arXiv:0711.0633v3 [gr-gc] 13 Feb 2008

Gravitational Lensing Analyzed by Graded Refractive Indexof Vacuum
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We found strong similarities between the gravitationakleg and the conventional optical lensing. The
similarities imply a graded refractive index descriptidintiee light deflection in gravitational field. We got
a general approach to this refractive index in a static spalyr symmetric gravitational field and obtained its
exterior and interior solutions exactly through the gehedlativity. In weak field case, the two solutions come to
a simple unified exponential function of the gravitationalgntial. With these results, the gravitational lensing
can be analyzed in a convenient optical way. Especiallyiaing puzzling problem of the central image missing
can be solved easily. We also pointed out that the gradedatesn property of the gravitational spacetime is
related to the vacuum influenced by the gravitational matter

PACS numbers: 98.62.Sh, 42.25.Bs, 42.50.Lc

I. INTRODUCTION Sec. IV, we make a weak field approximation; in Sec. V, we
apply the obtained result to the problem of gravitationasle
Gravitational lensing is anfkect predicted by general rel- 1N9: especially to the central image missing problem purzle
ativity [T, 2, [3]. It has been now a powerful tool for the PhYSICists for along time [24]; in Sec. VI, we make a discus-
study of the so intractable problems in astrophysics and co$iON 0N the refraction property of the gravitational spacef
mology such as the value of Hubble constaht [4], the physicinally in Sec. VII, we draw our conclusions.
of quasars!|5], the mass and mass distribution of a galaxy or
a galaxy cluster|2], the large scale structure of the usiwer

[6, 7], the existence of dark matter [8, |9, 10], the nature of  Il. SIMILARITIES BETWEEN THE TWO LENSES
dark energyl[11, 12] and so on.
It is told that, the light deflection of a gravitational lerss i A. Similarity in Fermat's principle

caused by the gravity or in Einstein’s words the curved space

time, while the light deflection of an optical lens is causgd b | andau and Lifshitz have derived from the general relativit

the variance of refractive index of the medium. But is therethe Fermat's princip|e for the propagation of ||ght in a gtat

any deeper similarity between the two lenses besides the dgravitational field as followd [25]:

flection of light? Can we analyze the gravitational lensiag a

the conventional optical one? 1241 - 0
In fact, people have long tried an optical description of the 5fg°° -

lensing dfect. In 1920, Eddington [13] suggested that the light

deflection in solar gravitational field can be conceived as avheredl is the length element of the passing light measured

refraction éfect of the space in a flat spacetime. The ideaby the local observegy is a component of the metric tensor

was further studied by Wilson [14], Dicke [15], Felice [16], g, gaé/zdl corresponds to an element of optical path length.

and Nandiet al. [17,118,19]. Recently, this thought of light 900*1/2 = dt/dr, wheredr represents the time interval mea-

deflection has been investigated further by Ptf20, (21],  sured by the local observer for a light ray passing through th

Vlokh [22], Ye and Lin [23] etc. In Puth@®’s paper, the light  lengthdl, while dt is the corresponding time measured by the

deflection is related to the vacuum polarizationin graiotedl  observer at infinity. Eq. (1) could then be rewritten as

field. Vlokh discussed further this light refractioffect. Ye

and Lin used the refractive index to simulate the gravitetlo 6f$ﬂds _0 @)

lensing. drds =~
The purpose of this paper is, on the basis of the general rela-

tivity, to find the similarities between the gravitationehking ~ Whereds is the length element measured by the observer at

and the optical lensing, and to analyze the former in a siminfinity, corresponding to the local length.

ple optical way. The paper is organized as follows: in Sec. II  For an optical lens, the light propagation satisfies the con-

we point out the strong similarities between the two lensels a ventional Fermat's principle

suggest a refractive index analysis of the gravitatiorediley;

in Sec. lll, we find the exact solutions of this refractiveend 6fnds =0, A3)

for outside and inside the lens matter system respectiuely;

