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We study the mechanism of particle production in the world-volume of a probe D6-brane (or D6
with SUSY breaking) moving in the background created by a fixed stack of D6-branes. We show
that this may occur in a regime of parametric resonance when the probe’s motion is non-relativistic
and it moves at large distances from the source branes in low eccentricity orbits. This leads to an
exponential growth of the particle number in the probe’s world-volume and constitutes an effective
mechanism for producing very massive particles. We also analyze the evolution of this system in an
expanding universe and how this affects the development of the parametric resonance. We discuss
the effects of transverse space compactification on the probe’s motion, showing that it leads to the
creation of angular momentum in a similar way to the Affleck-Dine mechanism for baryogenesis.
Finally, we describe possible final states of the system and their potential relevance to cosmology.

PACS numbers: 11.25.Wx, 98.80.Cq

I. INTRODUCTION

One of the most important aspects of string the-
ory with potential applications to beyond-the-standard-
model physics and cosmology is the existence of addi-
tional extended objects. A particularly interesting class
of these, Dp-branes, occur as (p+1)-dimensional surfaces
arising as supersymmetric solutions of the low-energy su-
pergravity field equations but have also a high-energy in-
terpretation as surfaces confining the endpoints of open
strings [1]. By now many different configurations of Dp-
branes have been studied, including parallel and inter-
secting sets of branes [2, 3], the combination of branes
with different dimensionalities [4] and also several possi-
ble embeddings in the compactified extra-dimensions [5].
These models have an enormous potential in the con-
struction of gauge theories with matter and several new
extensions of the Standard Model have been obtained in
this way [3].

Branes have also been intensively studied in their ap-
plication to the problems of early universe cosmology,
such as inflation and reheating. In the context of effective
field theory treatments of brane-world model building,
an immense amount of work has been performed on the
astrophysical and cosmological implications of these the-
ories for both flat and warped extra dimensions [6], while
many studies in string theory have also been undertaken
[7, 8, 9]. One important property of Dp-branes is the fact
that they interact at large distances via the exchange of
closed string modes, which allows one to study them as
massive point-like charged objects moving along the di-
mensions transverse to their world-volumes. An interest-
ing application of this was proposed in [10], where it was
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shown that branes with opposite charges may form bound
states similar to electron-positron states, despite the dif-
ferent origin of the central potentials involved. This anal-
ogy has motivated the name of branonium to designate
this type of systems. Several properties of these bound
states have been analyzed in [10], including the classi-
cal orbits, the associated quantum dynamics and possi-
ble compactification schemes. This analysis assumed a
probe (anti)brane moving in the background spacetime
created by a fixed central stack of branes, thus neglecting
the gravitational backreaction of the probe. In the case
of D6-branes, the probe’s trajectory follows closed ellip-
tical orbits similar to those found in planetary systems.
It was also suggested that the probe’s motion would lead
to radiation of particles into both the bulk space and the
probe’s world-volume, making otherwise stable orbits de-
cay. The stability of this system was further studied in
[11], where it was shown that orbital decay necessarily
occurs when geometric moduli of the background space-
time are allowed to vary.

In this work, we explore some properties of branonium
systems, namely the mechanism leading to particle pro-
duction in the world-volume of the probe brane. For the
particular case of a scalar field living in the world-volume
of a probe D6-brane, we show that particle production
may occur in a regime of parametric resonance similar
to the one behind the phenomenon of preheating after
inflation [12, 13], leading to an exponential growth of
the particle number in the probe’s world-volume.∗ We
determine how the orbital parameters of the system con-
strain this mechanism and analyze the possible proper-
ties of the resonantly produced particles. Also, we study
how the probe’s trajectory is modified by compactifying

∗ Discussions of preheating in brane systems other than branonium
can be found in [14].
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three of the dimensions parallel to the branes, so that a 4-
dimensional spacetime with a flat Friedmann-Robertson-
Walker geometry is obtained. In this case, we analyze the
effects of Hubble expansion on the orbital parameters and
how it modifies the parametric resonance regime. Other
instability sources such as radiation into bulk modes are
discussed as well. We also consider the effects of trans-
verse space compactification on the probe’s motion in the
case of a compact 3-torus and analyze the associated pro-
duction of angular momentum. Finally, we explore some
of the cosmological applications of the resonant particle
production mechanism and relate them to possible final
configurations of the system, including stable states or
brane-antibrane annihilation.
In the next section, we begin by introducing some of

the general properties of Dp−Dp branonia, with particu-
lar emphasis on the p = 6 case, and discuss the effects of
Hubble expansion on the orbital parameters. In Section
III, we study the evolution of scalar particle-modes con-
fined to the probe brane and analyze the properties of the
associated parametric resonance mechanism in both the
non-expanding and expanding universe cases. We dis-
tinguish between the production of massless and massive
particles and determine the significance of energy damp-
ing into these modes on the probe’s motion. We also
consider, in this section, the effects of radiation into bulk
modes on the resonant production of brane-bound par-
ticles. In Section IV, we analyze how compactifying the
directions transverse to the branes modifies the probe’s
trajectory and dynamically generates the required angu-
lar momentum. Possible final states of the system are
described in section V, where we also analyze the rele-
vance of the particle production mechanism to cosmology
in some particular scenarios. We summarize the main re-
sults and conclusions of this work in section VI.

II. EVOLUTION OF BRANONIUM IN AN

EXPANDING UNIVERSE

Branonium corresponds, in its simplest form proposed
in [10], to a system whose components are a fixed stack
of N parallel p-branes and a probe p-brane, parallel to
the stack, whose gravitational backreaction is neglected
so that it has no influence on the geometry of the back-
ground spacetime. Let the coordinates xµ, µ = 0, · · · , p,
correspond to the dimensions parallel to the stack and
the coordinates ym, m = p+1, · · · , D− p, correspond to
those transverse to the branes. Then, the general solution
of the supergravity equations of motion in D dimensions
for N parallel p-branes is given, in the Einstein frame,
by [15]:

ds2 = h−γ̃dx2p + hγdy2 ,

eΦ = hκ , C01···p = ζ(1− h−1) , (1)

which give the D-dimensional metric, the dilaton Φ and
the non-vanishing components of the bulk (p + 1)-form

field C[p+1] which couples to the (p + 1)-dimensional
world-volume of the stack of branes. The harmonic func-
tion h(r) is a function of the radial coordinate in trans-
verse space, r2 = δmny

myn, and has the form:

h(r) = 1 +
Qp

rd̃
, (2)

where d̃ = D− d− 2 and the factor of 1 ensures that the
solution is asymptotically the D-dimensional Minkowski
space. For the cases we will be interested in studying, the
transverse space is at least 2-dimensional, so that d̃ > 0.
The stack of branes is, thus, located at the origin in the
transverse space. The exponents γ, γ̃, κ and the constant
ζ that characterize the solution are given by:

γ =
4d

(D − 2)∆
, γ̃ =

4d̃

(D − 2)∆
,

κ =
2α

∆
, ζ =

2√
∆
, (3)

where d = p+ 1 and

∆ = α2
n +

2dd̃

D − 2
. (4)

The constant αn defines the coupling of the n = (p +
2)-form field strength to the dilaton in the supergravity
action. We will be interested in the particular case of
Dp-branes in Type II supergravities, which arise as the
low energy limit of Type II string theories, so that the
n-form field strength corresponds to a closed string state
in the Ramond-Ramond sector, and αn = αR = 2(D −
2n)/(D − 2). Taking D = 10, we have αR = 1

2 (3 − p),

∆ = 4, κ = 1
4 (3 − p), d̃ = 7 − p, γ̃ = 1

8 (7 − p) and

γ = 1
8 (p+1). It is clear that the condition d̃ > 0 implies

p < 7. The constant Qp is related to the charge carried
by the stack of N branes, and for the case of Dp-branes
we have

Qp = cpgsNl
d̃
s , (5)

where cp = (2
√
π)5−pΓ

(

7−p
2

)

, ls is the string length and
gs is the string coupling constant. This solution holds in
the limit of validity of string perturbation theory and for
small curvature, which allows a low energy description of
the system in terms of supergravity fields. This approxi-
mation is valid as long as the local string coupling, gse

Φ,
is everywhere small. Also, we need to require the radial
coordinate r, which will give the distance between the
probe and the stack branes, to be large compared to the
string length ls, so that mediation by supergravity bulk
fields (graviton, dilaton and RR-forms) is the dominant
source of brane interactions.
Before analyzing the motion of the probe brane, we

need to consider possible compactifications of the 10 di-
mensional spacetime that yield our 4-dimensional world
at low energies. Compactification of dimensions paral-
lel and transverse to the world volume of the branes



3

involve different procedures. In the case of dimensions
parallel to the branes, it suffices to consider the Kaluza-
Klein ansatz. If we start with the D-dimensional space-
time Eq. (1) and compactify along a periodic coordi-
nate z ≃ z + 2πR with radius R, so that the branes
are wrapped around this dimension, we obtain a D′ =
(D−1)-dimensional spacetime with metric given by [15]:

ds2D = e2âϕds2D′ + e2b̂ϕ(dz + Bµdx
µ)2 ,

ds2D′ = h−γ̃′

dx2p′ + hγ
′

dy2 ,

eϕ = hρ , (6)

where

â =
1

2(D′ − 1)(D′ − 2)
, b̂ = −(D′ − 2)â ,

ρ =
γ̃

2(d′ − 2)â
,

γ′ = γ − 2ρ̂ , γ̃′ = γ̃ + 2âρ . (7)

The dilaton field Φ is not altered by this compactifica-
tion, while the (n− 1)-form RR field can be decomposed
as follows:

C[n−1] = B[n−1] +B[n−2] ∧ dz . (8)

We take the following truncation of these fields:

B[n−1] = 0 , (B[n−2])01···p−1 = ζ(1 − h−1) . (9)

This truncation leads to a (p − 1)-brane supergravity
solution in D − 1 dimensions, characterized by the same
harmonic function of the transverse space radial coordi-
nate h(r). Applying this toroidal compactification pro-
cedure j times we obtain (p − j)-brane solutions living
in a (D − j)-dimensional spacetime, with the number of
transverse dimensions remaining the same.
The process of compactifying the dimensions trans-

verse to the branes is not as straightforward due to
the lack of translational invariance which results from
the presence of the branes. In particular, to make a
given transverse coordinate z′ periodic, so that a simi-
lar Kaluza-Klein mechanism can be applied, one needs
to include the appropriate “image branes” of the source
branes which will ensure the invariance of the configura-
tion under z′ → z′ + 2πR′, R′ being the radius of the
compact dimension. For example, if a source brane is
located at z′ = 0, an image brane has to be considered at
z′ = 2πR′. This implies a generalization of the harmonic
function in Eq. (2) to include branes located at different
points in transverse space [15]:

h(y) = 1 +
∑

i

Qp

|y − yi|d̃
, (10)

where the vectors yi denote the positions of the different
image branes and |y − yi|2 = δmn(y

m − ymi )(yn − yni ).
These two compactification schemes allow us to reduce

a 10-dimensional solution of the supergravity field equa-
tions to a 4-dimensional spacetime which resembles our

world. We will be interested in studying a particular case
of the general branonium configuration described so far
where we have a source stack of D6-branes and also a
probe D6 brane. As was shown in [10], when the probe
carries an antibrane charge, i.e. opposite to the charge
of the source branes, the system yields closed elliptical
orbits which can be solved analytically, while for other
values of p < 7 the orbits fail to close. This feature has,
as we will describe later on, important consequences for
particle production in the world-volume of the probe.
Compactifying 3 of the dimensions parallel to the

branes, we obtain effective D3-branes moving in a 3-
dimensional transverse space, the shape of the orbits not
being affected by this toroidal compactification scheme
as mentioned before. If the transverse dimensions are
finite but their typical size is much larger than that of
the compact parallel dimensions and the interbrane dis-
tance, we may consider them to be infinite and neglect
the brane images described before. Although this would
correspond to a 7-dimensional spacetime, from the point
of view of fields confined to the world-volume of the
source and probe branes it is effectively 4-dimensional.
The dynamics in the transverse space will, nevertheless,
affect the 4-dimensional dynamics of the fields.
In order to make the system more similar to the observ-

able universe, we consider a modification of the solution
Eq. (1) so that, after compactification of 3 of the par-
allel dimensions, the 4-dimensional world-volume of the
branes has a flat Friedmann-Robertson-Walker (FRW)
geometry. This is a particular case of the the system
studied in [11], where the moduli governing the size of
both parallel and transverse dimensions were allowed to
vary. In this work, we will assume that some dynamical
mechanism at the string scale (see, e.g. [16]) or at some
other high-energy scale (such as SUSY breaking) fixes all
moduli except the scale factor associated with the 3 non-
compact dimensions parallel to the branes. Hence, in the
Einstein frame, the complete 7-dimensional line element
is given by:

ds27 = h−γ̃4 [−dt2+a2δijdxidxj ]+hγ4δmndy
mdyn , (11)

where a ≡ a(t), i, j = 1, 2, 3 and m,n = 1, 2, 3. The
harmonic function is in this case h(r) = 1 + Q6/r. The
exponents γ4 and γ̃4 can be obtained using Eq. (3) and
applying Eq. (7) for the compactification on a 3-torus,
but their precise values will not be necessary in the sub-
sequent calculations.
The motion of the probe brane is described by its ac-

tion, which is divided in two parts. The Born-Infeld con-
tribution, which concerns the geometry of the world vol-
ume and possible gauge fields living on it, is in the string
frame given by, for a generic p-brane probe [10]:

SBI = −Tp
∫

dp+1ξ e−Φ
√

−det(γ̂µν + 2l2sFµν) , (12)

where ξµ are world-volume coordinates, Tp gives the p-
brane tension and γ̂µν = ĝMN∂µx

