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More on the bending of light !

Kayll Lake [*]
Department of Physics, Queen’s University, Kingston, Ontario, Canada, K7L 3N6

(Dated: May 31, 2021)

Recently, Rindler and Ishak have argued that the bending of light is, in principle, changed by the
presence of a cosmological constant since one must consider not only the null geodesic equation, but
also the process of measurement. I agree with the fact that both must be considered. Here, on the
basis of the mathematically exact solution to the classical bending problem, and independent of the
cosmological constant, I clarify the approximate argument found in the vast majority of texts (new
and old) for the measured value of the bending of light for a single source and show that the result is
in part due to the almost perfect cancelation of two terms, one of which is seldom considered. When
one considers two sources, this cancelation is of no consequence, and, for example, if the sources are
opposite with the same associated apsidal distance, the approximate argument gives the rigorously
correct answer (up to numerical evaluation), an answer which is unaffected by the presence of a
cosmological constant.

PACS numbers: 04.20.-q, 04.20.Cv, 04.20.Ha

I. INTRODUCTION

Recently, Rindler and Ishak [1] have corrected a long-standing error in the literature concerning the cosmological
constant (Λ) and the bending of light for a single source, an error perpetuated by the author [2]. Here I reexamine
the classic subject of the bending of light (with a concentration on a solar mass deflector - not gravitational lensing
in general) and arrive at some further results which should be of wide - spread interest. The background geometry is
the spherical vacuum given by

ds2 =
dr2

f(r)
+ r

2(dθ2 + sin2 θdφ2)− f(r)dt2, (1)

where

f(r) = 1− 2m

r

− Λr2

3
(2)

and we restrict our analysis to θ = π/2.

II. NULL GEODESICS

The non - radial null geodesic equation associated with (1) given (2) can be written in the form

(
du

dφ
)2 = u2

Σ
− 2u3

Σ
− u2 + 2u3 (3)

where u ≡ m/r and the maximal value of u is assumed fixed and given by u
Σ
≡ m/r

Σ
< 1/3 irrespective of Λ [3].

Equation (3) is solved exactly, up to sign, by [4]

φ(u) =

√

Θ− k2(u)

−l(u)B F
(

2

√

u
Σ
− u

A
,

√

A

B

)

, (4)

where

Θ ≡ (1 − 2u
Σ
)(1 + 6u

Σ
) > 1, (5)
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A ≡ 6u
Σ
− 1 +

√
Θ > 6u

Σ
> 0, (6)

B ≡ 6u
Σ
− 1−

√
Θ < 2(3u

Σ
− 1) < 0, (7)

k(u) ≡ 4u+ 2u
Σ
− 1 (8)

so that
√
Θ+ k(u) > 2u

Σ
> 0, (9)

and
√
Θ− k(u) > 2(1− 3u

Σ
) > 0. (10)

The function l(u) is given by [5]

l(u) ≡ −2u2
Σ
+ u

Σ
− 2u

Σ
u+ u− 2u2 > 0 (11)

and F is the incomplete elliptic integral of the first kind of purely imaginary modulus [6]. The solution (4) is shown
in Figure 1. Note that there is an apse at B where u = u

Σ
and φ(u

Σ
) = 0 ∀ u

Σ
< 1/3 [7].

For u = 0 we have

φ(0) = 2

√

2

−B F
(

2

√

u
Σ

A
,

√

A

B

)

. (12)

Along the orbit, up is distinguished by the condition

π

2
=

√

Θ− k2(up)

−l(up)B
F
(

2

√

u
Σ
− up
A

,

√

A

B

)

. (13)

Table I gives a numerical summary for grazing incidence with the Sun based on (accurate) numerical approximation
to the exact solution (4).

FIG. 1: Part of the null geodesic N given by (4) in the u − φ subspace of (1) with (2). The vertical axis is exaggerated for
clarity. The line OB is the line of apsides so the complete trajectory N is obtained by adding the reflection of the part of N
shown about OB. ∆̃ is explained in Table I. Exhibition of the entire orbit, without use of asymptotics, derives from the use
of u instead of r.