1)

wheren is the refractive index of the medium.
The similarity between Eq. (2) and Eg. (3) indicates that
*Electronic address: yxhow@163.com if we set the scale of length and time at infinity as a stan-
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Since
rde
tang = —-., 9)
associating with Eq. (8) reaches
do- 9 (10)

M z_ .
N

FIG. 1: Light deflection in a gravitational lens. Eq. (10) and Eq. (6) show another strong similarity between

the two lenses, which once more indicates that there could be

o o a refractive index analysis of the gravitational lensincheT
propagating in a gravitational lens could then be regarded &sjmilarity tells us that this refractive index can be figured
that in an optical medium with the refractive index being through the following two equations:

dt dl
n=2a ) _RR__a (11)
drds RIVAR) r
wheredt/dr relates to the curved time adty/dsrelates to the n= R ) (12)
curved space. r vB(R)

For the detailed derivation of the above two equations, see

Lo ) the APPENDIX.
B. Similarity in light deflection formula

First we consider the light deflection in a gravitationaden  lll. EXACT SOLUTIONS OF THE REFRACTIVE INDEX
For a static and spherically symmetric lens matter systhen, t
metric has the standard form A. Exterior solution

d7°* = BRIC’dt” — A(R)IR® — RP(d6” + sin6dg?),  (5) The cosdficients A(R) and B(R) in Egs. (11) and (12)

can be obtained from the Schwarzschild solutions. The
Schwarzschild exterior solutiolR(> R, R_ is the radial co-
ordinate at the surface of the lens matter system) gives [28]

whereR s the radial coordinate of the metric.
The light deflection is shown in Fig. 1, where cury®Rep-
resents the light ray is the mass of the lens mattéris the

angular displacement of the coordinate rad®yg is the angle GM\ L
between the coordinate radiBsaand the tangent of the ray at AR) = (1 - e ) , (13)
point P. The general relativity gives the angular displagein 2GM
as follows [26/ 27, 28]: B(R)=1- Rz (14)
do = dR , (6) whereG is the gravitational constart,s the velocity of light
> . , ) o .
JR— RVBR | in vacuum without the influence of gravitational field.
RIVAR) [Ro/ \/B(Ro)] 1 Substituting Eq. (13) into Eq. (11) gives
whereRy represents the radial coordinate at the nearest point ; 1-2M 1
PO . - = =} (15)
Now we consider the light deflection in a medium of a k % 2

spherically symmetric refractive index According to the
Fermat's principle, the light propagation in such a lengssat
fies the following relation [29]:

wherek is a constant. Since in the Schwarzschild metric, the
ratior /R — 1 at infinity, we have

GM
nr sing = constant 7) k=" (16)

wherer, differing from the above said coordinate radRis ~ Thus Eq. (15) gives

is the distance from the light to the center of the lens. The

relation can be rewritten as r= B( 1- 2GM +1- %] (17)
2 Rc2 Re? )’

nr sinB = Nofo, (8) or

whererg andng represent the radial distance and the refractive GM )2 18)

index at the point closest to the center respectively. R=r (1 + orc2



Then through Egs. (12), (14) and (17), we get the exterior

refractive index

n= = s (29)
R R
or through Egs. (12), (14) and (18), we get
GM 3 GM 1!
n=(1+5g) (1= 2¢) - (20)

IV. WEAK FIELD APPROXIMATION

For an ordinary lens matter system, the gravitational feld i
not extremely strong, i.eGM/Rc? or GM/rc? << 1, then we
have:

The exterior refractive index

26M\ __ (2P
e | P\ T )

n= exp( (27)

which is exactly in agreement with that given by Felice in awhereP; = ~GM/r is the gravitational potential at position

different way|[16].

B. Interior solution

The Schwarzschild interior solutioR( R.) gives [28]

-1
B ZGM(R)) , 21)

A(R) = (1 o

B(R) = exp

~ 2G A7Rp(R
[ e 220

2GM(R) |
- = ] dR}(ZZ)

whereM(R) = fR 47R%p(R)dR, p(R) is the mass density, and

for an ordinary lens matter system, the presq{f® = 0. So

. -1
B(R) = exp{— fRR 2GM(R) [1— ZGM(R)] dR}

R2c2 Rc?

