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1. Introduction

General relativity (GR) was formulated by Einstein as a theory that dynamically

determines the spacetime metric. This theory is famously non-renormalizable, which

means that it gives only the “low-energy” description of gravity. Because the New-

ton’s constant is so small, what is low energy for gravity may be very high energy

by the standards of particle physics, so for all practical purposes we are quite happy

with the description of gravity given by GR. The problem of quantum gravity, which

is to find a satisfactory description of gravity at “high” (Planckian) energy is then

a very hard one as it is not possible, and is unlikely to be possible, to probe the

relevant range of energies by direct experiments. In spite of our almost absolute

ignorance as to what happens at Planckian energy, the common consensus is that

it is unlikely that the metric description of gravity survives there. For this reason

many alternative descriptions have been developed, some of them rather radical,

e.g., even calling for abandoning of the notion of the spacetime manifold. The most

popular approach to the problem is given by string theory, which is well defined as

a quantum theory at the expense of introducing extra symmetries and dimensions

that so far are not observed.

It is not universally appreciated, however, that general relativity itself admits

a rather radical reformulation that almost entirely eliminates the spacetime metric

1
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from the picture. This formulation was discovered a long ago by Plebański 1, and was

rediscovered more recently in 2 after the work on the new Hamiltonian formulation

for gravity by Ashtekar 3. Ashtekar’s new formulation of GR can be seen 2 to be just

the Hamiltonian formulation of the Plebański theory. The Plebanski formulation,

together with the idea of describing gravity by something else than the spacetime

metric, leads to a class of gravity theories much larger than GR, which is the subject

of this review.

In Plebański formulation of gravity, the notion of the dynamical spacetime metric

is replaced by that of the dynamical Hodge operator. Recall that, given a metric

gµν , the Hodge operator can be defined as the map acting on the space of two-forms

and mapping a two-form Bµν into its “dual” two-form (∗B)µν = (1/2)ǫ ρσ
µν Bρσ.

Here ǫµνρσ is the volume four-form compatible with the metric. It is easy to check

that the Hodge dual operator is invariant under conformal rescalings of the metric

gµν → Ωgµν . The key fact is that the converse is also true and two metrics that

define the same Hodge operator are related by a conformal transformation, see, e.g.,
4 for a simple proof. This means that the Hodge dual operator defines a metric up

to conformal transformations, and that it can be used as the main dynamical object

in a theory of gravity, instead of the metric.

This is essentially the idea that was realized in 1 (even though it is only implicit

in this work). More precisely, to describe the Hodge operator it is sufficient to

specify which two-forms are self-dual. The self-dual forms are those satisfying ∗B =√
σB, where σ = ∗2, so σ = ±1 for the Euclidean and Lorentzian signatures,

respectively. Knowing the subspace W+ of self-dual two-forms, the anti-self-dual

forms ∗B = −
√
σB are found as those orthogonal to self-dual ones with respect

to the scalar product in the space of two-forms given by the wedge product (the

scalar product itself depends on the choice of a volume form; the notion of the

orthogonality, however, does not). The knowledge of the subspacesW± is equivalent

to the knowledge of the Hodge operator, as is not hard to see.

The description then proceeds as follows. One introduces three two-form fields

Bi. Declaring the subspace (in the space of two-forms) spanned by the fields Bi

to be that of self-dual two-forms determines the metric up to a conformal factor.

This last is fixed by a choice of the volume form, for which there is a natural choice

(vol) = (1/3)δijBi ∧ Bj , where δij is the Kronecker delta. The metric defined by

this data is then invariant under SO(3) rotations of the triple Bi. This suggests

that we should think of the triple Bi as of a section of a vector bundle V → M

associated with a principal SO(3) bundle over the spacetime manifold M . Therefore,

in addition to Bi, we should introduce a connection Ai on V . It is now not hard to

write the field equations for the theory. First, it is natural to require the connection

Ai to be compatible with the triple Bi, i.e., require (DAB)i = 0. Given a triple

Bi, this set of 4 × 3 equations can be solved for 4 × 3 components of Ai in terms

of derivatives of Bi. It remains to write an equation that would allow one to find

Bi. It is natural to require that this equation be second order in derivatives and
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SO(3) covariant. This points to some equation that involves F i(A), the curvature

of the connection Ai. The obvious choice F i(A) = 0 does give 6 × 3 equations for