It is fair to say that the vast majority of texts (new and old) consider only equation (3), in the equivalent form

d2u

dφ2
+ u = 3u2, (14)

by way of a first order approximation. This procedure gives rise to the classic total deflection 4uJ (for Λ = 0) which,

as Table I shows, is an excellent approximation to the total deflection defined by 2∆̃. (Indeed, the second order
approximation, given by 4uJ+u2J(15π

4
− 4), is very much better still! See also Appendix A.) However, we do not live

at u = 0, or even at up (in the inner Oort cloud) but at uL which has to be considered far away from u = 0 in the sense

that φ(0)−φ(uL) ≃ 959′′.62. Presentations that rely on considerations of (3) (or (14)) alone are, therefore, misleading

[10]. Yet, “the bending of light” ≃ 1′′.75 has been measured [11], and without going to u = 0 ! To understand this it
is necessary to give an operational definition to “the bending of light” which we now consider.
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TABLE I: u
Σ
= uJ , u variable [9].

Quantity (units) Value ≃

φ(0) (rad) 1.57080 rad

2φ(0)− π ≡ 2∆̃ (′′) 1′′.75051

4uJ (′′) 2∆̃ − 0′′.722465 10−5

4uJ+u2
J( 15π

4
− 4) (′′) 2∆̃ − 0′′.336958 10−10

φ(up) =
π

2
, p ≡

uL

up

p = 1096.38

φ(uL) (rad) 1.56615 rad

2φ(uL)− π (′′) −1917′′.49

III. THE BENDING OF LIGHT

The “bending of light” (ψ) is defined here to be the combination of the deflection prior to the apse plus the deflection
after the apse,

ψ ≡ ∆in +∆out. (15)

Prior to the apse we have

∆in ≡ φ(ue)−
π

2
, (16)

where e stands for the emitter and φ(ue) follows from (4). If ue = 0, and for grazing incidence with the Sun, ∆in = ∆̃.
Approximations to ∆in are carried out in Appendix A.

The deflection ∆out, unlike ∆in, involves the process of observation and the difference between two angles: χ, the
angle between the tangent to the null geodesic N and the direction of the deflector as measured by a timelike observer
on an orbit of constant u in the u−φ subspace of (1) (the measured position of a star relative to the center of the Sun

during a total solar eclipse in the classic bending of light experiment), and φ̃, the angle defined between the position
of the deflector and the perpendicular to the line of apsides. This relates the position of the star ∼ 6 months after the
eclipse as explained below. The angles are shown in Figure 2 along with their evolution along N for various observers.
The relationship of φ̃ to theory and observation is explained in Figure 3.

FIG. 2: Demonstration of the angles χ and φ̃. The evolution of these angles for various observers along N is also shown. The
angle χ shrinks monotonically along N from the apse, where χ = π/2, to O where χ = 0. The angle φ̃ shrinks monotonically

along N from the apse, where φ̃ = π/2, to p where φ̃ = 0 and then increases to ∆̃ at O. This is discussed further below.
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FIG. 3: The undeflected position of a star is defined to be that position determined by radial null geodesics from the star. In
the Figure AB is the line of apsides. The perpendicular becomes a radial null geodesic on rotating the Sun through π− φ̃ about
the Earth, or equivalently, the Earth about the Sun by π/2 + φ(uL). We have assumed no parallax. The theoretical value for

φ̃ is then π/2− φ(uL). In practice, in the classical experiment, the undeflected positions are used to form a template and the

time for alignment is ∼ 182.4 days (let us say 6 months).

We have

∆(u)out ≡ χ(u)− φ̃(u) = χ(u) + φ(u)− π

2
, (17)

where φ(u) is given by (4). It is clear from Figure 2 that ∆(u
Σ
)out = 0, ∆(up)out = χ(up) and ∆(0)out = φ(0)−π/2 ≡ ∆̃

(for a solar deflector). We are interested in ∆(uL)out.