M∂νx
N is the induced
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metric on the probe. The hatted metric tensor is defined
in the string frame, and is related to the Einstein frame
one via ĝµν = eλΦgµν with λ = 4/(D − 2) in the general
case. The antisymmetric field strength tensor Fµν refers
to gauge fields describing open string modes with end-
points on the probe (in the case of Dirichlet branes), but
in what follows we will set these fields to zero†. The Wess-
Zumino part of the action describes the minimal coupling
of the Ramond-Ramond (p+1)-form to the (p+1)-world
volume of the probe brane and can be written as [10]:

SWZ = −qTp
∫

C[p+1] . (13)

The constant q gives the sign of the charge of the probe
brane, which being a BPS saturated state is equal or op-
posite to the brane tension Tp, so that q = 1 corresponds
to a brane and q = −1 corresponds to an antibrane [10].
If we now consider the particular case of D6 branes in

10 dimensions, compactifying 3 of the parallel dimensions
and including the scale factor describing the expansion
(or contraction) of the 3 remaining non-compact dimen-
sions along the brane, and choose the world-volume co-
ordinates such that ξµ = xµ, we arrive at the following
expression for the total action of the probe brane:

S4 = −T6V3
∫

d4x a3(t)

[

1

h

√

1− hv2 + q

(

1− 1

h

)]

,

(14)
where V3 gives the volume of the compact 3-torus around
which the D6-branes are wrapped to give the effective
4-dimensional space. We have assumed that the trans-
verse space coordinates are exclusively time-dependent,
ym = ym(t) and defined the velocity of the probe as
v2 = δmnẏ

mẏn, with dots denoting time derivatives. As
mentioned before, the bound orbits of the probe brane
can be exactly solved for the case where the scale fac-
tor is constant and it was shown in [10] that they cor-
respond to closed ellipses. We now wish to analyze the
effects of the varying scale factor on these orbits. In this
case, a full analytical solution is hard to obtain and it
is simpler to consider the evolution of the system when
the probe brane moves at larges distances from the stack
with small velocities. These two conditions can be ex-
pressed as hv2 ≪ 1. One must recall that we considered
initially that the transverse dimensions can be considered
infinite in extent. Hence, our analysis will hold as long
as the radial coordinate is large compared to the typi-
cal length scale of the harmonic function, given by Q6

(assumed larger than the string scale and the compactifi-
cation scale), but still much smaller than the typical size
of the transverse dimensions (assumed much larger than
Q6). With this hierarchy in mind, we may expand the

† This means that we will consider the particular scenario where
the classical background of these gauge fields vanishes. The role
of gauge fields was considered in [17].

probe brane’s action to obtain, to lowest order,

S4 ≈ −T6V3
∫

d4x a3(t)

[

1

h

(

1− 1

2
hv2 − q

)

+ q

]

. (15)

Our subsequent analysis will not be affected by the
constant term and we may drop it. For a probe antibrane,

S4 ≈ T6V3

∫

d4x a3(t)

[

1

2

∑

i

ẏ2i −
2

h

]

. (16)

The rotational symmetry of the problem implies that
the probe’s trajectory will be confined to a plane, which
we may choose to be y3 = 0. Then, we may define the
canonically normalized complex scalar field

φ ≡
√

T6V3
2

(y1 + iy2) , (17)

so that its action is, in the non-relativistic and large dis-
tance limit,

Sφ =

∫

d4x a3(t)
(

− gµν∂µφ∂νφ
∗ − V (φ)

)

, (18)

where gµν is the 4-dimensional flat FRW metric of the
spacetime where the field is defined and the potential is
given by:

V (φ) = 2T6V3h
−1 ≈ 2T6V3

(

1−
√

T6V3
2

Q6

|φ|

)

, (19)

so that it only depends on ρ = |φ|. Note that in writing
the action in this form one must take into account that
the spatial derivatives of the field, ∂iφ, i = 1, 2, 3, are
assumed to vanish, i.e. the probe brane should remain
parallel to the source branes during its motion. The anal-
ysis of the classical motion of the probe brane is in this
way reexpressed as a classical field theory problem of a
complex scalar field in the background of a flat FRW
spacetime. Before deriving the equations of motion for
the field φ, it is useful to consider some of the symme-
tries of the action. First, the rotational symmetry of the
problem in the plane transverse to the branes is associ-
ated with a conserved angular momentum. In terms of
the field theory approach, this corresponds to the global
U(1) invariance of the action under φ → eiαφ, where α
is a constant. The associated Noether current induces
a conserved charge which gives, in the quantum theory,
the particle number operator associated with the field.
Writing the field as φ = ρeiθ and defining the comov-
ing angular momentum as l ≡ ρ2θ̇, the comoving particle
number density is given by:

n = i(φ̇∗φ− φ̇φ∗) = 2ρ2θ̇ = 2l , (20)

while the total particle number, which corresponds to
the conserved Noether charge, is given by N = a3n. The
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energy density and pressure of the field can be obtained
from its energy-momentum tensor, yielding :

ǫ ≡ T00 = |φ̇|2 + V (φ) = ρ̇2 +
l2

ρ2
+ V (ρ) ,

p ≡ Tii
a2

= |φ̇|2 − V (φ) = ρ̇2 +
l2

ρ2
− V (ρ) . (21)

The covariant conservation of the energy-momentum
tensor can then be expressed as dE = −pdV , where the
energy of the field is defined as E ≡ a3ǫ and V = a3 is
the volume of the expanding (or contracting) flat FRW
spacetime. Defining the Hubble parameter H ≡ ȧ/a, we
can write this in the form:

dǫ

dt
= −3H(ǫ+ p) . (22)

From Eqs. (21) and (22) we conclude that dǫ
dt ≤ 0, the

equality holding only for H = 0. Thus, in an expanding
universe (H > 0), the system evolves with a strictly de-
creasing energy density. The angular momentum evolves
according to:

dl

dt
+ 3Hl = 0 , (23)

which corresponds to conservation of the total particle
number N . Hence, in an expanding universe, the ab-
solute value of the angular momentum will necessarily
decrease, vanishing asymptotically.
We, thus, conclude from this simple analysis of conser-

vation laws that the expansion of the universe will make
the system reduce both its energy density and its angular
momentum. To analyze the details of this evolution, we
need to determine the equations of motion for the field
φ. Varying the action Eq. (18) with respect to φ∗, and
taking this variation to vanish, we obtain:

φ̈+ 3Hφ̇+
∂V (|φ|)
∂φ∗

= 0 . (24)

In terms of the transverse space coordinates ym, m =
1, 2, 3, this can be written as:

ÿm + 3Hẏm + 2Q6
ym

r3
= 0 . (25)

This implies that the polar variables ρ and θ satisfy:

ρ̈+ 3Hρ̇− l2

ρ3 + 1
2

σ
ρ2 = 0 ,

θ̈ + 2 ρ̇
ρ θ̇ + 3Hθ̇ = 0 , (26)

where we have defined the constant

σ ≡ 4Q6

(

T6V3
2

)3/2

, (27)

so that, apart from constant factors, the large distances
potential is V (ρ) = −σ

ρ . It is easy to check that the

equation for θ simply gives the evolution of the angular
momentum that we obtained previously in Eq. (23).
The evolution of the radial field ρ is determined by

the form of the Hubble parameter, given by the energy
density content of the universe via the Friedmann equa-
tion in the usual way. This may include not only the
energy density of the field φ but also all other matter,
radiation or vacuum energy components. The possibility
that this scalar field may drive (slow-roll) inflation if, in
the early universe, it dominates the energy density has
been analyzed in [7], for the case where the probe brane
moves in a linear trajectory, i.e. l = 0. It was shown
that the interbrane potential arising from Type II super-
gravity/string theories is not flat enough to produce the
required number of e-foldings, exhibiting an “η-problem”.
This is intrinsically related to the assumption that r is
much smaller than the size of the transverse dimensions.
An inflationary period driven by the angular field vari-

able θ was proposed in [10], where it is argued that,
despite having a flat potential, this field may provide
the constant energy density necessary for inflation if the
probe brane moves in a circular orbit with ρ̇ = 0. How-
ever, we need to take into account the fact that, during
inflation, the angular momentum decays exponentially as
l ∝ e−3Ht, from Eq. (23). The system will hence quickly
tend to the l = 0 case, where sufficient inflation is dif-
ficult to obtain. Furthermore, the decay of the angular
momentum will necessarily alter the evolution of ρ and
the value ofH , so that a slow-roll inflationary mechanism
with the probe brane moving in a circular orbit would be
hard to construct‡.
Although we do not wish to completely discard such in-

flationary mechanisms, we will from now on assume that
some other field is responsible for inflation and analyze
how the compactified D6−D6 branonium system evolves
in the post-inflationary eras.
Before analyzing in detail the effects of the expansion

on the trajectory of the probe, let us recall the general
bound orbits of the system in a non-expanding universe.
In this case, the system reduces to the well-known prob-
lem of a particle in a central 1/ρ attractive potential,
admitting closed orbit solutions of the form:

ρ(θ) =
R(1− e2)

1 + e cos θ
. (28)

These are closed ellipses with eccentricity and semi-major
axis given by:

e =

(

1 +
4ǫl2

σ2

)
1
2

,

R = − σ

2ǫ
. (29)

‡ Some work has been done recently in the context of D-branes
moving in warped throats [18]. In particular, the important role
of the angular variables in providing accelerated periods of ex-
pansion was discussed in [19].
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The properties of such orbits may be obtained by
studying the effective potential Veff (ρ) = l2/ρ2 + V (ρ).
This potential has a minimum at −(σ/2l)2, tends to +∞
at the origin and to zero at large distances. The condi-
tion ρ̇ ≥ 0 then implies that orbits with −(σ/2l)2 < ǫ < 0
will be bounded, with 0 < e < 1. In this case, ρ
will oscillate between its minimum and maximum val-
ues, ρmin = R(1− e) and ρmax = R(1+ e), which can be
obtained from Eq. (28) by setting θ = 0 and θ = π, re-
spectively. At the minimum of Veff (ρ), the orbits will be
circular with ρ = ρc = 2l2/σ, and e = 0. For ǫ ≥ 0, the
orbits will only be bounded from below with e.g. ρ ≥ l2/σ
for ǫ = 0, which corresponds to an e = 1 parabolic orbit.
The linear trajectory, with l = 0, is a particular case of
the latter with no bounds on the value of ρ except for
the trivial ρ ≥ 0. For ǫ > 0, the orbits are hyperbolic.
Consider now the expanding case with the scale fac-

tor evolving as a(t) ∝ tα. This power law behavior is
typical of the post-inflationary stages of the universe’s
evolution, where one may consider a single fluid to give
the dominant contribution to the total energy density.
For example, in the radiation era we have α = 1/2 and
in the matter era α = 2/3. We can also take α = 2/3 at
the end of inflation, when the oscillations of the inflaton
about the minimum of its potential, with an equation
of state corresponding to that of non-relativistic mat-
ter, dominate the energy density. This model only holds
away from the transitions between these periods as in
these cases at least two of the components give similar
contributions to the energy density.
We will consider the evolution of the branonium system

for arbitrary α, starting at some instant t0 when the scale
factor has a value a0 ≡ a(t0). The Hubble parameter is
then of the form H = α

t , which implies from Eq. (23)
that the angular momentum evolves according to:

l = l0

(

t

t0

)−3α

, (30)

with l0 being its initial value. It is then clear that l → 0
as t→ +∞, as we have mentioned earlier. The equation
for the radial field ρ can now be written as:

ρ̈+
3α

t
ρ̇− l20

ρ3

(

t

t0

)−6α

+
1

2

σ

ρ2
= 0 . (31)

Let us start by analyzing how the system evolves when
placed initially in a would-be circular orbit, so that

ρ(t0) =
2l20
σ

≡ ρc0 , (32)

as ρ̈(t0) = ρ̇(t0) = 0. It is easy to see that ρ cannot
remain constant for t > t0 due to the decay of the angular
momentum. We may, however, look for solutions where
the condition for circular orbits is maintained during the
motion of the probe brane, i.e.

ρ(t) =
2l2(t)

σ
= ρc0

(

t

t0

)−6α

≡ ρc(t) . (33)

Substituting into Eq. (31) we obtain

ρc0
t20

(

t

t0

)−6α−2

6α(3α+ 1) = 0 , (34)

which is satisfied only in the non-expanding case, α = 0,
and for α = −1/3. As we are interested in cases where
α > 0, we conclude that ρc(t) is not an exact solution of
the equations of motion. It is, however, an approximate
solution at late times and, as we will check later, gives the
global evolution of the system in an expanding universe,
so that it is useful to consider some of its properties. In
particular, the angular frequency evolves as:

θ̇c =
l

ρ2c
∝

(

t

t0

)9α

, (35)

so that the orbital period decreases as Tc(t) ∝ (t/t0)
−9α.

Such a solution eventually fails to satisfy the non-
relativistic and large distance approximation as the ra-
dius of the orbit decreases and its angular velocity grows.
In particular, the parameter hv2 which controls this ap-
proximation grows, for t≫ t0, as

hv2 → 1

2
(T6V3)

4

(

Q6

l0

)4(
t

t0

)12α

. (36)

Hence, given the values of T6 and V3, it is the ratio Q6/l0
that controls how long the approximations remain valid.
Consider now trajectories with a non-vanishing initial

eccentricity. In an expanding universe, the effective po-
tential becomes time-dependent, although its asymptotic
properties at the origin and at infinity remain the same.
As the angular momentum redshifts away, the minimum
of the effective potential decreases, the same happening
with the value of ρ at this minimum, according to the cir-
cular solution defined in Eq. (33). As discussed earlier,
the energy density of the field always decreases during
the motion of the probe brane in an expanding universe.
Hence, if the system is initially in one of the closed or-
bits with ǫ < 0, the latter condition will be satisfied for
all t > t0. This means that, at all times, the probe
brane will be in one of the closed elliptical orbits defined
earlier. From Eq. (29), we also conclude that the semi-
major axis of the orbit will decrease as the energy density
evolves to more negative values. The eccentricity of the
orbits may, however, not remain constant, as it depends
on the variation of both the energy density and the an-
gular momentum. In fact, using Eqs. (22) and (23), one
can show that the eccentricity varies according to

de2

dt
= −12H

l2

σ2
(3ǫ+ p) = −24H

l2

σ2
(2T + V ) . (37)

where we defined the kinetic energy of the field as T =

ρ̇2 + l2

ρ2 , so that ǫ = T + V and p = T − V .