6 × 3 components of Bi. However, the theory that one gets this way is not very

interesting as it is void of any physics (does not have local degrees of freedom). A

much more interesting choice is:

F i(A) = Λi
jB

j , (1)

where Λi
j is some (undetermined) matrix. This equation says that the curvature is

purely self-dual as a two-form. This gives us 3 × 3 equations (F i(A))asd = 0 for

6× 3 components of Bi so the theory is not well-defined as we cannot solve for the

two-form fields. One can make it into a well-defined theory by writing an action

principle that leads to (1), namely:

S[B,A,Λ] =

∫
Bi ∧ F i(A)−

1

2
ΛijB

i ∧Bj , (2)

where we raise and lower indices using δij . Varying this action with respect to Ai we

get the equation (DAB)i = 0, while varying it with respect to Bi gives (1). Note that

only the symmetric part of Λij enters equation (2), so this matrix should be assumed

symmetric also in (1). The action (2) tells us that we should treat Λij as a dynamical

object and vary with respect to it. We get: Bi ∧Bj = 0, which gives six equations

for Bi. Together with (1) this gives 15 equations. Noting that three components

of Bi are pure gauge we thus get the right number of equations to determine Bi

completely. The components of the symmetric matrix Λij are determined from the

unused equations in (1). Note, however, that the equation Bi ∧ Bj = 0 implies, in

particular, that the volume form (vol) constructed above is zero. Also, it is rather

obvious that there is no Hodge dual operator for which the space W+ of self-dual

two-forms is null, W+ ∧W+ = 0. So, this theory is not of any physical interest.a

To get an interesting theory, we will impose one constraint on the symmetric

matrix Λij that appears on the right-hand-side of (1). If we do so, then only five of

the six components of Λij remain independent. Equation (1) then gives ten equations

for the components of Bi (this is the number of equations in GR) plus five equations

for the independent components of Λij in terms of the second derivatives of Bi.

Variation of the action (2) with respect to the independent components of Λij gives

an additional five equations on Bi, which gives just enough equations to determine

the two-form fields.

What constraint can be imposed on Λij? It is clear that the five independent

components of Λij can only be chosen to be those of its traceless part, which we

denote by Λij − (1/3)δijTr(Λ) := Ψij . Indeed, this is the part that forms an irre-

ducible representation with respect to the action of SO(3). The trace part Tr(Λ)

then becomes a function of its traceless part Ψij that we denote by −φ(Ψ) (the

aIts Hamiltonian analysis shows that this is simply GR with the Hamiltonian constraint removed.
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minus sign is to agree with certain conventions; see below). Thus, we have:

Λij = Ψij −
1

3
δijφ(Ψ). (3)

The theory defined by the action (2) where only the traceless part Ψij of Λij

is an independent variable (3) gives the right number of equations to solve for the

components of the two-form field Bi and thus determine the Hodge dual operator,

which in turn (together with the volume form) determines the metric. We also note

that the volume form (1/3)δijB
i ∧Bj is no longer trivial: the equation one obtains

by varying the action (2) with respect to Ψij ,

Bi ∧Bj −
1

3
δij(Bk ∧Bk) =

1

3

∂φ

∂Ψij

(Bk ∧Bk), (4)

no longer implies any relation for the volume form. We thus get a theory with

potentially interesting physical implications. It becomes even more interesting after

one observes that, for φ(Ψ) = Λ = const, the above theory is nothing else but

the Einstein’s GR in disguise (i.e., in its Plebański formulation), with Λ being the

cosmological constant (our choice of the sign in (3) was motivated precisely by the

desire to agree with the usual convention for the sign of Λ). Therefore, what we have

obtained is an infinite family of generalizations of general relativity, where to fix a

theory one has to specify the function φ(Ψ) = φ(Tr(Ψ2),Tr(Ψ3)) of two invariants

that can be constructed from the traceless matrix Ψ. The above counting of the

field equations suggests that this theory makes sense for an arbitrary φ(Ψ). A more

detailed analysis, whose results we will review in the next section, shows that this

is indeed the case.

Our above discussion was motivated by the idea to describe gravity as a dy-

namical theory of an object other than the spacetime metric. We have seen how

GR itself can be reformulated in these terms, and how an infinite class of gravity

theories different from GR and parametrized by a function φ(Ψ) is obtained this

way. In the next section we will review the (classical) properties of this class of

theories without worrying too much about the principle that can fix φ. We will

see that, for an arbitrary φ, the gravity theory (2) resembles GR in many ways.