It is important to note that the reference point chosen for the definition of the measured angle χ does not in fact
change ∆(u)out. For some other reference point we have

∆(u)out = χ∗(u) + α− φ̃(u) = χ∗(u) + α+ φ(u)− π

2
, (18)

where the angles are shown in Figure 4. The angle χ∗(u) is measured, φ(u) follows from (4) and α from the geometry
as shown. In all cases χ = χ∗ + α. These angles are measured and calculated in the θ = π/2, t = const subspace of
(1) with (2) in which we use the standard formula

cos(ι) =
diδ

i

√
didi

√
δiδi

(19)

for the angle ι between the two directions defined by di and δi.

From (1) with (2) and (19) we find the theoretical prediction for χ [12],

sin(χ) =

(

u

u
Σ

√

f

f
Σ

)

(20)

where we have written χ for χ(u), f for f(u) and f
Σ
for f(u

Σ
). (Because we have chosen a timelike observer on an

orbit of constant u to measure χ, we have the restriction u ≥ uH. This does not change in any significant way the
current presentation.) Approximations to χ are carried out in Appendix B. Now if, as shown in Figure 4, we were to
choose χ∗, a similar calculation gives

cos(χ∗) =
u

Σ

u





√

(1 − ( u
u
Σ

)2)(f
Σ
− ( u

u
Σ

)2f) + ( u
u
Σ

)2f

√

f
Σ

√

( u
u
Σ

)2 + f − 1



 (21)
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FIG. 4: Deflection in the r − φ plane showing the variation of the reference point chosen for the definition of the measured
angle χ. As an example, for χ the reference point is the center of the sun but for χ∗ the reference point is the edge of the solar
disc. Both ∆in (shown in insert) and ∆out simply measure the deviation from the horizontal (straight - line motion).

with

cos(α) =

√

( u
u
Σ

)2 − 1
√

( u
u
Σ

)2 + f − 1
. (22)

Form (20), (21), and (22) it can be shown that χ = χ∗ + α. Now we could choose the reference direction to be the
measured position of the deflected star in which case χ∗ = 0 and α, in numerical value, = χ. With the foregoing
understood, we emphasize the choice χ over χ∗ just for simplicity in what follows. First, however, it is instructive to
look at the weak - field limit f → 1. In this limit we obtain χ = arcsin(rΣ/r), χ

∗ = 0 and α = arcsin(rΣ/r) as we
would expect.

From (4), (17) and (20), with all currently acceptable values of Λ, and for grazing incidence with the Sun, we find
[13]

∆(uL)out ≃ 1′′.75049 (
1

2
). (23)

This result is best understood in the following way:

− φ̃(uL) = φ(uL)− π

2
≃ −1917′′.49 (

1

2
) (24)

and

χ(uL) ≃ +1919′′.24 (
1

2
). (25)

It is, of course, crucial here that we evaluate φ(uL) from (4). The almost exact cancelation by addition of these two

contributions at uL , along with the assumption that ue = 0, gives the famous result ψ(uL) ≃ 1′′.75. This cancelation

is, of course, not unique to the Earth [16]. Table II demonstrates this.

The vast majority of texts (new and old) consider only the deflection of a single source and argue that the observed
bending of light derives from the fact that we can set both the emitter and observer at u = 0 and so

ψ = 2∆in = 2φ(u ≃ 0)− π ≡ 2∆̃ ≃ 1′′.75. (26)

Whereas this argument arrives at a good answer, on the basis of the exact solution to (3) I have shown that in fact
(24) holds and so these approximate arguments leading to (26) do not adequately explain the measured deflection of
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TABLE II: u
Σ
= uJ , u variable [14].

