dicke [15], Felice [16],
and Nandiet al. [17, 18, 19]. Recently, this thought of light
deflection has been investigated further by Puthoff [20, 21],
Vlokh [22], Ye and Lin [23] etc. In Puthoff’s paper, the light
deflection is related to the vacuum polarization in gravitational
field. Vlokh discussed further this light refraction effect. Ye
and Lin used the refractive index to simulate the gravitational
lensing.

The purpose of this paper is, on the basis of the general rela-
tivity, to find the similarities between the gravitational lensing
and the optical lensing, and to analyze the former in a sim-
ple optical way. The paper is organized as follows: in Sec. II,
we point out the strong similarities between the two lenses and
suggest a refractive index analysis of the gravitational lensing;
in Sec. III, we find the exact solutions of this refractive index
for outside and inside the lens matter system respectively;in
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Sec. IV, we make a weak field approximation; in Sec. V, we
apply the obtained result to the problem of gravitational lens-
ing, especially to the central image missing problem puzzled
physicists for a long time [24]; in Sec. VI, we make a discus-
sion on the refraction property of the gravitational spacetime;
finally in Sec. VII, we draw our conclusions.

II. SIMILARITIES BETWEEN THE TWO LENSES

A. Similarity in Fermat’s principle

Landau and Lifshitz have derived from the general relativity
the Fermat’s principle for the propagation of light in a static
gravitational field as follows [25]:

δ

∫

g00
−1/2dl = 0, (1)

wheredl is the length element of the passing light measured
by the local observer,g00 is a component of the metric tensor
gµν, g−1/2

00 dl corresponds to an element of optical path length.
g00
−1/2 = dt/dτ, wheredτ represents the time interval mea-

sured by the local observer for a light ray passing through the
lengthdl, while dt is the corresponding time measured by the
observer at infinity. Eq. (1) could then be rewritten as

δ

∫

dt
dτ

dl
ds

ds = 0, (2)

whereds is the length element measured by the observer at
infinity, corresponding to the local lengthdl.

For an optical lens, the light propagation satisfies the con-
ventional Fermat’s principle

δ

∫

nds = 0, (3)

wheren is the refractive index of the medium.
The similarity between Eq. (2) and Eq. (3) indicates that

if we set the scale of length and time at infinity as a stan-
dard scale for the whole gravitational space and time, the light
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FIG. 1: Light deflection in a gravitational lens.

propagating in a gravitational lens could then be regarded as
that in an optical medium with the refractive index being

n =
dt
dτ

dl
ds
, (4)

wheredt/dτ relates to the curved time anddl/ds relates to the
curved space.

B. Similarity in light deflection formula

First we consider the light deflection in a gravitational lens.
For a static and spherically symmetric lens matter system, the
metric has the standard form

dT 2 = B(R)c2dt2 − A(R)dR2 − R2(dθ2 + sin2θdφ2), (5)

whereR is the radial coordinate of the metric.
The light deflection is shown in Fig. 1, where curve P0P rep-

resents the light ray,M is the mass of the lens matter,θ is the
angular displacement of the coordinate radiusR, β is the angle
between the coordinate radiusR and the tangent of the ray at
point P. The general relativity gives the angular displacement
as follows [26, 27, 28]:

dθ =
dR

R/
√

A(R)

√

[

R/
√

B(R)
R0/
√

B(R0)

]2
− 1

, (6)

whereR0 represents the radial coordinate at the nearest point
P0 .

Now we consider the light deflection in a medium of a
spherically symmetric refractive indexn. According to the
Fermat’s principle, the light propagation in such a lens satis-
fies the following relation [29]:

nr sinβ = constant, (7)

wherer, differing from the above said coordinate radiusR,
is the distance from the light to the center of the lens. The
relation can be rewritten as

nr sinβ = n0r0, (8)

wherer0 andn0 represent the radial distance and the refractive
index at the point closest to the center respectively.