Still, there are some new physical effects predicted by this theory. It is important

to emphasize that, at the level of the classical physics, nothing forces us to depart

from the familiar ground of GR, and the new class of theories described above may

be viewed as not more than a mathematical curiosity. However, when one considers

the quantum theory of usual GR in Plebański (Hodge operator) formulation, one

is forced to consider theories more general than GR, similar to what happens in

quantum gravity in the metric formulation. In the usual metric formulation of quan-

tum gravity, one has to introduce theories with higher derivatives and, thus, with

rather unpleasant properties (instability etc.). In the Hodge operator formulation of

gravity, many (if not all; see Section 3) terms that have to be added to the action do

not change the character of the theory so drastically, i.e., do not introduce higher

derivatives and new DOF. The quantum corrected theory is one of the class (2)
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with (3). Thus, one does have to take this class of gravity theories seriously, as the

modifications they describe will be induced by quantum corrections. It is a different

question whether any of these quantum corrections can survive and be of relevance

at low (astrophysical) energy scales. It can only be answered after the quantum

mechanical behavior of this class of theories is understood. But even in the absence

of such understanding, it is interesting to quest what kind of new physical effects

can be expected.

The theory (2) with (3) was first proposed in 5, where renormalizability proper-

ties of GR in Plebański formulation were considered. It was only later appreciated

that it is also quite interesting as a purely classical theory, the point of view which

was developed in 6, 7. The Hamiltonian analysis of this theory (in a slightly dif-

ferent version) was done in 8 and more recently in 9. We will describe the main

results of the classical analysis in the next section. The current understanding of

the quantum mechanical behavior of this class of theories is reviewed in Section 3.

2. Classical properties

2.1. Hamiltonian formulation

The canonical description of the class of theories introduced above is easily obtained.

This was done in the “pure connection” formulation in 8 and starting directly from

(2) in a more recent work 9. One finds, exactly like in the usual GR–Plebański–

Ashtekar case, that the phase space is parametrized by the canonically conjugate

pairs (Ai
a, σ̃

ai), where Ai
a is the spatial component of the connection, and σ̃ai is the

momentum (tilde denotes the density weight). The theory is fully constrained (no

Hamiltonian). The constraints are: the Gauss constraint Daσ̃
ai = 0, where Da is

the spatial covariant derivative with respect to Ai
a; the diffeomorphism constraint

σ̃aiF i
ab = 0, which both take exactly the same form as they do in Plebański theory

(or the new Hamiltonian formulation 3); and, finally, the Hamiltonian constraint

that becomes:

ǫijkF i
abσ̃

aj σ̃bk +
1

3
ǫ
˜abc

ǫijkσ̃aiσ̃bj σ̃ck φ
(
(F

(i
abǫ

j)klσakσbl)tr−free

)
= 0, (5)

where the trace-free part of the matrix in the argument of the function φ is taken.

Note that the momentum variables used in the argument of φ have no density

weight. For φ = Λ = const, the above Hamiltonian constraint is just that of the

Ashtekar Hamiltonian formulation 3 of GR with the cosmological constant.

The constraints described are first class, see 9 for a verification of this. Counting

of the degrees of freedom (DOF) is then exactly the same as in GR: we have 3× 3

configurational DOF, minus three Gauss constraints, minus three diffeomorphism

constraints, minus one Hamiltonian constraint, which gives two propagating degrees

of freedom. The class of theories in question is thus an infinite (parametrized by a

function of two variables) class of four-dimensional generally covariant generaliza-

tions of GR propagating two degrees of freedom.
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2.2. “Curvature” dependent cosmological “constant”

We have just seen that, at the level of the canonical formulation, the only mod-

ification as compared with the usual GR case is that the cosmological constant

gets replaced by a non-trivial (and arbitrary) function φ of the “curvature”

(F
(i
abǫ

j)klσakσbl)tr−free. In GR–Plebański theory this symmetric traceless tensor is

nothing else but the Weyl part of the Riemann curvature tensor. For this reason,

we will continue to refer to this tensor as “curvature” for any theory of the class

under consideration. Note that this tensor has dimension of 1/L2, L being length,

as is appropriate for the curvature.