Distance (AU) 2φ− π 2χ 2∆out

1/214.75 -630397 630398 0.07467

1/214 -609289 609290 0.16402

1/213 -592452 592452 0.23500

1/212 -579625 579626 0.28881

1/210 -559334 559335 0.37335

1/100 -199621 199623 1.54953

1/10 -19197.5 19199.2 1.74862

Mercury [15] -4956.37 4958.12 1.75038

Venus -2651.59 2653.34 1.75048

Earth -1917.49 1919.24 1.75049

Mars -1257.87 1259.62 1.75050

Jupiter -367.030 368.781 1.75051

Saturn -198.545 200.295 1.75051

Uranus -98.0566 99.8071 1.75051

Neptune -62.0036 63.7541 1.75051

50 -36.6341 38.3846 1.75051

500 -2.08795 3.83846 1.75051

1096.38 0 1.75051 1.75051

5000 1.36666 0.383846 1.75051

light at the Earth when a single source is observed. If we set ue = 0, so that ∆in = ∆̃, we must still account for
∆out and for that I have shown that the measured value is the result of the almost perfect cancelation of two terms,
(24) and (25), one of which is seldom considered, namely (25). It is also this term that formally introduces Λ by way
of (20) and (2). This cancelation is discussed in Appendix C. If one chooses not to use the center of the sun as the

reference point for the measurement of χ, this cancelation remains. It is then the cancelation of χ∗ + α with φ̃ that
explains measured deflection of light.

IV. WIDE-ANGLE DEFLECTIONS

Nowadays the classical bending of light test is extended over the entire sky and is used with interferometric methods
at radio wavelengths to put (remarkable) limits on the PPN parameter γ [17]. This is done on the basis of the Shapiro
- Ward formula [18], which in our notation reads as

Ψ ≃ 2u
Σ
(1 + cos(χ(u))). (27)

Note, however, that in (27) χ(u) is often taken as an observed quantity, and not derived from (20). Here we compare
this relation with ψ as defined in (15). The situation is summarized in Table III where larger values of the apsidal
distance are considered up to χ = π/2 and the observer is at u = uL . Whereas there is no measurable difference in

the two definitions (ψ and Ψ), they are not equivalent and the cancelation discussed in the previous section plays the
dominant role. This is also discussed in Appendix C.

V. DIFFERENTIAL MEASUREMENTS

In practice it is the measurement of differential deflections in opposition that is also of importance [19]. Consider
two sources, 1 and 2, which have associated with them the same u

Σ
(but not necessarily for grazing incidence with the

Sun) that are seen on opposite sides of the deflector (in the classic case, during a total eclipse). Then the differential
deflection is given by

δ ≡ ψ1 − ψ2 (28)
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as shown in Figure 5. Now by construction

FIG. 5: Constructing the differential measurement δ.

1∆out = 2∆out (29)

and (in view of the evolution of the null geodesics about the deflector)

1∆in = −2∆in (30)

so that

δ = 2 1∆in. (31)

For an emitter at ue = 0 we have the rigorous result

δ = 2φ(0)− π. (32)

Of particular note is the fact that for this configuration since ∆out cancels out, Λ plays no role, and further, the usual
approximate argument gives the rigorously correct answer up to numerical evaluation.

More generally, when the associated u
Σ
are not equal, but we continue to consider opposed sources and set ue = 0,

δ = (φ1(0) + φ2(0)− π) + (χ1(uL)− χ2(uL)) (33)

where the φ(0) are given by (12) and the χ by (20). Whereas Λ does not enter the first term, it does not cancel from
the second except in the limit 1uΣ = 2uΣ which reproduces (32).

When the associated u
Σ
are not equal, and the sources are not opposed, the differential deflection becomes

δ = (φ1(0)− φ2(0)) + (χ1(uL)− χ2(uL)) (34)

where again the φ(0) are given by (12) and the χ by (20) and we have taken ue = 0. Whereas Λ does not enter the
first term, it does not cancel from the second except in the limit 1uΣ = 2uΣ which gives δ = 0 (we have one source).

VI. DISCUSSION

The standard argument for explaining the measured value of the deflection of light is to set the emitter and observer
at u = 0 so that the total deflection for a single source for grazing incidence with the Sun is given by (2φ(0)− π)|uJ

,

which, when approximated by first order corrections to the null geodesic equation, gives 4uJ (′′). For wide-angle

deflections a similar argument leads to (27). On the basis of the mathematically exact solution to the classical
bending problem I have shown that these are excellent approximations. However, as regards explaining the measured
deflection of light, these approximate arguments fall short in the sense that the bending prior to and after an apse
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TABLE III: u
Σ
variable, u = uL .

rΣ/RJ χ(0) ∼ φ− π/2 (′′) χ (′′) ∆out (
′′) ∆in (′′) ψ (′′) Ψ (′′)