Since

tanβ =
rdθ
dr
, (9)

associating with Eq. (8) reaches

dθ =
dr

r
√

(

nr
n0r0

)2
− 1
. (10)

Eq. (10) and Eq. (6) show another strong similarity between
the two lenses, which once more indicates that there could be
a refractive index analysis of the gravitational lensing. The
similarity tells us that this refractive index can be figuredout
through the following two equations:

dR

R/
√

A(R)
=

dr
r
, (11)

n =
R

r
√

B(R)
. (12)

For the detailed derivation of the above two equations, see
the APPENDIX.

III. EXACT SOLUTIONS OF THE REFRACTIVE INDEX

A. Exterior solution

The coefficients A(R) and B(R) in Eqs. (11) and (12)
can be obtained from the Schwarzschild solutions. The
Schwarzschild exterior solution (R > RL, RL is the radial co-
ordinate at the surface of the lens matter system) gives [28]:

A(R) =

(

1− 2GM
Rc2

)−1

, (13)

B(R) = 1− 2GM
Rc2
, (14)

whereG is the gravitational constant,c is the velocity of light
in vacuum without the influence of gravitational field.

Substituting Eq. (13) into Eq. (11) gives

r
k
=

√

1− 2GM
Rc2 + 1

2GM
Rc2

− 1
2
, (15)

wherek is a constant. Since in the Schwarzschild metric, the
ratio r/R→ 1 at infinity, we have

k =
GM
c2
. (16)

Thus Eq. (15) gives

r =
R
2















√

1− 2GM
Rc2

+ 1− GM
Rc2















, (17)

or

R = r
(

1+
GM
2rc2

)2

. (18)
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Then through Eqs. (12), (14) and (17), we get the exterior
refractive index

n =
1

1
2

(√

1− 2GM
Rc2 + 1− GM

Rc2

) √

1− 2GM
Rc2

, (19)

or through Eqs. (12), (14) and (18), we get

n =
(

1+
GM
2rc2

)3 (

1− GM
2rc2

)−1

, (20)

which is exactly in agreement with that given by Felice in a
different way [16].

B. Interior solution

The Schwarzschild interior solution (R 6 RL) gives [28]

A(R) =

(

1−
2GM(R)

Rc2

)−1

, (21)

B(R) = exp














−
∫ ∞

R

2G
R2c2

[

M(R) +
4πR3p(R)

c2

] [

1− 2GM(R)
Rc2

]−1

dR















,(22)

whereM(R) =
∫ R

0
4πR2ρ(R)dR, ρ(R) is the mass density, and

for an ordinary lens matter system, the pressurep(R) = 0. So

B(R) = exp















−
∫ RL

R

2GM(R)
R2c2

[

1− 2GM(R)
Rc2

]−1

dR















exp















−
∫ ∞

RL

2GM(RL)
R2c2

[

1− 2GM(RL)
Rc2

]−1

dR















. (23)

Substituting Eq. (21) into Eq. (11), and considering the re-
lation between the radial coordinatesrL andRL at the surface
determined by Eq. (17), we obtain

r =
RL

2













√

1− 2GM(RL)
RLc2

+ 1− GM(RL)
RLc2













exp

























−
∫ RL

R

dR

R
√

1− 2GM(R)
Rc2

























. (24)

Then combining Eqs. (12), (23) and (24) gives the interior
refractive index

n = nL
R
RL

exp

























∫ RL

R

dR

R
√

1− 2GM(R)
Rc2

























exp















∫ RL

R

GM(R)
R2c2

[

1− 2GM(R)
Rc2

]−1

dR















, (25)

where

nL =
1

1
2

(√

1− 2GM(RL )
RLc2 + 1− GM(RL )

RLc2

) √

1− 2GM(RL )
RLc2

, (26)

is the refractive index at the surface.

IV. WEAK FIELD APPROXIMATION

For an ordinary lens matter system, the gravitational field is
not extremely strong, i.e.,GM/Rc2 or GM/rc2 << 1, then we
have:

The exterior refractive index

n � exp

(

2GM
rc2

)

= exp

(

−2Pr

c2

)

, (27)

wherePr = −GM/r is the gravitational potential at positionr
outside the lens matter system.