The main physical implication of this modification is that the cosmological con-

stant observed in the regions of relatively low curvature does not have to be the

same as that observed in the regions of relatively high curvature. In particular,

the cosmological constant that appears in the Friedmann equations governing the

evolution of a homogeneous isotropic Universe is given by λcosmological = φ(0) (the

argument of the function φ in this case is zero due to symmetries) and does not have

to be equal to the large curvature effective cosmological constant at Planck scales.

This gives a possible mechanism for solving the “cosmological-constant problem”,

which is to explain why the observed cosmological constant is so different from the

cosmological constant of the order 1/l2p, where lp is the Planck length, expected

to be induced by the Planck-scale physics. The cosmological constant induced at

Planck scales φ(1/l2p) (in the regime of extremely high curvatures 1/l2p) may well be

of the order of 1/l2p, but this would not have any observable effect provided the value

φ(0) of the function φ at zero curvature is small. The challenge is then to explain

what type of physics fixes the form of the function φ, and show that the physical

φ indeed has the properties required. We will return to this (open) question in the

next section.

2.3. Homogeneous isotropic cosmology

As we have already mentioned, in the case studied by Friedmann, due to high

symmetry, the “curvature” tensor in the argument of the function φ vanishes, and

predictions of the theory with non-trivial φ are the same as those of GR with the

cosmological constant φ(0). Thus, the Friedmann equations do not get modified.

However, the theory of cosmological perturbations does get modified. Work is cur-

rently in progress to study these modifications.

2.4. New physical effects in the spherically symmetric case

The spherically symmetric problem for the theory in question was solved in 7. It

was shown that the class of theories under study admits an analog of the Birkhoff’s

theorem: a spherically symmetric solution is necessarily static. Importantly, in this

case there is just one invariant that can be constructed from the matrix Ψ : Tr(Ψ)2 ∼
β2,Tr(Ψ)3 ∼ β3, so the function φ becomes that of a single argument φ = φ(β).
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To describe the main new physical effects that appear in the case of a non-trivial

function φ, let us assume that this function has the form of a step-function, taking

one, approximately constant value in the region of relatively large curvatures and

another constant value in the region of relatively small curvatures. Thus, we are

envisaging a scenario in which the function φ defines a scale, which is the curvature

scale at which the change takes effect. In other words, the curvature scale is defined

as the value of β for which the dimensionless quantity ∂φ/∂β is significantly different

from zero.

Assuming that the length scale defined by φ is sufficiently large (as compared to

the horizon radius of a central body), close to the horizon we will have the region of

“large” curvatures described by a (dS) Schwarzschild solution. As one goes further

away from the horizon, the curvature β starts decreasing as β ∼ rs/r
3 (rs is the

Schwarzschild radius) and one will eventually enter the region in space (and in

the curvature space) where the function φ starts to change. One finds that when

the modulus of ∂φ/∂β is nowhere of the order of unity the curvature β (which

no longer has the interpretation of the Weyl curvature) continues to decrease, and

one eventually enters the other region of constant φ. In this region the solution is

again (dS) Schwarzschild, but with, in general, a different value of the cosmological

constant. The main new physical effects, apart from the changing cosmological

constant, are: (i) The observed value of the mass of the spherically symmetric object

is different in the “high” and “low” curvature regions; (ii) There is an additional

redshift occurring as compared to the case of the usual Schwarzschild. These effects

are described by the following simple formulae:

rs(β1)

rs(β2)
= Z(β1, β2),

f(β2)

f(β1)
=

g(β1)

g(β2)
Z(β1, β2), (6)

where f2 is the 00 component of the metric, g−2(r) = 1 − (rs/r) − (1/3)φr2 is its

inverse rr component, as usual for a (dS) Schwarzschild solution and

Z(β1, β2) = e
R β2

β1

φβ
6β

dβ (7)

is the redshift factor. Note that we are using the sign convention for φ different from

that in 7.

To describe the effect of mass “renormalization” in words, let us assume that the

function φ increases with curvature, which is consistent with the assumption that φ

is large at Planck scale curvatures and very small at zero curvature. Then if we take

for β1,2, β1 < β2 the characteristic values for “small” (far away from the object) and

“large” (close to the body) curvatures, respectively, the “redshift” factor is greater

than one, which means that the apparent gravitating mass of the object increases

as one moves further away from it. This simple observation may be able to explain

the phenomenon of missing mass (“dark matter”) as a purely gravitational effect.