Thus, in an expanding universe, for finite l0, one ex-
pects the eccentricity of the orbit to vary unless T =
−V/2. This last condition is satisfied on average in the
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non-expanding case, corresponding to the Virial Theo-
rem. It does not necessarily hold, however, in an ex-
panding universe, with the semi-major axis of the orbits
decaying as discussed above. It is nevertheless clear that,
at late times, as H and l decrease, the variation of the
eccentricity of the orbits should be smaller. The sign of
2T + V is also not definite, so that the eccentricity may
either increase or decrease during the motion of the probe
brane.
From Eqs. (29) and (33), we obtain:

R(t) =
ρc(t)

1− e2(t)
. (38)

Hence, the variation of the semi-major axis follows the
decrease of the circular solution obtained earlier, being
also affected by the variation of the eccentricity.
In order to have a better understanding of the evolu-

tion of the probe brane’s motion in an expanding uni-
verse, we have solved the equations of motion numer-
ically. Measuring all quantities in terms of the string
length, i.e. setting ls = 1, we choose, as an example,
the values V3 = (T6)

−1 = (2π)−6 and Q6 = 100§. We
set the initial conditions at t = t0 to be those of a non-
expanding elliptical orbit with angular momentum l0 and
eccentricity e0, which we take to be the only free orbital
parameters. The field is initially at its maximum value
ρ0 = ρc0

1−e0
, with ρ̇0 = 0 and θ = π. After determining the

numerical solution for ρ(t), we computed the correspond-
ing energy density and eccentricity evolution, according
to Eqs. (21) and (29), respectively. We used the numeri-
cal solution for the eccentricity to compute R(t), accord-
ing to Eq. (38), and also the maximum and minimum
values of ρ(t) at each orbit, given by:

ρmin(t) = R(t)(1− e(t)) ,

ρmax(t) = R(t)(1 + e(t)) . (39)

We have also determined the evolution of the angular
field variable θ using θ̇(t) = l(t)/ρ(t)2.
In Figure 1 we have plotted the results obtained for

the values l0 = 2000¶ and e = 0.2 in a matter-dominated
universe, α = 2/3, with t0 = 108 ∗∗.
Observing the plots shown in this figure, we conclude

that, as expected, the probe brane evolves continually
through elliptical orbits of decreasing semi-major axis,
so that they fail to close. The radial field then oscillates
between minimum and maximum values which decrease
in time. The global decrease follows that of the circular

§ For the value of Q6 we follow the example analyzed in [11].
¶ The non-relativistic and large distance approximation holds for
this value of initial angular momentum.

∗∗ Notice that although this value of t0 seems quite large, one must
take into account that it is measured in units of the string time,
which is of order 10−43 seconds if the string scale is of the order
of the Planck scale. Thus, we are considering the probe brane to
be moving quite early in the history of the universe.
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FIG. 1: Numerical results obtained for l0 = 2000 and e = 0.2
in a matter-dominated universe, α = 2/3, with t0 = 108. The
plots show (a) the radial field and associated quantities, (b)
the energy density, (c) the eccentricity and (d) the motion of
the probe brane in the complex plane of the field φ.
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solution, Eq. (33), but exhibits an oscillating behavior
associated with the variation of the energy density. Al-
though the latter strictly decreases, as expected, it also
oscillates with decreasing period and amplitude, so that
at later stages its evolution tends to be smooth. Conse-
quently, one observes oscillations in the evolution of the
eccentricity of the orbit. In the example shown in Figure
1, these oscillations have a small amplitude. However, at
earlier times, when the effects of Hubble expansion are
more significant, numerical simulations show that this
amplitude can be quite large. All simulations show that
e(t) starts increasing and, as the period and amplitude
of the oscillations decay, it tends to a constant value.
A constant eccentricity at late times implies that, in

this limit, the energy density should, on average, vary as

〈ǫ(t)〉 ∝ l−2(t) ∝
(

t

t0

)6α

, (40)

tending smoothly to more negative values as observed in
Figure 1. Then, from Eq. (22),

〈dǫ
dt

〉 = −3H〈ǫ+ p〉 = 6H〈ǫ〉 , (41)

so that 〈3ǫ+ p〉 = 0 or, equivalently, 〈2T + V 〉 = 0.
Thus, although at early times the effect of the expansion
makes the eccentricity vary significantly, at late times the
system virializes and starts evolving smoothly between
orbits of constant eccentricity and decaying radius. This
result will be useful later for studying particle production
in the probe brane at late times.
Another interesting consequence of the expansion of

the universe is a rotation of the axis of the elliptical orbits
with time, although this is a small effect in the example
shown in Figure 1. This is simply a result of the growing
eccentricity of the orbits which deviates the maximum
and minimum values of ρ from θ = π and θ = 0, respec-
tively. The orbital axis will, however, stabilize at late
times, as e(t) tends to a constant value.
Numerically, one also observes a decrease in the am-

plitude of the oscillations of ρ(t). This is given by

∆ρ(t) ≡ ρmax(t)− ρmin(t) = R(t)e(t) , (42)

so that the observed decay of the amplitude is mainly
due to the decrease of R(t) as discussed above.
The asymptotic value of the eccentricity depends not

only on the initial time t0 at which the probe starts its
motion but also on the initial values of the orbital angu-
lar momentum and eccentricity. Numerical simulations
show that larger values of l0 lead to a more pronounced
growth of the eccentricity, in agreement with Eq. (37).
The dependence on e0 is less trivial and numerically one
finds a larger eccentricity variation for e0 close to 0 and to
0.9. This is, however, very small for e0 close to 1, which
is expected, as the energy density of the field cannot in-
crease to produce hyperbolic orbits with e > 1 if initially
ǫ < 0. The eccentricity always grows if initially ρ̇ = 0, so

that 2T + V < 0 and dǫ
dt > 0, as most of the eccentricity

variation occurs initially when Hubble expansion is more
significant. The opposite behavior should be observed if
initially 2T + V > 0.
Although the example we have shown refers to a

matter-dominated universe, α = 2/3, our qualitative dis-
cussion and analytical results hold for all α > 0, in par-
ticular to the α = 1/2 radiation-dominated universe.
To summarize the results of this section, we conclude

that, in an expanding universe, the probe brane follows
elliptical orbits with decreasing radius and increasing
frequency and whose eccentricity exhibits an oscillating
behavior and asymptotically tends to a constant value
larger than the initial one. If the motion of the probe
brane begins at late times with a small angular momen-
tum, the latter effect is negligible.
The probe brane will asymptotically collide with the

branes in the stack, as ρ→ 0, but our approximations will
break down before this happens, so that we expect the
motion of the probe brane to deviate significantly from
our previous results as its angular velocity grows and it
spirals towards the central stack. The collision will, how-
ever, occur if nothing else prevents the probe from losing
energy and angular momentum as the universe expands,
and may lead to the annihilation of the probe antibrane
with one of the source branes. For now, we will use the
results obtained in this section to study the production
of particles in the probe brane and we will return to this
issue in section V of this work.

III. PARTICLE PRODUCTION

In the original discussion of the branonium system [10],
it was argued that the fields confined to the probe brane,
such as the gauge fields mentioned earlier, become time-
dependent due to the motion of the probe through the
background spacetime created by the central stack. Con-
sequently, an observer bound to the probe interprets this
variation as corresponding to the production of particles
associated with these fields. Such radiation of energy
into brane particle-modes arises only if the distance be-
tween the probe and the stack varies in time, thus creat-
ing a time-dependent background from the point of view
of brane-bound observers. Although the power radiated
into these modes was estimated in [10], many aspects of
this particle production mechanism remain unclear. In
this section, we will analyze this mechanism in more de-
tail, revealing some new properties of particle production
in branonium, and discuss how the expansion of the uni-
verse modifies this process.
The fields confined to the brane arise, from the string

theory point of view, as states associated with open
strings whose endpoints are attached to the brane, as
discussed earlier. For a single p-brane, which is a 1/2
BPS supersymmetric state, these include bosonic fields
such as gauge bosons and scalar fields, as well as their
fermionic superpartners. If the probe corresponds itself
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to a stack of M parallel p-branes, other degrees of free-
dom associated with a U(M) vector supermultiplet may
arise [20]. Here, we will study the simplest case of a real
scalar field η confined to the probe brane and follow an
effective field theory approach.
For the D6−D6 system described earlier, we write the

effective action for the scalar field η in the form:

Sη = −T6
∫

d7ξ e−Φ
√

−γ̂
(

− 1

2
γ̂µν∂µη∂νη −

1

2
m2η2

)

,

(43)
where m denotes the mass of the scalar field, which in-
cludes its bare mass as well as quantum corrections, and
all other quantities are those defined earlier in this work.
When compactifying 3 of the dimensions parallel to the
brane as before, the scalar field will be decomposed in
its Kaluza-Klein (KK) modes, leading to a tower of 4-
dimensional massive modes, or KK states. We will focus
on the evolution of the zero mode of the field η, whose
mass will simply be given bym. To simplify the notation,
we will denote this mode as η, although one must bear in
mind that it is not the original 7-dimensional field. The
global factor of T6 will not affect our discussion and we
may absorb it into the definition of the field.
First, let us consider the case m = 0. Then, the classi-

cal equations of motion arising from the action Eq. (43)
are given by:

∂µ(e
−Φ

√

γ̂γ̂µν∂νη) = 0 . (44)

Using the results obtained in Section II, and defining
the function f(t) ≡ [h(1− hv2)]

1
2 , we can write this as

η̈ + (3H − F )η̇ − 1

a2
(1− hv2)∇2η = 0 , (45)

where F = ḟ
f and ∇2η ≡ ηij∂i∂jη is the flat 3-

dimensional Laplacian of the field.
To construct the associated quantum description, we

follow the semi-classical approach to the quantization of
scalar fields in curved space [21]. In a curved background
spacetime with a time-varying geometry, as is the case of
the world-volume of the probe brane, the induced time-
variation of the fields modifies the usual canonical quan-
tization procedure, as the quantum operators become
themselves time-dependent. In particular, the creation
and annihilation operators associated with the field will
now evolve in time as the background changes, the same
happening with the associated multi-particle states. This
is the main reason behind the production of particles in
a dynamical background. Let us start by expanding the
field in Fourier modes of the form:

η(x, t) =

∫

d3k

(2π)
3
2

(

akχk(t)e
ik·x+a†

k
χ∗
k
(t)e−ik·x) . (46)

In the quantum theory, ak and a†
k
become the annihi-

lation and creation operators associated with the Fourier
mode k of the field. Expanding the field in this way, we

include all the time dependence of the field in the func-
tions χk(t) and χ∗

k
(t), while the operators remain time-

independent. The conjugate momentum to the field η,
obtained by computing δSη/δη̇, can then be written as

π(x, t) =
a3

f

∫

d3k

(2π)
3
2

(

akχ̇ke
ik·x + a†

k
χ̇∗
k
e−ik·x). (47)

If the creation and annihilation operators satisfy the
canonical commutation relations

[ak, ak′ ] = [a†
k
, a†

k′ ] = 0 , [ak, a
†
k′ ] = δ3(k − k′) , (48)

then the canonical commutators for the field and its con-
jugate momentum, [η(x, t), π(y, t)] = iδ3(x−y), can only
be obtained if the mode functions satisfy the following
Wronskian normalization condition:

χkχ̇
∗
k − χ∗

kχ̇k = i
f

a3
. (49)

This condition is essential for consistency of the quan-
tization procedure. We now follow a semi-classical ap-
proach and consider the evolution of the field modes to
be given by the classical equations of motion, assuming
that any quantum corrections to their propagation can
be neglected. Substituting Eq. (46) into Eq. (45), we
see that each of the Fourier modes evolves independently
according to

χ̈k + (3H − F )χ̇k +
k2

a2
(1− hv2)χk = 0 . (50)

and similarly for the complex conjugate modes χ∗
k
. No-

tice that this equation depends only on k2 ≡ |k|2 but not

the direction of the momenta k̂ ≡ k

k . This is a conse-
quence of the isotropy of our metric ansatz, and we may
write without loss of generality χk(t) = χk(t). It is also
clear, from Eq. (50), that the physical momentum of the
modes is related to their comoving momentum k via

kphys =
k

a

√

1− hv2 . (51)

This expression includes both the expected redshift of
the modes in an expanding universe and the effect of the
probe’s motion through the dynamical background.
Let us now rescale the field modes by defining the mode

functions Xk(t) ≡ a
3
2 (t)f− 1

2 (t)χk(t). These satisfy

Ẍk + ω2
kXk = 0 , (52)

which corresponds to the equation for a harmonic oscil-
lator with a variable frequency given by:

ω2
k =

k2

a2
(1− hv2)− 1

4
(3H − F )2 − 1

2
(3Ḣ − Ḟ ) =

= k2phys +∆2 , (53)

where we have defined

∆2(t) ≡ −1

4
(3H − F )2 − 1

2
(3Ḣ − Ḟ ) . (54)
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As each mode behaves as a harmonic oscillator, we can
define the associated particle number via

Ek =
1

2
|Ẋk|2 +

1

2
ω2
k|Xk|2 = ωk

(

nk +
1

2

)

⇔ nk =
ωk

2

( |Ẋk|2
ω2
k

+ |Xk|2
)

− 1

2
. (55)

It is well known that this quantity is an adiabatic in-
variant for a harmonic oscillator with variable frequency,
as happens, for example, in an oscillating pendulum
whose length is decreased infinitely slowly [21]. Thus,
the number of quanta in a given Fourier mode k can
only change if its frequency varies in a non-adiabatic way,
which can be expressed by the following condition [13]:

∣

∣

∣

∣

dωk

dt

∣

∣

∣

∣ ∼> ω2
k . (56)

For our particular case, this gives, in the limit hv2 ≪ 1,

|Hk2phys −∆∆̇| ∼> (k2phys +∆2)
3
2 . (57)

This condition will then constrain the number of parti-
cles produced in each physical momentum mode by the
motion of the probe brane.
To quantify this number of particles, we need to look

for solutions of the mode equation, Eq. (52). We will
start by discussing what happens in a non-expanding
universe and then we will analyze the effects of Hubble
expansion on particle production.