The above expression of graded refractive index has been
verified in the problem of light deflection in the solar gravita-
tional field [23], with the result being in agreement with that
given by the general relativity [3, 28] and the actual measure-
ments [30].

And the interior refractive index

n � exp

[

2GM(rL)
rLc2

+

∫ rL

r

2GM(r)
r2c2

dr

]

= exp

(

−2Pr

c2

)

, (28)

wherePr = −GM(rL)/rL −
∫ rL

r
[GM(r)/r2]dr is the gravita-

tional potential at positionr inside the lens matter system.
In general, we have the refractive index profile both outside

and inside the lens matter system in weak field case as follows:

n = exp

(

−2Pr

c2

)

. (29)

The above result is derived from a single static spherically
symmetric lens matter system. For a multi-body system, the
total gravitational potential will be the superposition ofeach
potential; therefore, the refractive index can be expressed as

n = exp

(

−2Pr

c2

)

= exp

[

−2(Pr1 + Pr2 + Pr3 + · · · )
c2

]

= n1n2n3 · · · , (30)

wherePr1, Pr2, Pr3, · · · andn1, n2, n3, · · · are the gravitational
potential and the corresponding refractive index caused by
each gravitational body respectively. This expression maybe
extended to arbitrary distributed matter systems. Fig. 2 shows
such an example, where the brighter cyanine represents the
higher value of refractive index, and the closed curves are the
isolines — the denser the lines, the quicker the change of re-
fractive index.

V. APPLICATION TO GRAVITATIONAL LENSING

Eq. (29) and Eq. (30) are the main results of this paper,
which provide a convenient optical way to describe the effect
of gravitational lensing. Considering a sourceS and a lensL
of massM, the light emitted fromS is bent due to the gravi-
tational field of the lens. The bent light could be figured out
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FIG. 2: Refractive index profile of a gravitational lens composed of
three celestial bodies of different mass.

FIG. 3: A computer simulation of gravitational lensing.

through Eq. (7) and Eq. (29). Drawing the extension line of
the light from the observerO, the apparent (observed) posi-
tion of the source image could then be found out. The result
is shown in Fig. 3, whereI1, I2 represent the upper and lower
images respectively.

The refractive index given by Eq. (29) could also be applied
in studying the formation of the central image, which is pre-
dicted by the general relativity but not observed in almost all
known cases of gravitational lensing. This problem has puz-
zled people for many years [24].

For the central imaging, the refractive index profile inside
the lens matter system should also be considered. As a model
for discussion, we suppose a matter system (for example, a
galaxy or a cluster of galaxies) of radiusrL with a density
distribution given by

ρ = ρc















1−
(

r
rL

)k














, (31)

whereρc is the central density of the system, 06 r 6 rL,
k > 0. The densityρ decreases with the distancer from the
center of mass; the decreasing rate depends on the parameter
k. This model gives the distribution of gravitational potential

FIG. 4: Ray tracing results for the central imaging. (a) Tracing the
central imaging ray for a given lensing system; (b) Tracing the central
imaging rays for lenses of different mass.

as

Pro = −4πρcG
k

3(3+ k)

r3
L

r
, (32)

Pri = −4πρcG















k
2(2+ k)

r2
L −















1
6
−

1
(2+ k)(3+ k)

(

r
rL

)k














r2















,(33)

for outside (r > rL) and inside (r 6 rL) the matter system
respectively.

The refractive index profile outside and inside the lens mat-
ter system then reads

no = exp













8πρcG
c2

k
3(3+ k)

r3
L

r













, (34)

ni = exp














8πρcG
c2















k
2(2+ k)

r2
L −















1
6
− 1

(2+ k)(3+ k)

(

r
rL

)k












r2





























.(35)

Fig. 4 (a) shows a ray tracing result for the imaging of a
gravitational lens with the above described refractive index
profile. In the figure, only three paths of ray (indicated by the
three thick lines) could pass through the observerO, forming
the upper, lower and central images respectively. From the fig-
ure, we find that, the larger the distanceOL from the observer
to the lens body, the closer the central imaging ray to the lens



5

center. In the same way, the larger the distanceS L from the
source to the lens body, the closer the central imaging ray to
the lens center. This can be easily seen by interchanging the
source and observer in the figure.