1 0.27 -958.744 959.619 0.875246 0.875255 1.75050 1.75049

1.5 0.40 -1438.85 1439.43 0.583489 0.583503 1.16699 1.16699

1.75 0.47 -1678.84 1679.34 0.500128 0.500145 1.00027 1.00027

2 0.53 -1918.82 1919.26 0.437608 0.437627 0.875235 0.875233

2.5 0.67 -2398.74 2399.09 0.350078 0.350101 0.700179 0.700178

3 0.80 -2878.65 2878.94 0.291723 0.291751 0.583474 0.583474

3.5 0.93 -3358.55 3358.80 0.250039 0.250072 0.500111 0.500111

4 1.07 -3838.46 3838.68 0.218775 0.218813 0.437588 0.437588

4.5 1.20 -4318.39 4318.58 0.194458 0.194501 0.388959 0.388958

5 1.33 -4798.33 4798.50 0.175003 0.175050 0.350054 0.350053

5.5 1.47 -5278.29 5278.45 0.159085 0.159137 0.318222 0.318221

6 1.60 -5758.29 5758.43 0.145819 0.145875 0.291694 0.291694

6.5 1.73 -6238.31 6238.44 0.134593 0.134593 0.269247 0.269247

7 1.87 -6718.36 6718.49 0.124970 0.125036 0.250006 0.250006

8 2.13 -7678.58 7678.69 0.109331 0.109407 0.218737 0.218737

9 2.40 -8638.95 8639.05 0.0971650 0.0972503 0.194415 0.194415

10 2.67 -9599.52 9599.60 0.0874304 0.0875252 0.174956 0.174956

15 4.00 -14405.9 14405.9 0.0582079 0.0583501 0.116558 0.116558

20 5.34 -19220.0 19220.1 0.0435727 0.0437626 0.0873353 0.0873353

30 8.02 -28882.7 28882.7 0.0288895 0.0291751 0.0580646 0.0580646

40 10.7 -38609.6 38609.6 0.0214991 0.0218813 0.0433804 0.0433804

50 13.5 -48424.3 48424.3 0.0170248 0.0175050 0.0345299 0.0345299

100 27.7 -99811.3 99811.3 0.00774762 0.00875252 0.0165001 0.0165001

125 35.6 -128013 128013 0.00569625 0.00700201 0.0126983 0.0126983

150 44.3 -159317 159317 0.00417929 0.00583501 0.0100143 0.0100143

200 68.5 -246628 246628 0.00160335 0.00437626 0.00597961 0.00597961

210 77.7 -279667 279667 0.000888921 0.00416787 0.00505679 0.00505679

214.95 90 -323867 323867 0.000002635 0.00407197 0.00407460 0.00407460

are fundamentally different. The post apsidal bending involves the process of measurement and is dominated by the
cancelation of two terms, one of which is not considered in the usual approximate argument. Whereas these more
involved arguments may not be numerically important, conceptually they are.

Aside form these details, the present discussion differs from others in the sense that analytic approximations to the
exact solution (4) is not central to the discussion, as is the usual case, but rather (4) is viewed as an elementary function
in the sense that it can be trivially approximated numerically to arbitrary accuracy using modern computational
platforms. However, approximations have been included, relegated to the Appendices, as these serve to amplify and
“explain” the results obtained.
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APPENDIX A: APPROXIMATIONS TO ∆in

If

ue ≪ u
Σ

then from (4) it follows that

∆in ≃ φ(0)− π

2
.

If r
Σ
≫ m we can take a Taylor series of φ(0)− π/2 about u

Σ
= 0 which gives

φ(0)− π/2 ≃ 2 u
Σ
+

(

−2 +
15

8
π

)

u
Σ

2 +

(

61

3
− 15

4
π

)

u
Σ

3 +

(

−65 +
3465

128
π

)

u
Σ

4 +

(

7783

20
− 3465

32
π

)

u
Σ

5 +(A1)

(

−21397

12
+

310695

512
π

)

u
Σ

6 +

(

544045

56
− 765765

256
π

)

u
Σ

7 +

(

−400353

8
+

530675145

32768
π

)

u
Σ

8 +

(

1094345069

4032
− 350975625

4096
π

)

u
Σ

9 +

(

−3274477761

2240
+

61238992815

131072
π

)

u
Σ

10 +O(u11
Σ
),

and it is a trivial matter to go to higher orders. The first six terms in (A1) have been given previously [20]. In many
applications the first term alone represents an adequate approximation.