A. Non-expanding universe

Consider the motion of the probe brane in a non-
expanding universe, H = 0, and assume that the non-
relativistic and large distance approximations discussed
earlier are valid. As we have seen in Section II, the probe
follows closed elliptical trajectories if its energy (density)
is negative, ǫ < 0. If hv2 ≪ 1, we have to leading order:

1− hv2 ≃ 1 , kphys ≃ k , f ≃ h1/2 . (58)

Then, we may take the following approximations:

F =
ḟ

f
≃ 1

2

ḣ

h
,

Ḟ ≃ 1

2

[

ḧ

h
−
(

ḣ

h

)2]

, (59)

so that we can write:

∆2 = −1

4
F 2 +

1

2
Ḟ ≃ − 5

16

(

ḣ

h

)2

+
1

4

ḧ

h
. (60)

An exact analytical expression for the time variation of
the radial field ρ(t) can be obtained in a non-expanding
universe, being given implicitly by

ρ(t) = R
[

1− e cos
(

ψ(t)
)]

. (61)

The angular variable ψ(t) satisfies

t− t0 = Ω−1
[

ψ − ψ0 + e(sinψ − sinψ0)
]

, (62)

where ψ0 ≡ ψ(t0) and Ω =
√

σ
2R

− 3
2 is the angular fre-

quency of the orbit. The angular variables ψ and θ are
related by:

tan
θ

2
=

√

1 + e

1− e
tan

ψ

2
. (63)

For small eccentricity orbits, e≪ 1, Eq. (62) gives, to
leading order in e:

ψ ≃ ψ0 +Ω(t− t0) . (64)

Choosing ψ0 = π we have, in this approximation,

ρ(t) ≃ R
[

1 + e cos
(

Ω(t− t0)
)]

. (65)

This allows us to determine the non-relativistic and
large distance expression for ∆2, in the case of small ec-
centricity orbits. To lowest order, we then obtain:

∆2 ≃ 1

4

√

T6V3
2

Q6

R
eΩ2 cos

(

Ω(t− t0)
)

. (66)

Defining

δ2 ≡ 1

4

√

T6V3
2

Q6

R
eΩ2 , (67)

the variable frequency of the mode with comoving mo-
mentum k can, hence, be approximated by:

ω2
k(t) ≃ k2 + δ2 cos

(

Ω(t− t0)
)

. (68)

If we now rewrite Eq. (52) in terms of the rescaled
time variable z ≡ Ω

2 (t− t0), we obtain:

X ′′
k +

(

Ak − 2q cos(2z)
)

Xk = 0 , (69)

where

Ak ≡ 4k2

Ω2
, q ≡ −2

δ2

Ω2
. (70)

Eq. (69) has the form of the well-known Mathieu equa-
tion [22] with parameters Ak and q determined by the or-
bital parameters of the probe brane and by the value of
the comoving momentum k of each mode. In the param-
eter space (Ak, q), the Mathieu equation exhibits both
stable and unstable solutions, the latter being closely as-
sociated with the phenomenon of parametric resonance
[23]. As we are working under the assumption that the
probe brane’s orbit has a large radius and a small eccen-
tricity, it is easy to check that |q| ≪ 1 (the analysis is
independent of the sign of q). In this region of parameter
space, the Mathieu equation exhibits instabilities in a se-
ries of narrow resonance bands near Ak ∼ n, with n being
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a positive integer, and with a width in comoving momen-
tum space approximately given by ∆kn ∼ |q|n. In these

resonance bands, the solution evolves as Xk ∝ eµ
(n)
k

z,

with a real exponent µ
(n)
k , according to Floquet’s Theo-

rem.
The most important of these is the first resonance

band, which occurs when

1− |q| − 1

8
q2 ∼< Ak ∼< 1 + |q| − 1

8
q2 . (71)

The exponent µk ≡ µ
(1)
k can then be approximately

written as

µk ≃ 1

2

√

q2 − (Ak − 1)2 . (72)

This is, as claimed, real for 1−|q| ∼< Ak ∼< 1+ |q|, hav-
ing a maximum value of |q|/2 for Ak ≃ 1. This implies
that particle-modes lying inside this resonance band will
be exponentially amplified, leading to a resonant pro-
duction of particles. Thus, from Eq. (70), the center
of the resonance band occurs for comoving momentum
kc ≃ Ω/2, while its lower and upper bounds are given by

kmin ≃
√

(

Ω

2

)2

− δ2

2
≃ kc

[

1−
(

δ2

Ω

)2]

,

kmax ≃
√

(

Ω

2

)2

+
δ2

2
≃ kc

[

1 +

(

δ2

Ω

)2]

, (73)

so that the resonance band has a width in comoving mo-

mentum space of ∆kres ≡ kmax − kmin ≃ δ2

Ω . This is
quite small compared to the value of the center of the
resonance, as ∆kres

kc
≃ |q| ≪ 1, which means that parti-

cle production occurs in a regime of narrow parametric
resonance. The particles produced by this mechanism
have typical energies of order ωk ≃ Ω

2 , i.e. with half
the typical energy of the field φ. This agrees with the
discussion in [10], where it is stated that particles are
produced in pairs with opposite momenta, as if resulting
directly from the decay of the interbrane distance field††.
We have found in this work, however, that these parti-
cles are produced resonantly, the associated field modes
being exponentially amplified.
After the modes inside the resonance band have been

amplified sufficiently, we may write, from Eq. (55),

nk ∝ e2µkz = eµkΩ(t−t0) , (74)

where we used that µk ∼<
|q|
2 ≪ 1, so that the term in-

volving |Ẋk|2 in Eq. (55) can be neglected. This also
implies that, although the particle number in each mode

†† This field can be seen as a classical condensate of zero momen-
tum particles, so that only pair production of η-particles ensures
momentum conservation.

grows exponentially, the resonance takes a long time
to develop. In particular, the typical resonance time,
∆tres = (µkΩ)

−1, is much larger than the orbital pe-
riod of the probe brane, which is of order 2πΩ−1. This is
characteristic of the narrow resonance regime and, hence,
a significant particle number is only produced after the
probe brane has completed a large number of orbits,
given by (2πµk)

−1.
To have an idea of the order of magnitude of these

quantities, consider the scenario studied in Section II,
where V3 = T−1

6 = (2π)6 with Q6 = 100. Then, for
an orbit with eccentricity e = 0.01 ≪ 1 and an angu-
lar momentum l = 500, we have

√

T6V3/2
Q6

R ≃ 0.03,
which satisfies the large distances approximation, and
|q| ≃ 10−4 ≪ 1. This implies that the probe brane will
have to complete approximately 3 × 103 orbits for the
particle number to be amplified by one e-folding.
To illustrate the results obtained earlier, we have

solved Eq. (52) for the example described above. An ini-
tial vacuum state with zero particle number corresponds
to the following initial conditions:

Xk(t0) =
1

√

2ωk(t0)
, Ẋk(t0) = −i

√

ωk(t0)

2
. (75)

In Figure 2 we have plotted the numerical results ob-
tained for the comoving momentum at the center of the
resonance band, kc. The linear evolution observed for the
logarithm of the particle number shows that, as expected,
this quantity is being amplified exponentially with time,
but that a significant number of particles is produced
only after the probe brane has completed a few thou-
sands of orbits.

10000 20000 30000 40000 50000 60000
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FIG. 2: Numerical results obtained for the evolution of the
particle number associated with the mode in the center of
the resonance band for an orbit with e = 0.01 and l = 500,
giving q ≃ 10−4. The time coordinate t is given in units of
the orbital period T = 2πΩ−1 ≃ 1.57 × 105.

We note that, although this solution was obtained nu-
merically, a formal analytical solution of the Mathieu
equation can be written in terms of the Mathieu sine
and cosine functions.
In Figure 3 we also show the evolution of the particle

number for a mode outside the limits of the resonance
band. In this case, µk takes imaginary values and nk

exhibits an oscillating behavior with a small amplitude,
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confirming that only for comoving momenta kmin ≤ k ≤
kmax a significant particle number is produced by the
elliptical motion of the probe brane. It is also worth
mentioning that, in the limit of circular orbits, e → 0,
the parameter q vanishes and there is no amplification
of any of the particle momentum modes. This confirms
our early assumption that the interbrane brane distance
needs to vary for particle production to occur.
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FIG. 3: Evolution of the particle number for a particle-mode
outside the resonance band for an orbit with e = 0.01 and
l = 500, giving q ≃ 10−4. The comoving momentum of the

mode is k = kc
`

1 + 4 δ
2

Ω2

´

> kmax. The time coordinate t is

given in units of the orbital period T = 2πΩ−1 ≃ 1.57 × 105.

So far we have not included the backreaction effects of
the produced particles on the probe’s motion. We will
return to this later in section III C, where we estimate
the energy density damped into brane-modes by the res-
onance and discuss how this affects the probe brane’s
orbital decay.
Consider now the case where the field has a non-

vanishing mass, m 6= 0. In this case, the classical equa-
tions of motion Eq. (44) can be generalized to

∂µ(e
−Φ

√

γ̂γ̂µν∂νη)− e−Φ
√

−γ̂m2η = 0 , (76)

or, explicitly,

η̈ + (3H − F )η̇ − 1

a2
(1− hv2)∇2η +

(1− hv2)

h
1
2

m2η = 0 .

(77)
Each of the Fourier modes then evolves independently

according to

χ̈k+(3H−F )χ̇k+

[

(1−hv2)k
2

a2
+

(1− hv2)

h
1
2

m2

]

. (78)

This implies that all modes have, in this case, an ef-
fective physical mass which is different from the mass
parameter m due to the motion of the probe brane:

m2
eff =

(1 − hv2)

h
1
2

m2 . (79)

Notice that the mass is not, however, affected by the
expansion of the universe. When writing the equations
of motion in terms of the rescaled mode function Xk(t)

defined earlier, we again obtain the equation for a har-
monic oscillator with a varying frequency, which is now
given by:

ω2
k = k2phys +m2

eff +∆2 , (80)

where all the quantities are time-dependent in the gen-
eral case. Let us now set H = 0 and compare these
results with the ones obtained for the particle produc-
tion mechanism in the massless case. First, notice that,
in the non-relativistic and large distance approximation,
we have m2

eff ≃ m2. Thus, the leading order modifica-
tion introduced by the mass of the field can be obtained
by simply replacing k2 → k2 +m2.
Following the same procedure as before, one can reduce

the particle-mode equation to the Mathieu equation, with
the parameter Ak being now given by:

Ak =
4(k2 +m2)

Ω2
. (81)

The parameter q, which quantifies the strength and
width of the resonance phenomenon, is not modified by
the introduction of the mass parameter, so that we expect
the particle production mechanism to occur as before.
In this case, however, the center of the resonance band
is shifted to a lower momentum, kc =

√

(Ω/2)2 −m2,
which gives Ak = 1. The upper and lower limits of the
resonance band are also modified, being now given by:

kmin =

√

(Ω/2)2 −m2 − 1

2
δ2 ,

kmax =

√

(Ω/2)2 −m2 +
1

2
δ2 , (82)

which in turn alters the width of the resonance band
in the obvious way. If, as in the massless case, we have
δ2/2 ≪ k2c , we may write ∆kres ≃ δ2/2kc, which is larger
than the corresponding value in the massless case, satis-
fying nevertheless the narrow resonance condition. No-
tice that this implies an upper bound for the mass of the
particles which can be produced by this mechanism,

m ≤
√

(

Ω

2

)2

− 1

2
δ2 ≃ Ω

2
. (83)

In the particle description discussed earlier, this simply
means that each “particle” in the interbrane distance
field φ needs to have enough energy to decay into two
η-particles at rest. A residual kinetic energy is also nec-
essary if all the modes inside the resonance band are to
be excited. In the non-relativistic and large distance ap-
proximation, the orbital frequency of the probe brane is
assumed to be small, so that only particles with small
masses may be excited during its motion. One must
recall, however, that we are measuring all quantities in
terms of the typical string parameters. In particular, the
orbital frequency should be small compared to the string
energy scale. If the latter corresponds to the Planck scale,
then the produced particles can still be quite massive.
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For the example studied earlier in this section, with
orbital parameters Ω ≃ 4 × 10−5, particles up to masses
of order 1013 GeV can be resonantly created. Recalling
the definition of φ in terms of the physical interbrane
distance, Eq. (17), we may write the upper bound on
the mass of the produced particles in terms of the phys-
ical semi-major axis of the orbit, Rphys =

√

2/T6V3R.
Inserting back the missing ls factors, we obtain:

mmax =

√

Q6

2Rphys

ls
Rphys

Ms , (84)

whereMs = l−1
s is the string energy scale. As we assumed

in the beginning that r ≫ Q6 ≫ ls, it is clear from this
expression that mmax ≪ Ms, which allows nevertheless
for the production of very massive particles. In general,
particles living in the world-volume of the probe brane
will be massive, so that we need to use the results ob-
tained above to describe the parametric resonance. For
masses which are small compared to the typical orbital
energies of the probe, the simpler treatment of the m = 0
case will be sufficient.