Fig. 4 (b) shows the dependence of the ray position of the
central image on the lens mass. The lens mass is expressed
by M = 4

3πr
3
Lρck/(3+ k), which can be derived from Eq. (31).

The four curved lines in the figure represent respectively the
four central imaging rays in four lenses of different mass. The
mass ratio of the corresponding lenses is 2 : 3 : 4 : 5 from
bottom to top. We find that, when the massM increases, the
central imaging ray will be closer to the lens center.

This imaging characteristic of Fig. 4 can be used to explain
the missing of the central image of gravitational lensing. In
practical observations, the distancesOL, S L and the massM
are all in astronomical scale; therefore, the light of central
imaging is extremely close to the lens center. For a lens mat-
ter system denser in the center, the possibility of the central
imaging light to be blocked increases. The relatively longer
inner path of the central imaging ray adds the possibility of
scattering and absorption on the way. Besides, the central im-
age, if still exists, is relatively faint compared with the bright
lens core. All these factors lead to little chance of finding the
central image. This accounts for the central image missing in
almost all observed cases of gravitational lensing.

VI. DISCUSSION ON THE REFRACTION PROPERTY OF
THE GRAVITATIONAL SPACETIME

Though we have successfully given a refractive index de-
scription of the gravitational lensing and solved a puzzling
problem of it, there is still a doubt about the refraction prop-
erty of the gravitational spacetime as shown in Eq. (4). The
doubt can be eliminated if we consider that, around the grav-
itational matter, there exists a special medium — vacuum,
which may have a graded refractive index in gravitational
field.

A graded vacuum refractive index needs at least an influ-
ence of matter or field on the vacuum. It is exhilarating to
see that the recent theoretical and experimental progresses in
quantum vacuum have provided a strong support to such an in-
fluence. Ahmadi and Nouri-Zonoz pointed out that under the
influence of electromagnetic field, vacuum can be polarized,
which has led to astonishingly precise agreement between pre-
dicted and observed values of the electron magnetic moment
and Lamb shift, and may have effects on the photon propa-
gation [31]. Rikken and Rizzo considered the anisotropy of
the optical properties of the vacuum when a static magnetic
field B0 and a static electric fieldE0 are simultaneously ap-
plied perpendicular to the direction of light propagation [32].
They predicted that magnetoelectric birefringence will occur
in vacuum under such conditions. They also demonstrated
that the propagation of light in vacuum becomes anisotropic
with the anisotropy in the refractive index being proportional
to B0×E0. Dupayset al. studied the propagation of light in the
neighborhood of magnetized neutron stars. They pointed out
that the light emitted by background astronomical objects will

be deviated due to the optical properties of quantum vacuum
in the presence of a magnetic field [33].

The fact that the light propagation in vacuum can be mod-
ified by applying electromagnetic fields to the vacuum indi-
cates that vacuum is actually a special kind of optical medium
[31, 33]. The similarity between the vacuum and the dielectric
medium implies that vacuum must also have its inner struc-
ture, which could be influenced by matter or fields. Actu-
ally, the structure of quantum vacuum has been investigated
in quite a number of papers recently [34, 35, 36].

Besides the electromagnetic field, the existence of matter
can also influence the vacuum. For example, the vacuum in-
side a microcavity is modified due to the existence of the cav-
ity mirrors, which will alter the zero-point energy inside the
cavity and cause an attractive force between the two mirrors
known as Casimir effect [37, 38], which has been verified ex-
perimentally [39, 40].

The above said makes it natural to suppose that the refrac-
tive index of vacuum can be influenced by the gravitational
matter. This thought is also supported by the theory of quan-
tum fields, which tells us that particles are actually the excited
vacuum. And it is unthinkable that the excited vacuum will
exert no influence on the vacuum around.