Some order-of-magnitude estimates as to what the relevant curvature scale l must

be for such an explanation to be possible are given in 7.
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The reader should keep in mind that the above discussion, as well as that in
7, are just first attempts to extract physical predictions from the new theory, and

that a concrete model for “dark matter”, together with a mechanism that would

fix the form of the function φ, is yet to be proposed. We find it very encouraging,

however, that the direction in which the mass of a spherically symmetric object gets

“renormalized” (under the assumption of a function φ increasing with curvature) is

not in conflict with the phenomenon of missing mass.

The other effect that the modified gravity theory predicts is that of an additional

redshift (blueshift). The above formula tells us that when light is emitted in the

region of “high” curvatures and travels away from the body into the region of “low”

curvatures, in addition to the usual relativistic redshift, there will be (under the

assumption that φ is an increasing function of the curvature) an additional blueshift

that will act in the opposite direction, increasing the photon’s energy. If, however,

light travels from the regions of “low” curvature to those of “high” curvature close

to the body, then there will be an additional redshift effect. As is discussed in 7,

this effect may be of astrophysical significance.

2.5. Avoidance of the black-hole singularity

Yet an additional reason to take the class of theories described seriously is that the

behavior of all fields inside a black hole is much less dramatic than in GR. Let us,

as before, assume that the function φ(β) increases as the curvature increases, e.g.

becomes of order 1/l2p at Planckian curvatures. The derivative φβ of φ would also

normally grow. Then somewhere inside the black hole a point will be reached where

φβ becomes 1/3 (this value is due to the chosen coefficient in front of φ in (3)). As a

detailed analysis of 7 shows, at this point the metric to be constructed from the two-

forms Bi becomes no longer defined (singular). However, all the dynamical fields

of the theory, namely both Bi and Ai, remain finite. Thus, one can evolve through

this surface and enter a new region, where the metric again becomes defined, and

which is absent in the Schwarzschild solution. The resulting conformal diagram is

given in 7. Thus, the theory no longer “carries the seeds of its own destruction”,

something of great importance for its logical consistency. Of course, the removal of

the singularity in the spherically symmetric solution is not equivalent to the absence

of singularities in all possible situations, but this result possibly indicates a much

stronger “avoidance of singularity” property of the theory.

2.6. Coupling to matter

Before one can take the theory described seriously one must make sure that matter

degrees of freedom can be coupled to it. In general relativity this is straightforward,

as matter couples directly to the metric whose dynamics the theory describes. From

the construction of our theory as it was presented in the Introduction it was clear

that it is the Hodge operator that should treated as the fundamental object of the

theory, not the metric defined by it. It is thus a crucial question if matter fields
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can be consistently coupled directly to our basic dynamical fields, which are the

triple of two-forms Bi and the connection Ai. For gauge fields, this task is easy, as

it is exactly the Hodge operator, not the metric, that is required to write down the

Yang-Mills (YM) action. The action that couples the YM gauge field directly to Bi

reads 2:

SYM [a, ϕ] =

∫
ϕα
i B

i ∧ fα(a)−
1

2
ϕα
i ϕ

α
j B

i ∧Bj , (8)

where α, β are Lie algebra indices for the gauge group in question, ϕα
i is an auxiliary

field, similar to Ψij in the case of gravity, and fα(a) is the curvature of the YM con-

nection aα. It is not hard to show that, in the geometric optics approximation, this

theory describes massless quanta propagating along the null geodesics of the metric

defined by Bi. This holds for a general two-form field, independently of whether Bi

satisfies Plebański or generalized field equations. Thus, it is encouraging that the

gauge fields can be coupled to the class of gravity theories under consideration so

seamlessly.

Coupling to other fundamental fields whose existence we know for sure —

fermions — is a much more tricky business. The action proposed for this purpose

in 2 does not extend beyond the case of GR. The reason for this is that the field

equations that follow from the action in 2 form an over-constrained system, and

this system is only consistent when the triple Bi satisfies equations (4) with zero

right-hand-side, i.e., when the gravity theory is GR. For a theory with general φ

the combined theory gravity + fermions with the action proposed in 2 is simply

inconsistent. One therefore has to look for a different description of fermions. Work

on this important issue is currently in progress.