B. Expanding universe

Let us now consider the case of an expanding uni-
verse, with H = α

t > 0. The inclusion of the scale
factor will modify our previous analysis of particle pro-
duction in several ways. First, it will change the fre-
quency of each harmonic oscillator particle-mode, namely
modifying the factor ∆2(t), given in Eq. (54). Also,
the physical momenta of the particle-modes will be red-
shifted as the universe expands, so that, in the non-
relativistic and large distance approximation, we have
kphys ≃ k/a ∝ (t/t0)

−α. Finally, the motion of the probe
brane will be altered, as we have seen in Section II, so
that the semi-major axis of elliptical orbits will decrease
as R(t) ∝ (t/t0)

−6α, making the angular frequency con-
sequently increase as Ω(t) ∝ (t/t0)

9α. Furthermore, if
the Hubble parameter is sufficiently large, the orbital ec-
centricity may exhibit a significant growth.

1. Analytical results

All the modifications make a complete analytical study
of particle production in the probe brane rather complex.
In order to determine the leading effects of the expan-
sion, we will consider the motion of the probe brane at
sufficiently late times, so that some of the effects of the
expansion can be discarded. As we have concluded in
Section II, the variation of the eccentricity of the orbits
is, in this regime, very small, so that it may be neglected.
The explicit effects of the expansion in modifying the fac-
tor ∆2 may also be discarded in this limit, provided that

|F | ≫ 3H and |Ḟ | ≫ |3Ḣ|, or explicitly

t≫ 6α

eΩ

(

Rphys

Q6

)

, t2 ≫ 6α

eΩ2

(

Rphys

Q6

)

. (85)

The first of these conditions will, a priori, be more con-
straining. For the example we have been following in this
section, the first condition gives t ≫ 5 × 108 while the
second only implies the constraint t≫ 3.5× 106.
With these constraints in mind, we now have to analyze

how Hubble expansion modifies the factors F and Ḟ in
the variable harmonic oscillator frequency. The radial
interbrane distance field ρ can now be written, in the low
eccentricity orbit approximation, as:

ρ(t) ≃ R(t)
[

1 + e cos
(

Ω(t)(t− t0)
)]

, (86)

with

R(t) = R0

(

t

t0

)−6α

, Ω(t) = Ω0

(

t

t0

)9α

. (87)

Computing its time derivatives, we find that they in-
volve terms arising from Hubble expansion which are sup-
pressed by at least one power of t, being negligible at
late times. There are also terms involving the quantity
∆t
t0

= t−t0
t0

. If the time necessary for particle production
to occur is smaller than the age of the universe at that
time, we may also discard these terms. After some alge-
bra, the leading order modification to ∆2 is then given
by

∆2(t) ≃ δ2(t) cos
(

Ω(t)(t− t0)
)

. (88)

The quantity δ2 is now time-dependent and can be ob-
tained trivially by including the appropriate time varia-
tion of the orbital parameters in its non-expanding ex-
pression, Eq. (67). This gives

δ2(t) = δ20

(

t

t0

)24α

, δ20 ≡ 1

4

√

T6V3
2

Q6

R0
eΩ2

0 . (89)

Then, taking into account the momentum redshift, we
can write the particle-mode equation, to lowest order, as:

Ẍk+

[

k2
(

t

t0

)−2α

+δ20

(

t

t0

)24α

cos
(

Ω(t)(t−t0)
)

]

Xk = 0 .

(90)
Following the same reasoning as in the non-expanding

case, we rescale the time coordinate by defining the vari-

able z ≡ Ω(t)
2 (t − t0). As the angular frequency of the

orbit is now time-dependent, this change of variables will
introduce new terms in the equation. These will, how-
ever, be suppressed by powers of t and involve first and
second derivatives of the mode function Xk. In the non-
expanding case, these were quite small compared to Xk,
and one expects them to be negligible in this case as well.
Using that, to lowest order, z ≃ Ω0

2 ∆t, we may write the
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leading order equation for the mode function in terms of
the variable z as

X ′′
k + [Ak(z)− 2q(z) cos(2z)]Xk = 0 , (91)

with

Ak(z) ≡ Ak0(1− γz) , q(z) ≡ q0(1 + ξz) , (92)

where Ak0 ≡ 4k2/Ω2
0 and q0 ≡ −2δ2o/Ω

2
0 correspond to

the initial values of the parameters of the Mathieu equa-
tion, given by their non-expanding case expressions, and
the coefficients γ and ξ are given by

γ ≡ 40α

Ω0t0
, ξ ≡ 12α

Ω0t0
=

3

10
γ . (93)

We, hence, conclude that the leading order effect of
the expansion is to make the coefficients of the Mathieu
equation vary in time. In particular, their variation is,
to a first approximation, linear in the variable z and con-
trolled by the single parameter γ, which will be small at
late times. One must take into account, however, that
Eq. (91) is not the Mathieu equation and, namely, does
not satisfy the conditions of Floquet’s Theorem which
allowed us to define the coefficient µk. Nevertheless, we
can use the results obtained in the non-expanding case
from the properties of the Mathieu equation as a guide
to describe the behavior of the modes when H > 0.
First, notice that, as Ak decreases with z, the position

of the center of the resonance band, at Ak = 1, will be
shifted to higher momentum modes:

kc(z) =
kc0

1− γz
, kc0 ≡ Ω0

2
. (94)

Thus, we expect modes with comoving momentum larger
than kc0 to be excited as the probe’s orbit decays. To bet-
ter understand the evolution of each mode, let us analyze
the evolution of the exponent µk(z), which is given by:

µk(z) ≃
1

2

√

q20(1 + ξz)2 − (Ak0(1− γz)− 1)2 . (95)

The zeros of µk(z) occur for

z1 =
−|q0|+Ak0 − 1

γAk0 + ξ|q0|
, z2 =

|q0|+Ak0 − 1

γAk0 − ξ|q0|
, (96)

with z2 > z1. This means that µk(z) will be real for
z1 ≤ z ≤ z2 and pure imaginary for z < z1 and z > z2.
Figure 4 illustrates the typical evolution of µk(z) for a
generic Fourier mode.
Thus, each mode may only experience the resonant

regime during a finite amount of time, when µk(z) is real
and the mode is inside the resonance band. During the
periods where µk(z) is pure imaginary, we expect the
particle number to exhibit an oscillating behavior. In
the non-expanding case, the frequency and amplitude of
these oscillations for modes outside the resonance band
is determined by the value of Im µk, so that the larger

z1 z2

z

Re ΜkIm Μk

FIG. 4: Evolution of the real and imaginary parts of the expo-
nent µk(z) for a generic mode. The shaded area corresponds
to the period the mode spends inside the resonance band.

the latter the smaller the period and the amplitude of
the oscillations. As, in an expanding universe, Im µk(z)
changes in time, we expect the frequency and amplitude
of the oscillations of the particle number to vary as the
probe brane’s orbit decays. Similarly, as Re µk is not
constant when the mode is inside the resonance band,
the strength of the resonance is also expected to vary.
Particle modes will then have different behaviours ac-

cording to their position relative to the initial resonance
band, which can be parametrized by:

Ak0 ≡ 1 + β|q0| . (97)

Recalling that the centre of the original resonance band
corresponds to β = 0 and that the probe’s motion begins
at z = 0, we need to distinguish three different types of
modes:

I. β < −1

As both z1 and z2 are negative in this case, these
modes will always be outside the resonance band,
with an imaginary exponent µk(z) for all z ≥ 0.

II. −1 ≤ β ≤ 1

This case corresponds to the particle-modes inside
the resonance band in a non-expanding universe,
with z1 ≤ 0 but z2 ≥ 0. Hence, they will start
inside the resonance band but stop experiencing the
resonant regime for z > z2.

III. β > 1

Although these modes are outside the initial reso-
nance band, they will experience the resonant be-
havior at some later stage, as z2 > z1 > 0.

For both type II and type III modes, the maximum
value of Re µk(z) occurs for zmax = z1+z2

2 , giving, for
|q0| ≪ 1,

µk(zmax) ≃
|q0|
2

(

1 +
3

10
β|q0|

)

. (98)
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This gives the same result as in the non-expanding
limit for β = 0. It is easy to check that zmax → ±∞ as
γ → 0, the same happening for z1 and z2. This implies
that only modes for which z1 ≤ 0 (→ −∞) and z2 ≥ 0
(→ +∞) will be excited in this limit, in agreement with
the fact that only type II modes are excited in the non-
expanding case (γ = 0) and that these experience the
parametric resonance during an infinite period of time. It
is also clear from Eq. (98) that higher momentum modes
are excited by the resonance at later times, as expected
from the evolution of the center of the resonance band.
The total time each type II or type III mode spends

inside the resonance band is given by:

∆zband ≡ z2 − z1 ≃ 2|q0|
γ

(

1− 7

10
β|q0|

)

. (99)

It is clear that this quantity decreases with γ, so that
the smaller the Hubble parameter the more time each
mode is excited by the resonance. In the limit γ → 0,
∆zband → +∞, but as previously discussed this limit
only applies to type II modes, as all the others are outside
the resonance band in this limit. One also concludes that
higher momentum modes will spend less time inside the
resonance band, which suggests these will be less excited.
The analysis of the properties of the exponent µk(z)

thus provides a very clear insight on the qualitative evo-
lution of all momentum modes. We would like, however,
to be able to quantify the particle number produced by
the resonance in each mode. In the non-expanding case,
Xk(z) ∝ eµkz , which implied nk(z) ∝ e2µkz in the limit of
large particle number for type II modes. Despite the vari-
ation of µk in the H > 0 case, we may take this exponent
to be approximately constant during an infinitesimal in-
terval between z and z + dz. Then, during this interval,
Xk will be amplified by a factor exp(µk(z)dz) if the mode
is inside the resonance band. Integrating this result, we
expect that, after a significant number of particles has
been produced,

nk(z) ∝ exp

(

2

∫ z

zi

µk(z
′)dz′

)

. (100)

The initial time zi refers to the time the mode enters
the resonance band, i.e. zi = 0 and zi = z1 for type II
and type III modes, respectively. One can use Eq. (100)
to estimate the total particle number produced in each
mode by the parametric resonance. The details of this
calculation are given in Appendix A. For type II and type
III modes, one obtains:

logn
res(II)
k (z2) =

q20
2γ

1

1 + β|q0|
(

β
√

1− β2 +
π

2
+

+ arcsinβ
)

,

logn
res(III)
k (z2) =

q20
2γ

π

1 + β|q0|
. (101)

Eq. (101) constitutes the main result of this section,
giving the leading order expressions for the particle num-

ber density produced by the resonance in an expand-
ing universe. From these approximated expressions, we
can see that the parameter q20/γ controls the strength
of the resonance, a significant number of particles be-
ing produced only if γ ∼< q20 . Recall that, in the non-
expanding case, the typical resonance time was given by
∆tres = (µkΩ)

−1 ∼ (|q0|Ω0/2)
−1. The typical time a

mode spends inside the resonance band in the expand-
ing case is, from Eq. (99), of order ∆tband ∼ 4q0

γ Ω−1
0 .

Hence, apart from numerical factors, the condition for a
significant number of particles to be produced is simply
stating that the time a given mode spends inside the res-
onance band should be greater than the typical time the
resonance takes to develop, ∆tband ∼> ∆tres.

From the results in Eq. (101), we can also conclude
that the total particle number produced increases with
β for −1 ≤ β ≤ 1. On the other hand, for β > 1, it
exhibits a slow decrease with β, showing that the pro-
duction of high momentum modes is suppressed. This
agrees with the fact that high momentum modes spend
less time inside the resonance band, as obtained above.

2. Numerical simulations in an expanding universe

To check the results obtained so far for the resonant
particle production in an expanding universe, we have
solved Eq. (91) numerically. In order to simplify the
computation, we have rescaled the mode functions via
X̃k ≡

√

2ωk(t0)Xk, so that initially we have approxi-
mately

X̃k(0) ≃ 1 , X̃ ′
k(0) ≃ −i . (102)

We then computed the function

ñk(z) = |X̃k(z)|2 + |X̃ ′
k(z)|2 . (103)

This is related to the physical particle number density of
each mode, given by Eq. (55), approximately by nk ≃
ñk

4a(t) , taking the limit of large particle number. Note

that ñk = 2 initially, as we neglected the 1/2 factor in
Eq. (55), so that the effects of this normalization have
to be taken into account before the resonance produces
a significant number of particles.

In Figure 5, we illustrate the results obtained for modes
of types I, II and III, including also the analytical pre-
diction obtained from Eq. (100). These simulations cor-
respond to an original resonance strength |q0| = 10−3,
the effects of the expansion being quantified by γ = 10−7

(recall Eq. (93)). These values ensure the validity of the
approximations made and also that a significant particle
number is produced for modes of types II and III.

Observing the plots shown in this figure, we see that all
three particle-modes follow the expected behavior. The
type I mode exhibits an oscillating particle number, with
oscillations of decreasing amplitude and period, confirm-
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FIG. 5: Numerical results obtained for the particle number
with |q0| = 10−3 and γ = 10−7. The plots correspond to (a) a
type I mode, with β = −3, (b) a type II mode, with β = 0 and
(c) a type III mode with β = 3. The solid line corresponds to
the numerical solution in all three cases, while in (b) and (c)
the dashed line gives the corresponding analytical prediction.
The shaded area corresponds to the period that each mode
spends inside the resonance band.

ing that, in fact, no net particle number is produced‡‡.
Both the type II and the type III modes are exponentially
amplified during a finite period, after which their particle
number oscillates with decreasing amplitude and period,
tending to an adiabatically constant value. Also, as ex-
pected, the type III mode exhibits an oscillating behavior
before entering the resonance band.
We can also conclude from Figure 5 that the particle

‡‡ The positive value of log ñk reflects the normalization chosen in
Eq. (103) and does not correspond to a physical particle number.

number follows the predicted evolution inside the reso-
nance band, the main differences between the numerical
and the analytical solutions occurring near the endpoints
of the resonance band, where the transitions between res-
onant and oscillating regimes take place. The discrep-
ancies for low particle number are also due to the nor-
malization of ñk, as discussed earlier. It is nevertheless
clear that Eq. (100) gives a quite good description of
the resonant particle production regime in an expanding
universe, although it underestimates the particle number
density, and that the contribution of the non-resonant
periods are subdominant, as expected.
The total particle number produced by the end of the

resonant regime, ñk(z2), was computed for several values
of β, keeping |q0| and γ fixed at the values chosen above.
The results we have obtained are shown in Figure 6.
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FIG. 6: Numerical results for the value of the total particle
number produced by the resonance as a function of β. Plot
(a) shows the results for small values of β, including type
II and III modes, and plot (b) shows the results for large
values of β, where only type III modes are present. The solid
line corresponds to the numerical results while the dashed
line gives the corresponding analytical prediction. All results
correspond to |q0| = 10−3 and γ = 10−7.