0o -1
exp{_ fR 2GFZ|$L) [1_ ZGI\/I(RL)] dR}. 23)

Rc?

outside the lens matter system.

The above expression of graded refractive index has been
verified in the problem of light deflection in the solar gravit
tional field [23], with the result being in agreement withttha
given by the general relativity[3, 28] and the actual measur
ments[[30].

And the interior refractive index

2GM(r) j‘“ 2GM(r)
+ d

n= ex
p[ r c? r2c?

—2P,
r} = exp(T), (28)
whereP, = —GM(r.)/r. — fr“ [GM(r)/r?]dr is the gravita-
tional potential at position inside the lens matter system.

In general, we have the refractive index profile both outside
and inside the lens matter system in weak field case as fallows

n= exp( CZPr). (29)

The above result is derived from a single static spherically
symmetric lens matter system. For a multi-body system, the
total gravitational potential will be the superpositionazfch

Substituting Eq. (21) into Eq. (11), and considering the re-potential; therefore, the refractive index can be exprease

lation between the radial coordinatgsandR, at the surface
determined by Eq. (17), we obtain

_R( [[ 2GM(R)
r= > ( 1 R.C2 +1
R drR
exp —f _ .
R R /1_ 2GR|\2§R)

GM(RL))
B R|_02

(24)

—2P,
exp( —
eXp|:—2(Prl + Préz'i' Pr3 + - ')

ningng-- -, (30)

whereP;1, Pr2, Pr3, - - - andng, np, ng, - - - are the gravitational
potential and the corresponding refractive index caused by

Then combining Egs. (12), (23) and (24) gives the interioreach gravitational body respectively. This expression bey

refractive index

n=n RexprLidR
= L—=
R
L R R ll_zeRl\gR)

1 -1
exp( f: GM(R) [1_ ZGM(R)] dR)’

R2c2 Rc? (25)

where
1

1{ [{_ 2GMR) GMR)) [7_ BMR)
E( 1- RLCZL +1- RLCZL) 1- RLCZL

is the refractive index at the surface.

n. =

26)

extended to arbitrary distributed matter systems. Fig.avsh
such an example, where the brighter cyanine represents the
higher value of refractive index, and the closed curvestaze t
isolines — the denser the lines, the quicker the change of re-
fractive index.

V. APPLICATION TO GRAVITATIONAL LENSING

Eq. (29) and Eqg. (30) are the main results of this paper,
which provide a convenient optical way to describe tfiec
of gravitational lensing. Considering a sougand a lent.
of massM, the light emitted fron& is bent due to the gravi-
tational field of the lens. The bent light could be figured out



FIG. 2: Refractive index profile of a gravitational lens caraed of
three celestial bodies of fiierent mass.

(b)

FIG. 4: Ray tracing results for the central imaging. (a) Trgdhe
central imaging ray for a given lensing system; (b) Trachgdentral
imaging rays for lenses of fierent mass.

as

FIG. 3: A computer simulation of gravitational lensing. r3
L

33+K r’

Pro = —4np.G (32)
through Eq. (7) and Eq. (29). Drawing the extension line of k , |1 1 r\K )

the light from the observeD, the apparent (observed) posi- Pri = —4npcG mﬁ. |6~ m (H) rei33)
tion of the source image could then be found out. The result

is shown in Fig. 3, wheréy, I, represent the upper and lower ¢, gutside ¢ > r.) and inside ( < r.) the matter system
images respe_cti\{ely. _ _ respectively.

_ The refractive index given by Eq. (29) could also be applied  Thg refractive index profile outside and inside the lens mat-
in studying the formation of the central image, which is pre-io, system then reads

dicted by the general relativity but not observed in aimdist a

known cases of gravitational lensing. This problem has puz-

zled people for many yeatrs [24]. 8mpG K rf
For the central imaging, the refractive index profile inside Mo =P 2 33701 | (34)
the lens matter system should also be considered. As a model N = exp

galaxy or a cluster of galaxies) of radius with a density
distribution given by

for discussion, we suppose a matter system (for example, K
8mp.G k 2 _ 1 1 Ve (35)
2 |22+k" |6 (2+Kk(@B+k)\r '