In brief, we could relate the graded refraction property of
the gravitational spacetime to the vacuum influenced by the
gravitational matter.

VII. CONCLUSIONS

We have shown two strong similarities between the gravi-
tational lensing and the conventional optical lensing: oneis in
the Fermat’s principle, the other is in light deflection formula.
The similarities indicate a graded refractive index analysis of
the gravitational lensing. We derived through the general rel-
ativity and the Fermat’s principle the general expression of
this refractive index for a static spherically symmetric grav-
itational field. From this expression and the Schwarzschild
exterior and interior solutions, the exact refractive index pro-
file is obtained. In weak field case, we got a simple unified
exponential function of the gravitational potential for the cal-
culation of the refractive index profile outside and inside the
lens matter system. Since the derivation is based on the gen-
eral relativity, there is no inconsonance between the general
relativity and our result. By using the obtained result, we in-
vestigated the gravitational lensing in a conventional optical
way. Some results from computer simulations interpreted the
long puzzling problem of the central image missing in a clear
way. We also suggested the graded refractive index of the
gravitational spacetime be interpreted as that of the gravita-
tional vacuum. We hope our work will be a useful means of
gravitational lensing and be a positive stimulus to the vacuum-
based investigation of gravitation.
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APPENDIX: DERIVATION OF EQS. (11) AND (12)

Suppose the relation betweenR andr is

dR
f (R)

=
dr
r
, (A.1)

where f (R) is a function ofR.
Now we consider the light pathP∞P0 in Fig. 5, whereP0 is

the closest point to the gravitational center. Combining Eqs.
(6), (10) and (A.1), we get

R/
√

A(R)
f (R)

√

[

R/
√

B(R)

R0/
√

B(R0)

]2

− 1 =

√

(

nr
n0r0

)2

− 1. (A.2)

At the infinite pointP∞, the space-time becomes flat. So
we have

√

A(R∞) = 1, (A.3)
√

B(R∞) = 1, (A.4)
dR
dr
|∞ = 1, (A.5)

R∞
r∞
= 1, (A.6)

n∞ = 1. (A.7)

According to Eqs. (A.1), (A.3), (A.5) and (A.6), we have

f (R∞) = R∞/
√

A(R∞). (A.8)

Applying Eq. (A.2) to the infinite pointP∞ reads

R∞/
√

A(R∞)
f (R∞)

√

[

R∞/
√

B(R∞)

R0/
√

B(R0)

]2

− 1 =

√

(

n∞r∞
n0r0

)2

− 1.

(A.9)
Substituting Eqs. (A.4), (A.6), (A.7), (A.8) into the above

equation gives

n0r0 = R0/
√

B(R0). (A.10)

Next we consider another light pathP0P
′

0 in the gravita-
tional field. Now the closest point to the gravitational center
is notP0 but P

′

0 , then Eq. (A.2) becomes

R/
√

A(R)
f (R)

√

√

√

√

√

√

√

√

























R/
√

B(R)

R
′

0/

√

B(R ′

0 )

























2

− 1 =

√

(

nr

n
′

0 r
′

0

)2

− 1. (A.11)

Similar to Eq. (A.10), we can get

n
′

0 r
′

0 = R
′

0/

√

B(R ′

0 ). (A.12)

FIG. 5: Two light paths in a gravitational field.

Applying Eq. (A.11) to the pointP0 reads

R0/
√

A(R0)
f (R0)

√

√

√

√

√

√

√

√

























R0/
√

B(R0)

R
′

0/

√

B(R ′

0 )

























2

− 1 =

√

(

n0r0

n
′

0 r
′

0

)2

− 1.

(A.13)
Combining Eqs. (A.10), (A.12) and (A.13) gives

f (R0) = R0/
√

A(R0). (A.14)

In the same way, we can obtain the following relation for
every pointP in the gravitational field:

f (R) = R/
√

A(R). (A.15)

Substituting the above equation into Eq. (A.1) gives Eq.
(11). Combining Eqs. (6), (10), (A.10) and (11) gives Eq.
(12).
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