One observes that ñk(z2) increases with β for type II
modes and slowly decreases with β for type III modes,
in agreement with Eq. (101). The main discrepancies
between the numerical results and the analytical predic-
tion are again due to the smooth transition between the
resonant and non-resonant regimes at z2, with the latter
giving a subdominant contribution to the total particle
number, which is more significant for type III modes. The
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different number of oscillations the modes undergo before
entering the resonance band give the oscillations that can
be observed in Figure 6. These are suppressed for large
β as the pre-resonance oscillations of the particle number
give a negligible contribution for high momentum modes.
Numerical simulations also show that, as expected, the

particle number in all modes decreases with γ, so that
Hubble expansion may inhibit the resonant amplification
of particle modes at early times.
Thus, we conclude that our analysis of the resonance

regime gives a good description of the mechanism of par-
ticle production in branonium for an expanding universe
and that the corrections arising from the non-resonant
regimes are subdominant. Extrapolation of this discus-
sion to high momentum modes is, however, difficult, as
these will only be excited at late times, where the approx-
imations we have considered may no longer hold. The
production of high momentum particles is nevertheless
suppressed, as we have concluded earlier. Furthermore,
at each given time z > 0, only the modes with z1 < z
have entered the resonance band, which means that only
those modes for which

A0k < Amax
0k (z) ≡ 1 + |q0|(1 + ξz)

1− γz
(104)

have started being excited. This gives the following mo-
mentum cut-off for modes which have already been am-
plified at t > t0:

kmax(t) =
1

2

[

2δ20

(

1 + 6α
∆t

t0
+Ω2

0

)]
1
2
(

1− 20α
∆t

t0

)− 1
2

.

(105)
Notice that this gives the expected endpoint of the reso-
nance band in the limit α→ 0, given by Eq. (73).
The generalization of these results for massive parti-

cles follows the same reasoning used in the non-expanding
case, with the substitution k2phys → k2phys+m

2 within our
approximations. Note that, in the expanding case, the
physical momentum of the particles is redshifted while
their mass remains the same as the universe expands.
This modification will then produce a more complex evo-
lution of the parameter Ak(z) in the modified Mathieu
equation, Eq. (91), given to lowest order by:

Ak(z) = Ak0(1− γz) +
4m2

Ω2
0

(1− ςz) , (106)

where ς ≡ 9
10γ and all other quantities are defined as

before. Although this will alter the way the resonance
band moves into higher momentum modes as the probe’s
orbit decays, the evolution of the modes is expected to
follow the same qualitative behavior as in the massless
case, so that we will not analyze this in more detail.
We, thus, conclude that, to lowest order, the paramet-

ric resonance survives in an expanding universe, although
modes are excited only during a finite period. These re-
sults hold only at late times but we note once again that
all quantities are measured with respect to the typical

string values. We need, however, to bear in mind that
Eq. (91) is not the Mathieu equation and that several
other terms in Eq. (52) may become important at early
times. These may alter the excitation time and the am-
plification of each mode, or even prevent any particle
production. It is nevertheless clear that the effects of
the expansion are suppressed at the typical energies in-
volved in the probe’s motion, so that one still expects a
significant number of particles to be produced.

C. Energy radiated into brane particle-modes

As the resonance develops, the probe brane loses en-
ergy to excited η-particle modes and one may wonder
whether the energy radiated by this mechanism is suffi-
cient to affect the probe brane’s motion.

Let us start by computing the energy density of
massless particles produced by the resonance in a non-
expanding universe. We have seen that each rescaled
mode function Xk has an associated harmonic oscilla-
tor energy function Ek = ωk(nk + 1/2). For the mode
functions χk =

√
fXk, the associated energy function is

approximately the same in the non-relativistic and large
distance limit, where f ≃ 1. Hence, the total energy
density radiated into brane particle-modes is given by:

ǫp =

∫

d3k

(2π)3
Ek =

1

2π2

∫ +∞

0

dk k2ωk

(

nk+
1

2

)

, (107)

where we have used the momentum space isotropy dis-
cussed earlier in this work. After a significant number
of particles has been produced, we may take nk ≫ 1/2
and neglect the 1/2 factor in Eq. (107). Also, we know
that particles are produced in a narrow resonance band
centered at kc = Ω/2 with a band width ∆kres ≃ δ2/Ω =
|q|Ω/2. The particle number distribution in momentum
space can then be well approximated by a Gaussian dis-
tribution of the form:

nk(t) = nkc
(t) exp

(

− 1

2

(k − kc)
2

∆k(t)2

)

. (108)

The gaussian distribution width ∆k should correspond
to a fraction of the resonance band width, so that we
may write ∆k = λ∆kres. The coefficient λ is expected to
be time-dependent as the central mode kc is more ampli-
fied than all the other modes in the resonance band, so
that the distribution should become more sharply peaked
about this value with time. The advantage of writing the
particle number distribution in this form is that it allows
us to further approximate the result by a δ-function dis-
tribution, taking into account that ∆k/kc ≪ 1, as dis-
cussed earlier. Introducing the correct normalization, we
may then write:

nk(t) ≃ nkc
(t)

√
2π∆k(t)δ(k − kc) . (109)
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Using ωkc
≃ kc = Ω/2, we obtain:

ǫp ≃ λ

π
√
2π

(

Ω

2

)3

∆kresnkc

≃ λ

π
√
2π

|q|
(

Ω

2

)4

nkc
, (110)

where the time dependence of nkc
, λ and consequently

ǫp is implicit. Notice that, when q → 0, we have ǫp →
0, as the resonance vanishes in this limit. To have an
estimate of the order of magnitude of this quantity, take
the example we have considered before in the discussion
of particle production in a non-expanding universe, for
which |q| = 10−4 and Ω = 4× 10−5, in units of the string
length. By solving the equations of motion numerically
and fitting the obtained particle number distribution to
the gaussian distribution given in Eq. (108), we may
determine the values of λ and nkc

. For an initial time
t0 = 109, we obtained the following results:

nkc
(5t0) ≃ 7.5× 102 , λ(5t0) ≃ 0.20 ,

nkc
(10t0) ≃ 1.6× 107 , λ(10t0) ≃ 0.12 . (111)

These two examples confirm that, indeed, the reso-
nance width decreases in time. From Eq. (110), we
obtain for these two cases ǫp(5t0) ≃ 3 × 10−22 and
ǫ(10t0) ≃ 4× 10−18, in units of the string energy scale.
The energy density radiated into brane particle-modes

should then be compared with the energy density of
the interbrane distance field φ, which is given by ǫ =
−σ/(2R) = −(σΩ/2)

2
3 . For the example considered

above, ǫ ≃ −2× 10−2, so that the value obtained for the
energy density radiated into particles up to t = 10t0 =
1010 is negligible when compared to the probe brane’s
energy density. In general, we obtain:

ǫp
|ǫ| ≃

λ

π
√
2π

|q|
σ

2
3

(

Ω

2

)
10
3

nkc
, (112)

which gives the main result of this subsection. This
means that, in the previous example, if we take λ ∼
0.01−0.1, up to a η-particle number density of 1023−1024

can be produced without affecting significantly the mo-
tion of the probe brane.
These results can be easily generalized for the massive

case, by taking into account the changes in kc and ∆kres
discussed earlier. For δ2/2 ≪ k2c , we obtain:

ǫp
|ǫ| ≃

λ

π
√
2π

|q|
σ

2
3

kc

(

Ω

2

)
7
3

nkc
, (113)

with kc =
√

(Ω/2)2 −m2 and which, as expected, re-
duces to Eq. (112) in the limit m → 0. As the momen-
tum of the produced particles decreases with m, it is easy
to conclude that the energy damped into brane particle-
modes is smaller for more massive particles (recall that
the strength of the resonance is not affected by the mass
of the particles).

The analysis of the energy radiated into brane particle-
modes is more difficult to perform in the expanding uni-
verse case, as more effects have to be taken into account.
First, we need to recall the approximate relation between
ñk and the physical particle number. Next, we need to
notice that the mode functions χk are redshifted by a
factor of a(t)−

3
2 with respect to the harmonic oscillator

mode functions Xk. Finally, for the purposes of deter-
mining the energy density of the produced particles, we
may take ωk(t) ≃ k/a(t). Then, we have

ǫp(t) ≃
1

a(t)5

∫

dk k3

8π2
ñk . (114)

We see that the energy density of the produced parti-
cles is redshifted by the usual power of a−3, but is further
reduced due to the redshift of the physical momentum
and energy of the modes. We can use the expressions ob-
tained for the particle number produced by the resonance
in Eq. (101) to determine ñk, as we have concluded that
the effects of the non-resonant periods are subdominant.
Writing them in terms of the comoving momentum of the
modes, we conclude that, for type III modes,

ǫp(t) ∝
∫

dk k3 exp

(

q20Ω
2
0π

8γ

1

k2

)

. (115)

To determine the limits of this integral, one must re-
call that, at a given time, only a finite number of modes
has entered the resonance band. In particular, one may
use the value computed in Eq. (105) as the upper limit
of this integral, although some of these modes have not
yet been completely excited by the resonance. The lower
limit of the integral will be the first type III mode, with
k = k∗ ≡ kc0

√

1 + |q0|. This gives a finite energy den-
sity radiated into brane modes at each finite time t > t0.
This energy density is redshifted by Hubble expansion,
but at the same time modes with increasing energy en-
ter the resonance band. This process will, however, stop
at some point, as our approximations will break down
when the motion of the probe becomes relativistic and
gets too close to the central stack. Even if the resonance
mechanism persists in this limit, although certainly in a
different form, the probe will eventually modify its tra-
jectory, either by colliding with the central stack or via
some other mechanism that stabilizes its motion.
The contribution of type II modes is obviously finite

and can be computed by integrating Eq. (114) using the
corresponding expression for ñk given in Eq. (101), with
a lower limit kc0 and an upper limit k∗ for the integral.
No particular insight is, however, gained by computing
the exact expressions for the energy density for both type
II and type III modes. Instead, we note that the domi-
nant contribution to the energy density will be given by
high momentum modes which enter the resonance band
at late times. For these, the effects of the expansion of
the universe will be less significant and one may use the
results obtained in the non-expanding case to compute
the energy density produced by the resonance. In this
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case one should use the values of q and Ω at the end of
the resonance mechanism.

D. Radiation into bulk modes

As discussed in [10], the probe’s trajectory in the back-
ground created by the central stack may induce not only
the production of brane-bound particles but also radi-
ation into bulk modes, namely gravitational, RR-form
and dilatonic fields. This effect is due to the acceler-
ated motion of the probe brane and most of the power is
radiated into lower-spin fields, in particular scalar fields
which couple to the brane’s orbital monopole moment.
The probe will thus lose energy through this process,

contributing to the decay of its orbit. This will certainly
modify the mechanism of resonant production of particle-
modes in the brane, namely by varying the orbital fre-
quency, which determines the comoving momentum of
the modes that are excited by the parametric resonance.
One then expects the effects of radiation into bulk modes
to be quite similar to those induced by the universe’s ex-
pansion, so that we will not analyze this process in detail.
Nevertheless, it is important to estimate its contribution
to the decay of the probe’s orbit.
The power radiated into bulk scalar modes was esti-

mated in [10], where it was shown that the number of
orbits the probe can complete before the interbrane dis-
tance becomes of order ls is approximately given by:

N ≃ 2

3π

(

ri
ls

)
3
2 1

(g3sN)
1
2

, (116)

where ri is the initial value of the physical radius of the
orbit, assuming it is circular. (This gives a good esti-
mate for the decay time, even though we are interested
in small eccentricity orbits for the resonance process. N
corresponds to the ratio of the decay time to the ini-
tial orbital period.) This expression shows that, for the
probe to complete a large number of orbits before decay,
it needs to be at a large distance from the central stack,
in units of the string length. Also, one needs g3sN ≪ 1
to obtain a sufficiently large value of N .
This value should be compared to the number of orbits

of the probe necessary for the resonance to be effective,
which in the non-expanding case is of order (2πµk)

−1 ∼
(π|q|)−1. Hence, the production of a significant number
of particles requires N ≫ (π|q|)−1, which gives for the
initial radius of the orbit:

ri
ls

≫
(

3

2|q|

)
2
3

N
1
3 gs . (117)

For example, if |q| ≃ 10−3 and there are 10 branes in
the central stack, we need the initial interbrane distance
to be larger than about 300gsls for the resonance to be
effective, which is not too large a number taking into
account that gs is parametrically small.

As, in the analysis of the parametric resonance mech-
anism, we have assumed the interbrane distance to be
large compared to the string length, we expect the ef-
fects of radiation into bulk modes to be initially negligi-
ble. This process should, however, become more impor-
tant as the orbit decays and increases its acceleration. It
is even possible that, at late times, it overcomes Hubble
expansion as the main energy loss process. Nevertheless,
the end of the resonance should still be determined by
the break down of the non-relativistic and large distance
approximation, as this also controls the amount of energy
damped into bulk modes.