r\¢ Fig. 4 (a) shows a ray tracing result for the imaging of a
1- (H) ’ (31) gravitational lens with the above described refractiveeind
profile. In the figure, only three paths of ray (indicated bg th
wherep, is the central density of the system,<QOr < r_, three thick lines) could pass through the obse@gforming
k > 0. The density decreases with the distancdrom the  the upper, lower and central images respectively. Fromghe fi
center of mass; the decreasing rate depends on the parametee, we find that, the larger the distar@k from the observer
k. This model gives the distribution of gravitational pofaht to the lens body, the closer the central imaging ray to the len

P =Pc
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center. In the same way, the larger the distaBcdrom the  be deviated due to the optical properties of quantum vacuum
source to the lens body, the closer the central imaging ray to the presence of a magnetic field [33].
the lens center. This can be easily seen by interchanging the The fact that the light propagation in vacuum can be mod-
source and observer in the figure. ified by applying electromagnetic fields to the vacuum indi-
Fig. 4 (b) shows the dependence of the ray position of theates that vacuum is actually a special kind of optical mmdiu
central image on the lens mass. The lens mass is expressi&d,[33]. The similarity between the vacuum and the dielectr
by M = %anpck/(3+ k), which can be derived from Eq. (31). medium implies that vacuum must also have its inner struc-
The four curved lines in the figure represent respectivady th ture, which could be influenced by matter or fields. Actu-
four central imaging rays in four lenses offérent mass. The ally, the structure of quantum vacuum has been investigated
mass ratio of the corresponding lenses is 2 : 3 : 4 : 5 fromin quite a number of papers recently|[34} 35, 36].
bottom to top. We find that, when the madsincreases, the Besides the electromagnetic field, the existence of matter
central imaging ray will be closer to the lens center. can also influence the vacuum. For example, the vacuum in-
This imaging characteristic of Fig. 4 can be used to explairside a microcavity is modified due to the existence of the cav-
the missing of the central image of gravitational lensing. | ity mirrors, which will alter the zero-point energy insideet
practical observations, the distané®s, SL and the mas#!  cavity and cause an attractive force between the two mirrors
are all in astronomical scale; therefore, the light of caintr known as Casimirffect [37, 38], which has been verified ex-
imaging is extremely close to the lens center. For a lens maperimentally([39. 40].
ter system denser in the center, the possibility of the aéntr  The above said makes it natural to suppose that the refrac-
imaging light to be blocked increases. The relatively lange tive index of vacuum can be influenced by the gravitational
inner path of the central imaging ray adds the possibility ofmatter. This thought is also supported by the theory of quan-
scattering and absorption on the way. Besides, the cemiral i tum fields, which tells us that particles are actually thatexc
age, if still exists, is relatively faint compared with theght  vacuum. And it is unthinkable that the excited vacuum will
lens core. All these factors lead to little chance of finding t exert no influence on the vacuum around.
central image. This accounts for the central image missing i In brief, we could relate the graded refraction property of
almost all observed cases of gravitational lensing. the gravitational spacetime to the vacuum influenced by the
gravitational matter.

VI. DISCUSSION ON THE REFRACTION PROPERTY OF
THE GRAVITATIONAL SPACETIME VIl. CONCLUSIONS

Though we have successfully given a refractive index de- We have shown two strong similarities between the gravi-
scription of the gravitational lensing and solved a puzzlin tational lensing and the conventional optical lensing: isrie
problem of it, there is still a doubt about the refractiongpro the Fermat's principle, the other is in light deflection farian
erty of the gravitational spacetime as shown in Eq. (4). Thelhe similarities indicate a graded refractive index arialp$
doubt can be eliminated if we consider that, around the gravthe gravitational lensing. We derived through the genegial r
itational matter, there exists a special medium — vacuumativity and the Fermat's principle the general expressibn o
which may have a graded refractive index in gravitationalthis refractive index for a static spherically symmetriengr
field. itational field. From this expression and the Schwarzschild