APPENDIX B: APPROXIMATIONS TO χ

From (2) and (20) it follows that

cos(χ(u))2 =
u2

Σ
− 2u3

Σ
− u2 + 2u3

u2
Σ
− 2u3

Σ
− λ

(B1)

where

λ ≡ Λm2

3
(B2)

and u corresponds to the observer. Equation (B1) is exact. Let us suppose that r
Σ
≫ 2m so that

u2
Σ
− 2u3

Σ
≃ u2

Σ
, (B3)

and further, let us suppose that for the observer r ≫ 2m, so that

− u2 + 2u3 ≃ −u2. (B4)

Then (B1) takes the form

cos(χ(u))2 ≃ u2
Σ
− u2

u2
Σ
− λ

. (B5)

If λ = 0 we arrive at the obvious result

sin(χ(u)) ≃ u

u
Σ

. (B6)

If λ > 0 let us assume that

9m2Λ ≪ 1, (B7)

that is, 27λ≪ 1. Then, for the cosmological horizon H, we obtain [8]

u2H ≃ λ (B8)
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so that we can rewrite (B5) in the form

cos(χ(u))2 ≃ u2
Σ
− u2

u2
Σ
− u2

H

. (B9)

Under the assumption r
Σ
≪ rH, that is

u2
Σ
≫ u2H, (B10)

we again obtain the now somewhat less obvious result (B6).

To gauge the effect of Λ consider

ψ
Λ=0

− ψ
Λ 6=0

, (B11)

which reduces to

χ
Λ=0

− χ
Λ 6=0

. (B12)

Putting this into a crude cosmological context, let us take the following fiducial values: Λ ∼ α 10−56 cm−2, m ∼
3

2
β 1018 cm, β in units of 1013 MJ , u

Σ
∼ β

2γ
10−5, γ in units of 100 Kpc, and u ∼ β

2δ
10−9, δ in units of Gpc. Here

α, β, γ and δ are taken to be of order unity. Now (B3) requires β
γ
≪ 105, and (B4) requires β

δ
≪ 109. For (B7) we

require 2αβ2 ≪ 1019 and for (B10) 8αγ2 ≪ 27 109. Relation (B9) should therefore be a reasonable approximation in
this context. Note that we can not set u ≫ uH as this would require 8αδ2 ≪ 270. Gathering this all together, we
have the following approximation,

χ
Λ=0

− χ
Λ 6=0

≃ 1

2

√

u2
Σ
− u2

uu2
Σ

λ+O(λ2) ≃ 1

2

λ

uu
Σ

+O(λ2), (B13)

where the last term assumes γ
δ
≪ 104. For unit values of α, γ and δ then χ

Λ=0
− χ

Λ 6=0
∼ 0

′′

.3 which, in principle, is a
measurable difference. However, since we can not set u≫ uH, the cosmological context has to be refined [21].

APPENDIX C: APPROXIMATIONS TO ∆out

If we start with the assumption r
Σ
≪ r, where r corresponds to the observer, then

u
Σ
≫ u (C1)

and we again obtain φ(u) ≃ φ(0) and also χ ≃ 0 so that

ψ ≃ 2φ(0)− π, (C2)

as one finds in most texts. However, the approximation (C1) is inadequate. Rather, with

u
Σ
≥ u (C3)

and u
Σ
≤∼ 10−4 to the 6 figure accuracy reported in this paper we find

φ(u)− π

2
+ χ(u) ≃ 2

√

u2
Σ
− u2. (C4)

This “explains” the almost perfect cancelation of the two terms on the left and the remarkable accuracy of the Shapiro
- Ward formula (27). It is only in the limit u = 0 that one recovers (C2).
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