IV. EFFECTS OF TRANSVERSE SPACE

COMPACTIFICATION

So far we have considered the probe to move at dis-
tances from the central stack which are small compared
to the typical size of the transverse space directions, so
that we may neglect the effects of compactification on
the probe’s motion. In this section, we will analyze the
leading order effects introduced by the finite size of these
directions, and show that they may lead to the creation
of orbital angular momentum, a necessary condition for
resonant particle production to take place.
We will consider the simplest case of compactifying the

three transverse directions on an isotropic 3-torus of size
R⊥, which is defined by the identifications yi ↔ yi+R⊥.
As mentioned earlier, the harmonic function associated
with the central stack configuration needs to be modi-
fied in this case by including the appropriate “brane im-
ages”, according to Eq. (10). These images are placed
at points with coordinates yi = niR⊥, with integer ni,
defining a hypercubic lattice corresponding to the cov-
ering space of the 3-torus, (R/Z)3. Although toroidal
compactifications are too simple to give realistic particle
physics phenomenology, this will be sufficient to illustrate
the main effects of compactification on the probe brane’s
trajectory.
The interbrane potential associated with the general-

ized harmonic function Eq. (10) is obtained by comput-
ing the propagator for a massless field on a torus, which
satisfies:

∇2G(y,y′) = δ(y − y′)− 1

V⊥
, (118)

where V⊥ ≡ R3
⊥ is the volume of the transverse 3-torus.

The term −1/V⊥ is included for consistency, so that
the integral over the compact manifold of both sides of
Eq. (118) vanishes. If one expands the Green’s function
G(y,y′) in terms of eigenfunctions of the Laplacian oper-
ator ∇2, one concludes that the −1/V⊥ term removes the
unphysical zero-mode which makes the Green’s function
diverge. This term arises naturally from the curvature
of the non-compact 4-dimensional spacetime [24]. It has
been shown that one can write the massless propaga-
tor on the 3-torus in terms of an integral involving the
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Jacobi-theta function θ3 [8]:

G(y) ≡ G(y,0) =
1

R⊥

∫ ∞

0

ds
[

1−
3
∏

i=1

θ3

(

π yi

R⊥
, e−4π2s

)

]

.

(119)
Although this expression gives the full compact space

propagator, we are mainly interested in the leading or-
der modifications introduced by compactification when
the probe is moving closer to the central stack than to
any of its images (orbits around any of the brane images
are equivalent due to the symmetries of the hypercubic
lattice). In [25], an expansion of this propagator about
the origin was computed using Ewald’s method for calcu-
lating potentials in hypercubic lattices in the context of
solid state physics. The leading corrections to the central
1/r potential are given by:

G(y) = − 1

4πr
− r2

6V⊥
− CS

V
1
3

⊥

−A4h4(y) −A6h6(y) − . . .

(120)
The values for the coefficients of the various terms were
found numerically to be CS = −0.21, A4 = 0.44 and
A6 = 0.0072. The functions h4(y) and h6(y) are har-
monic functions of order (r/R⊥)4 and (r/R⊥)6, respec-
tively, and the series continues with harmonic terms of
higher (even) orders. The leading harmonic correction to
the propagator is given by:

h4(y) =
1

R5
⊥

[

3
∑

i=1

(yi)4 − 3

3
∑

i6=j=1

(yi)2(yj)2

]

. (121)

Recalling that the function h(y) contributes to the
interbrane potential through the graviton-dilaton and
RR-form interactions, we may write this potential for
Q6 ≪ r ≪ R⊥, to order (r/R⊥)4 and discarding con-
stant terms, as

V (y) = −2Q6

[

1

r
+

2π

3R⊥

(

r

R⊥

)2

+

+
4πA4

R⊥

(

r

R⊥

)4

f

(

yi

r

)

+ . . .

]

, (122)

where we defined the function

f

(

yi

r

)

≡
[

3
∑

i=1

(

yi

r

)4

−3

3
∑

i6=j=1

(

yi

r

)2(
yj

r

)2
]

. (123)

We conclude that, to this order, the interbrane poten-
tial is modified by two terms. Both terms correspond to
repulsive contributions to the potential arising from the
overall attraction of the image branes and their coeffi-
cients are suppressed by a factor 1/R⊥, so that their ef-
fects are negligible for large transverse volume. The “jel-
lium” term, of order (r/R⊥)2 and whose name arises in
the context of solid state physics, gives an isotropic con-
tribution while the “asymmetry” term, of order (r/R⊥)4,
gives an anisotropic contribution to the potential.

We will be more interested in the effects of the asym-
metry term, as its breaks the rotational symmetry of the
transverse space and leads to the generation of orbital
angular momentum. The effects of the jellium term will,
however, be more significant close to the central stack.
It is easy to show that, for large transverse volume, this
term will, to leading order, make the probe brane’s or-
bits precess. This is due to its repulsive nature and,
for small eccentricity orbits, the deficit angle is approx-
imately given by ∆θ ≃ 32π2(l2/R⊥Q6(T6V3)

2)3. This
effect will, however, be suppressed at late times as the
probe’s angular momentum is redshifted away by Hub-
ble expansion.
The inclusion of the asymmetry term makes the anal-

ysis quite difficult, as the potential is no longer central
and depends on both angular coordinates in the trans-
verse space. This may lead, in particular, to non-planar
orbits of the probe brane. However, if we set y3 = ẏ3 = 0
initially, the probe will feel no force along this direction
and its trajectory will be confined to the (y1, y2) plane as
before. We will focus on this particular case, bearing in
mind that in general non-planar trajectories may arise.
Within these assumptions, the problem reduces, as be-

fore, to the evolution of the canonically normalized com-
plex scalar field φ, defined in Eq. (17), in an expanding
universe. Its potential can be written as

V (φ) = − σ

|φ| − σJ |φ|2 − σA(φ
4
R + φ4I − 6φ2Rφ

2
I) , (124)

where φR and φI are, respectively, the real and imaginary
parts of the field, σ was defined in Eq. (27) and

σJ ≡ 8π

3

Q6

R3
⊥
, σA =

32πA4

T6V3

Q6

R5
⊥

(125)

give the strength of the jellium and asymmetry terms.
This potential is no longer invariant under the global
U(1) symmetry of the non-compact case, signaling that
the probe’s angular momentum is no longer conserved.
This is quite similar to the U(1)-violating potential gov-
erning the evolution of the scalar field in the Affleck-
Dine mechanism [26], where non-conservation of angular
momentum plays a crucial role in generating the U(1)
baryon number asymmetry in our universe. The po-
tential remains, however, invariant under the hypercubic
group symmetries φR,I → −φR,I and φR ↔ φI . In terms
of the polar angle θ, this means that π/2 rotations as
well as reflections about the θ = π/4 axis are preserved
by the asymmetry term, as one can easily conclude by
writing Eq. (123) for y3 = 0 as

f(θ) = 1− 2 sin2(2θ) . (126)

Hence, we only need to consider initial conditions such
that φR ≥ φI ≥ 0 or equivalently 0 ≤ θ ≤ π/4. The
U(1) symmetry violation precludes a complete analytical
description of the orbits. However, it is not difficult to
obtain a qualitative insight on the main features of the
probe’s trajectories. If the probe is placed significantly
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far from the central stack (but still closer to it than to
any of the image branes), the asymmetry term will not be
negligible and some angular momentum will be created
or destroyed. If the probe has no angular momentum
initially, as we would expect immediately after inflation,
then it will necessarily acquire some and be placed in an
orbit around the central stack, instead of just falling to-
wards it along the radial direction. As both the jellium
and the asymmetry interactions are repulsive, it is possi-
ble that this trajectory does not remain bound to the cen-
tral stack, becoming connected to one or more branes in
the hypercubic lattice. Hubble expansion will, however,
redshift the probe’s energy and angular momentum, so
that one expects the probe to become bound to only one
brane stack at late times. As the orbital radius decreases,
the U(1)-violating term becomes less significant and the
particle number associated with φ should asymptotically
become constant, i.e. the angular momentum should vary
only due to the universe’s expansion. One also expects
the jellium term, as well as the asymmetry term, to in-
duce some precession of the orbital axis, which should
stop at late times when these terms become negligible.
Due to the hypercubic symmetries, along θ = 0, π/4

the force acting on the probe will be in the radial direc-
tion, as f ′(π/4) = f ′(0) = 0, and no angular momen-
tum will be created in these particular directions. For
0 < θ < π/4, angular momentum creation should, how-
ever, be a generic feature.
To have a better understanding of how the initial con-

ditions affect the amount of angular momentum created
or destroyed, we have computed the force acting on the
probe brane and the associated torque, given by:

F = −∇V = − ∂V

∂φR
eR − ∂V

∂φI
eI ,

τ = |φ× F| = −φR
∂V

∂φI
+ φI

∂V

∂φR
, (127)

where we have considered the field φ as a vector in the
(φR, φI) plane. Recall that the torque gives the variation
of the angular momentum, which in terms of the particle
number density n defined in Eq. (20) can be written as:

dn

dt
+ 3Hn = τ . (128)

We have plotted the isotorque contours for some par-
ticular parameter values in Figure 7. We have restricted
the position of the probe to the region y1, y2 < 0.5R⊥,
where the expansion of the potential about r = 0 is suffi-
ciently accurate and the probe’s motion is bound to the
central stack (near the limits of this region, the orbits
may not be bound to the central stack, as the actual re-
gion where the force points towards the central stack has
a more complicated shape).
Observing this figure we see that the torque is max-

imized close to the boundary of the region mentioned
above (darker areas for 0 ≤ θ ≤ π/4). Also, the longer
the probe’s trajectory remains close to this boundary the
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FIG. 7: The torque acting on the probe brane in the (y1, y2)
plane. Coordinates are normalized to the size of the trans-
verse torus, with the value R⊥ = 2 × 104 in this example,
in units of the string length. We considered Q6 = 100 and
T6V3 = 1 in these units. Note that the torque changes sign
when crossing one of the θ = nπ/4 axis, with integer n, being
negative for 0 < θ < π/4. Also, the absolute value of the
torque increases as one moves away from the origin.

more angular momentum it is likely to gain. Thus, max-
imum angular momentum creation should occur if the
probe is placed below the centre of the hypercubic cell.
The initial value of the Hubble parameter H will also

affect the amount of angular momentum created. If it is
of the same order of magnitude as the orbital frequency,
one expects the probe to be driven into lower torque re-
gions within a few periods. Lower values of the Hubble
parameter should allow the probe’s angular momentum
to oscillate significantly as the probe moves through al-
ternate regions of positive and negative torque, but no
net angular momentum will be gained after completing
the first few orbits. The asymptotic value of the comov-
ing particle number N = na3 will, hence, be determined
by the initial path of the probe.
We have simulated the evolution of the probe brane nu-

merically to illustrate this discussion. The initial values
for the real and imaginary parts of the field were defined
as follows:

φR,I(t0) =

√

T6V3
2

δR,IR⊥ , φ̇R,I = 0 , (129)

with δR > δI , giving 0 < θ < π/4, and δR,I < 0.5, which
ensures the probe is placed initially within the region
where it is bound to the central stack. We have also
computed the eccentricity of the orbit, as defined in Eq.
(29), with the probe’s energy density including both the
jellium and asymmetry terms. This quantity should only
become meaningful at late times, when the latter terms
become negligible, but its evolution tracks the creation
of angular momentum along the probe’s trajectory.
Figure 8 shows an example of the results obtained for

the probe’s orbit. In this case, the probe is placed be-
low the centre of the hypercubic cell and, as expected,
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FIG. 8: Results obtained numerically for the probe brane’s
trajectory for Q6 = 100, R⊥ = 2×104 and T6 = V −1

3
= (2π)6.

The probe is initially stationary at the point (δR, δI) =
(0.50, 0.35) for t0 = 2 × 106 and we consider a matter-
dominated universe with α = 2/3. The asymptotic value
obtained for the eccentricity is e ≃ 0.28.

a significant angular momentum is produced during its
motion. One observes, as expected, a small precession of
the orbital axis and the decay of the orbit into regions
of lower torque, which drives the orbital eccentricity to-
wards a constant value. Initial conditions were chosen in
this example so that the inverse Hubble parameter is of
the same order of magnitude as the orbital period and,
hence, the orbit is quickly stabilized. The eccentricity
tends in this example to a constant value of e ≃ 0.28.
Notice the similarities with the example illustrated in
Figure 1, the main difference residing in the fact that, in
this case, the probe has initially no angular momentum.

In Figure 9 we plot the asymptotic values of the eccen-
tricity obtained numerically for different initial positions
in the plane (φR, φI), considering two distinct values of
the initial Hubble parameter in a matter-dominated uni-
verse. In both cases, one observes that smaller eccentric-
ity orbits are obtained near the larger torque regions be-
low the centre of the hypercubic cell, as expected. We see
that, in general, some angular momentum is produced,
although the majority of initial conditions leads to highly
eccentric orbits, with e > 0.9. We also conclude that
the probe’s orbit is generically less eccentric if its motion
starts at later times, so that the initial Hubble damping
of the asymmetry term is smaller. As one may observe in
Figure 9, in particular in plot (b), the combination of the
asymmetry term and Hubble expansion makes the final
eccentricity vary in a non-trivial way with the initial posi-
tion of the probe, namely near δR ≃ 0.5, where the orbits
may in some cases become unbound. Note that these re-
sults correspond to particular values of the parameters of
the problem and that the values of the asymptotic eccen-
tricity are highly dependent on these parameters, namely
the relevant distance scales Q6 and R⊥.

FIG. 9: Contour plots obtained numerically for the asymp-
totic value of the orbital eccentricity in the plane (δR, δI),
with δR ≥ δI (with similar results for δR ≤ δI), assuming
Q6 = 100, R⊥ = 2× 104 and T6 = V −1

3
= (2π)6. Both plots

were obtained for a matter-dominated universe with α = 2/3
and the motion of the probe starts at (a) t0 = 1×106 and (b)
t0 = 5 × 106. All parameters are given in units of the string
length. Contours were plotted for e = n/10, with n = 3, . . . ,9,
and darker regions correspond to lower eccentricities.