A graded vacuum refractive index needs at least an influexterior and interior solutions, the exact refractive igeo-
ence of matter or field on the vacuum. It is exhilarating tofile is obtained. In weak field case, we got a simple unified
see that the recent theoretical and experimental progré@sse exponential function of the gravitational potential foetbal-
quantum vacuum have provided a strong support to such an igulation of the refractive index profile outside and inside t
fluence. Ahmadi and Nouri-Zonoz pointed out that under thdens matter system. Since the derivation is based on the gen-
influence of electromagnetic field, vacuum can be polarizedgral relativity, there is no inconsonance between the géner
which has led to astonishingly precise agreement betwesen prrelativity and our result. By using the obtained result, we i
dicted and observed values of the electron magnetic momenestigated the gravitational lensing in a conventionaiaabt
and Lamb shift, and may havefects on the photon propa- way. Some results from computer simulations interpreted th
gation [31]. Rikken and Rizzo considered the anisotropy ofong puzzling problem of the central image missing in a clear
the optical properties of the vacuum when a static magnetigay. We also suggested the graded refractive index of the
field B and a static electric fieléy are simultaneously ap- gravitational spacetime be interpreted as that of the gravi
plied perpendicular to the direction of light propagati8g], ~ tional vacuum. We hope our work will be a useful means of
They predicted that magnetoelectric birefringence witwc ~ gravitational lensing and be a positive stimulus to the vacu
in vacuum under such conditions. They also demonstrateblased investigation of gravitation.
that the propagation of light in vacuum becomes anisotropic
with the anisotropy in the refractive index being propartib Acknowledgments
to BoxEp. Dupayst al. studied the propagation of light in the
neighborhood of magnetized neutron stars. They pointed out We wish to acknowledge the supports from the Ministry of
that the light emitted by background astronomical objedlis w Science and Technology of China (grant no. 2006CB921403
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APPENDIX: DERIVATION OF EQS. (11) AND (12)

Suppose the relation betweBrandr is

dR dr

m = T, (Al)

wheref(R) is a function ofR.

Now we consider the light path.,Po in Fig. 5, wherePy is
the closest point to the gravitational center. Combining.Eq
(6), (10) and (A.1), we get

RIVAR) [ RIVBR [ _\/iz_
R [Ro/v—s(m] L= (noro) b8

At the infinite pointP,,, the space-time becomes flat. So
we have

FIG. 5: Two light paths in a gravitational field.

Applying Eq. (A.11) to the poinP, reads

Ro/ VA(Ro)
f(Ro)

Nolo

Nyr

2
Ro/ VB(Ro) ( )2 .
R;/ \/B(Ry)
(A.13)
Combining Egs. (A.10), (A.12) and (A.13) gives

f(Ro) = Ro/ VA(Ro).

In the same way, we can obtain the following relation for
every pointP in the gravitational field:

f(R) = R/ VAR).

Substituting the above equation into Eq. (A.1) gives Eq.
(11). Combining Egs. (6), (10), (A.10) and (11) gives Egq.

(A.14)

(A.15)

(12).

VARS) =1, (A.3)
VB(R.) =1, (A.4)
drR
W"X’ =1, (A.5)
;& =1, (A.6)
no:o =1 (A.7)
According to Egs. (A.1), (A.3), (A.5) and (A.6), we have
f(Rs) = Ro/ VA(R). (A.8)
Applying Eq. (A.2) to the infinite poinP,, reads
Reo/ VAR [Rw/ﬂ_SB R r . \/(nmrm)2 M}
f(Re) Ro/ VB(Ro) Noro A 0

Substituting Egs. (A.4), (A.6), (A.7), (A.8) into the :;lbove
equation gives

Noro = Ro/ v/B(Ro).

Next we consider another light paEPbPO’ in the gravita-
tional field. Now the closest point to the gravitational @nt
is notPg but Py, then Eq. (A.2) becomes

(A.10)

2

RIVAR) || RIVBR |, _ (i)z_l. (A.11)
f(R) R;/ /B(RO’) Nofo

Similar to Eq. (A.10), we can get

Noro = R/ /B(Ry)- (A.12)
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