These results show that a significant amount of angular
momentum can be created by U(1)-violating terms in
the probe’s potential arising from compactification of the
transverse dimensions, which is a key ingredient for the
development of the parametric resonance we have studied
in this work. The simple 3-torus compactification thus
ilustrates how low eccentricity orbits can be created for a
range of initial conditions, even if the probe has initially
no angular momentum.

V. STABILIZATION AND COSMOLOGICAL

IMPLICATIONS

Potential applications of the resonant particle produc-
tion mechanism to cosmology will be largely determined
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by the system’s final configuration. As we have discussed
before, the D6−D6 branonium we have analyzed in this
work is unstable, as the probe (anti)brane loses energy
and angular momentum due to Hubble expansion. At
some stage, the distance between the probe and the cen-
tral stack of branes will consequently become of the or-
der of the string length (although our approximations will
break down long before this happens). When this occurs,
the scalar mode associated with open strings stretching
between the probe and the source branes becomes tachy-
onic, signaling an instability of the system [28]. Con-
densation of this tachyonic mode will then lead to the
annihilation of the probe brane with one of the branes
in the central stack. The non-supersymmetric nature of
the D6−D6 configuration, which is a general property of
all systems mixing brane and antibrane states, is behind
this instability. Namely, it makes the system evolve into
a 1/2 BPS state with (N − 1) parallel D6 branes, with
the same total charge as the original configuration but
with a lower energy.
Interesting scenarios may arise if some additional

mechanism stabilizes the probe brane at a finite distance
from the central stack, in which case the produced parti-
cles may survive after the resonance mechanism ends. An
attractive possibility for stabilizing multiple brane sys-
tems was suggested in [27]. When supersymmetry break-
ing occurs, one or more fields within the supermultiplets
of the theory typically acquire masses, their value being
set by the energy scale at which SUSY is broken. Massive
gauge potentials will then induce short-range interactions
which, if repulsive, may balance the gravitational atrac-
tion between different branes. Notice that the presence
of a probe antibrane itself breaks SUSY but that this
does not induce bulk field masses, so that other sources
of SUSY breaking need to be considered in this case.
Suppose, for example, that the C1 RR-form and conse-

quently its magnetic dual form C7 become massive after
SUSY breaking, the same happening to the dilaton field,
Φ. Both the RR-form and dilaton-mediated interactions
will then be described by Yukawa potentials whose range
is determined by the masses mRR and mΦ, respectively.
If mRR ≪ mΦ, the dilaton-mediated interaction will be
exponentially suppressed for interbrane distances of or-
der m−1

RR. Assuming Q6 ≪ m−1
RR ≪ R⊥, we may write

the relevant terms in the potential for r ∼ m−1
RR as

V (r) =M4

(

λ
e−mRRr

r
− 1

r

)

, (130)

where M4 gives the overall constant factor. The con-
stant λ parametrizes the effective strength of the RR-
interaction compared to the gravitational atraction and
one expects |λ| > 1 as the dilaton-mediated interaction
is negligible. If, as we have assumed so far, the probe is a
D6-brane, the RR-interaction, although short-ranged, is
attractive and cannot balance the 1/r gravitational part.
If, however, the probe is a D6-brane, we have λ > 0 and
stabilization of the system may be possible. In this case,

for r ≫ m−1
RR, the RR-interaction is exponentially sup-

pressed and the probe’s motion is governed only by the
gravitational term. The evolution of the probe brane will,
in this case, be very similar to that of a probe antibrane in
a massless RR-form background which we have studied in
this work, the potential having a smaller strength than
in the latter case. This difference does not modify the
qualitative features of the probe’s trajectory and all the
results we have derived in this work remain valid using an

effective central stack charge Qeff
6 < Q6. In particular,

one expects the parametric resonance to develop in the
probe’s world-volume under the same conditions as be-
fore and the effects of transverse space compactification
to provide the necessary source of angular momentum for
similar initial conditions.
The fate of a probe D6-brane will, however, be quite

different than that of a probe D6-brane. As the probe’s
orbit decays due to the universe’s expansion, the inter-
brane distance will eventually become of order m−1

RR. At
these distances, the repulsive RR-interaction becomes
relevant to the probe’s motion and stabilization may be
possible. The potential given in Eq. (130) has a local
minimum formally given by:

r0 = −m−1
RR

[

1 +W

(

− 1

λe

)]

, (131)

whereW (z) is the Lambert W-function, defined as the in-
verse of f(W ) =WeW . After its angular momentum has
been redshifted away by Hubble expansion, one expects
the probe to settle at this local minimum. This may not
be the absolute minimum of the full potential, which in-
cludes the dilaton-mediated interaction and other super-
gravity and string theory corrections closer to the central
stack. Hence, absolute stabilization of the probe cannot
be guaranteed, but it is reasonable to expect at least a
long-lived metastable state.
From the properties of the Lambert W-function, one

concludes that r0 = 0 for λ = 1, being positive for λ > 1,
and that r0 strictly grows with λ. Hence, as expected,
stabilization at large distances from the central stack is
only possible if the RR-repulsion is stronger than the
gravitational attraction. In this case, one expects the
probe brane to stabilize away from the central stack at a
distance r0 ∼ m−1

RR.
The scale of supersymmetry breaking will then deter-

mine the cosmological implications of the particle pro-
duction mechanism analyzed in this work. If SUSY is
broken at very high energies, inducing a large mass for
the RR-potential (but still smaller than the dilaton’s
mass), the probe will stabilize very close to the central
stack and no tachyonic modes are present to induce an-
nihilation. The stable probe and the central stack will
then be characterized by a general broken gauge symme-
try group U(N) × U(M), where M ≪ N is the number
of branes in the probe, with an exponentially large num-
ber of particles charged under the U(M) gauge group if
the resonance develops before stabilization occurs. This
may be relevant, for example, to the generation of the
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baryon asymmetry in our universe. On the other hand,
a parametrically small soft SUSY breaking mass will sta-
bilize the probe at large distances. The parametric reso-
nance may then be relevant for dark matter production,
as particles in the probe’s world-volume will necessarily
interact weakly with the visible sector if the latter is em-
bedded in the central stack. As we have shown, these
particles may be supermassive (although parametrically
small compared to the string scale), so that this scenario
could provide an effective mechanism for a non-thermal
production of WIMPZILLAS [29].
One also expects the parametric resonance to amplify

other bosonic modes living in the probe’s world-volume,
such as Yang-Mills fields if the probe has more than one
brane. If these mediate baryon number-violating forces,
their interactions with central stack fields could then pro-
vide a mechanism for baryogenesis as the one discussed in
[30], in which case the probe would need to be stabilized
before nucleosynthesis.
It is also possible for fermionic particles living in the

probe’s world-volume to be produced in resonance, al-
though Pauli blocking makes this process significantly
different from the bosonic case, according to the discus-
sion given in [31]. Thus, if the probe can be stabilized,
a resonant production of fermionic dark matter particles
may also be achieved through this process.
One also expects the interbrane distance field to oscil-

late about the local minimum of the potential, possibly
generating a second stage of resonant amplification. This
may be induced from coupling to other fields, as in the
standard preheating mechanism, or gravitationally, as in
the case described in this work. Although this second
stage may contribute significantly to the final particle
number density in the probe brane’s world-volume, we
will not discuss them in further detail but rather refer
the reader to the discussions given in this work and in
the literature [12, 13, 14].
We emphasize that all these scenarios depend on the

particular embedding of the Standard Model fields in this
setup, an issue for which there is still no complete answer
and that is closely related to the nature of SUSY breaking
and its communication to the Standard Model.

VI. CONCLUSIONS

In this work we have analyzed the mechanism of par-
ticle production in D6−D6 branonium systems, as well
as in D6 − D6 systems with SUSY breaking. We have
shown that, in the limit of large distances and small ve-
locities and for small eccentricity orbits, a parametric
resonance will develop, producing scalar particles con-
fined to the probe brane’s world-volume. Massless par-
ticles are produced in a narrow resonance band centered
at the comoving momentum corresponding to one half
of the probe’s orbital frequency Ω, as if resulting from
the direct decay of the particles associated with the in-
terbrane distance field. The strength of the resonance is

given by the exponent µk defined in Eq. (72). Massive
particles are produced in the same way, with energies of
order Ω/2. These energies are small compared to the
string energy scale but, as the latter should be close to
the Planck scale, very massive particles can be produced
by the resonance mechanism, according to Eq. (84). For
both massless and massive particles, the associated parti-
cle number grows exponentially in time and a large num-
ber of particles can be produced by this mechanism, just
as in the case of preheating after inflation [12, 13]. How-
ever, the resonance surely requires the probe to complete
a large number of orbits before the particle-modes can
be significantly amplified, due to the small value of the
exponent µk ≃ q

2 ≪ 1.

Hubble expansion of the 4-dimensional effective flat
FRW spacetime makes the probe’s orbit decay, redshift-
ing its energy and angular momentum. This alters the
development of the parametric resonance significantly if
the probe’s motion does not occur at sufficiently late
times. If, however, its motion begins late in the his-
tory of the universe, at least compared to typical string
times, the resonance will still develop with the associated
resonance band being shifted towards higher momentum
modes. Each mode will be excited during the finite pe-
riod it spends inside the resonance band, after which the
associated particle number becomes an adiabatic invari-
ant. A significant number of particles, given appproxi-
mately by Eq. (101), can be produced if this period is
sufficiently long for the resonance to develop, according
to the condition q20 ∼> γ, where γ quantifies the effects of
the expansion and was defined in Eq. (93).

We have also concluded that a large number of brane-
bound particles can be produced without affecting the
probe’s orbital motion, as can be seen in Eq. (112). Ra-
diation into bulk closed string modes will also have a
negligible effect if the probe moves at sufficiently large
distances, as assumed for the validity of our study.

A realistic implementation of this mechanism requires
particular initial configurations with large interbrane dis-
tances, non-relativistic velocities and almost circular or-
bits. We have shown that angular momentum creation
may result from the effects of compactification of the di-
rections transverse to the branes, illustrating this for the
case of a compact 3-torus, where low eccentricity orbits
can be produced for some range of initial conditions.

In this work, we have also discussed how, for a probe
D6-brane, an interbrane potential may arise from super-
symmetry breaking, if e.g. the relevant RR-form and
the dilaton, Φ, gain a mass in the process. Stabilization
of the probe is then possible at late times and at dis-
tances of order m−1

RR, if mΦ ≫ mRR. Such a stabilization
avoids annihilation with the central stack, as necessarily
happens for a probe antibrane, making the parametric
resonance regime potentially relevant for baryon number
or dark matter generation, for example.

In our analysis, the parametric resonance arises only
for D6−D6 or D6−D6 systems, where the 1/r poten-
tial allows the probe to move in closed elliptical orbits in
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a non-expanding universe. It is crucial for the develop-
ment of the resonance that the interbrane distance field
ρ exhibits an oscillating behavior, although the orbits do
not need to close, as we have seen for the case of an
expanding universe. Thus, other Dp − Dp or Dp − Dp
branonium systems with p < 6, where the probe trajec-
tories are necessarily unbounded from below, cannot ex-
hibit such resonant particle production. Additional sta-
bilization potentials may, however, provide the required
oscillatory behavior, so that it may be possible to find a
resonant particle production mechanism in other cases.
It is nevertheless clear that resonant particle produc-

tion in branonium systems may play an important role
in our universe’s evolution and we hope with this work
to motivate future exploitation of their properties and
applications.
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APPENDIX A: COMPUTATION OF THE

PARTICLE NUMBER FOR H > 0

The particle number produced by the parametric res-
onance can be estimated by computing the integral in
Eq. (100). This gives the physical particle number apart
from constant factors, subdominant non-resonant contri-
butions and also an a−3 redshift factor due to Hubble
expansion. We have,

lognres
k (z) =







0, z < zi ,
2
∫ z

zi
µk(z

′)dz′, zi ≤ z ≤ z2 ,

2
∫ z2
zi
µk(z

′)dz′, z > z2 .
(A1)

In order to compute this function, let us write the ex-
ponent µk(z) in the form:

µk(z) =
1

2

√

az2 + bz + c , (A2)

where

a = q20ξ
2 −A2

k0γ
2 ,

b = 2(q20ξ +Ak0(Ak0 − 1)γ) ,

c = q20 − (Ak0 − 1)2 . (A3)

For all modes of interest, a < 0, while we have c ≥ 0 for
type II modes and c < 0 for type III modes. The sign
of b will not affect our results. It is also useful to define
d2 ≡ b2 − 4ac, which is explicitly given by

d2 = 4q20
(

2Ak0(Ak0−1)ξγ+(Ak0−1)2ξ2+A2
k0γ

2
)

, (A4)

and is positive for all type II and type III momentum
modes. With these considerations, we find, for zi ≤ z ≤
z2,

lognres
k (z) = 1

2a

[

(2az′ + b)µk(z
′) +

+ d2
√
−a

arcsin

(

2az′+b
d

)]z

zi

. (A5)

Taking into account that µk(0) =
√
c/2, µk(z1) =

µk(z2) = 0 and also that (2az1+ b)/d = −(2az2+ b)/d =
1, we can write the total particle number produced by
the resonance for type II modes as:

logn
res (II)
k (z2) = − 1

4a

[

b
√
c+

d2

2
√−a

(

π

2
+arcsin

(

b

d

))]

.

(A6)
Similarly, for type III modes, we obtain

logn
res (III)
k (z2) =

π

8

d2

(−a) 3
2

. (A7)

It is easy to check that Eqs. (A6) and (A7) give the
same result for the mode in the transition between types
II and III, at β = 1, as expected. Recalling that |q0| ≪ 1,
these expressions can be approximated by those given in
Eq. (101).
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