3. Renormalization

3.1. Counterterms

Renormalizability properties of general relativity in Plebański formulation were con-

sidered in 5. Simple power counting arguments show that an infinite set of coun-

terterms must be added to the action, and that in this sense the theory is non-

renormalizable, as expected. However, in Plebański formulation, there is more field

redefinition freedom than in GR. After using the available field redefinitions one

easily shows that there is one infinite set of counterterms that gets combined into

the function φ(Ψ) that we introduced in (3), and another (also infinite) set of coun-

terterms containing covariant derivatives of Ψij . These other terms, not considered

in the theory (2), are, schematically, of the form Ψ . . .Ψ(DΨ)4, Ψ . . .Ψ(DΨ)2B,

Ψ . . .Ψ(DΨ)2F , where Ψ . . .Ψ stands for a product of the matrices Ψij . With the

addition of such terms to the action, the field equations become higher order in

derivatives and the (relative) simplicity of the theories (1) is lost. This is reminis-

cent of what happens in the usual metric-based formulation, where one is forced

to add to the action counterterms that lead to higher-derivative field equations.

The main difference between the two cases is that, in the Hodge operator based
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theory, one can incorporate an infinite number of quantum corrections into the ac-

tion without significantly changing the properties of the theory, while in the metric

based gravity even the simplest quantum induced modification has rather dramatic

consequences.

It is clear that quantum corrections described by the action (2) can be expressed

in the purely metric formulation. Indeed, we have described in the Introduction how

the theory (2) describes the metric of the spacetime, albeit implicitly. Thus, for a

given φ, field equations can be, at least in principle, expressed as field equations

for the metric tensor. It is clear that (for a non-constant φ) one will get equations

involving higher derivatives of the metric. It is also clear that an infinite expansion

in derivatives must be present, as no finite number of derivatives would lead to

a theory with just two propagating degrees of freedom (higher derivatives lead to

higher number of DOF as they require more initial data). Thus, the theory (2)

describes an infinitely large class of purely metric theories with infinite number of

derivatives, where the sums in derivatives have been re-summed to get a theory with

two propagating DOF. Thus, the class of theories under consideration does describe

the usual quantum corrected metric gravity. What is unusual is the parametrization

of these quantum corrections.

For a more general class of theories, namely those containing terms involving

the derivatives of Ψij , a relation to the purely metric formulation is not so clear.

However, it can be expected that they also correspond to GR plus an infinite set of

higher derivative terms, that set being more general than the one that arises from

(2).

3.2. Renormalizability conjecture

The main open problem is whether the class of quantum corrections described by

(2) is complete. In other words, the main question is whether the terms containing

the derivatives of Ψij that can be added to the action on dimensional grounds are

indeed necessary as counterterms if one starts from a theory that does not contain

such terms. Our usual experience with quantum fields suggests that they are: what

can be added to the action should be added. However, there are some rather strong

indications that make the present author to believe that the theories (2) are different

in this respect.

First, the author considered a “gauge fixed version” of the Plebański theory with

the action given by:

Sg.f. =
1

2

∫
(Λ−1)ijF

+i(A) ∧ F+j(A), (9)

where a background metric is chosen and F+i is the self-dual part of the two-form

field strength F i in this metric, and Λij is given by (3). The above expression

gives the “bosonic” part of the action, which also contains some ghost and gauge-

fixing terms. Apart from the presence in (9) of a non-trivial prefactor (Λ−1)ij the

theory studied by the author is the same as the so-called Donaldson theory; see
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10,11. The action (9), together with the other (ghost) terms can be obtained from

(2) by a formal gauge fixing procedure. The theory (9) can be shown to behave

rather nicely under the renormalization. In particular, for this theory no terms

containing derivatives of Λij arise as counterterms. This was reported in 5, where it

was also conjectured that the same property holds for the class of theories (2). The

“gauge fixing” procedure that leads from the gravity theory of interest to (9) is only

understood by the author at the formal level, this is why a detailed derivation of

these results is still unpublished. A completely satisfactory treatment would include

answering the question how the graviton degrees of freedom are represented by the

gauge fixed action, a question currently beyond the author’s understanding. Thus,

the “renormalizability” property of the class of theories (2), namely the property

that it is closed under the renormalization, remains a conjecture.

Some further indications in support of the conjecture have started to emerge

more recently. The conjecture can only be true if the class of theories (2) possesses

some (presumably hidden) symmetry that prevents the terms containing derivatives

of Ψij from appearing. If this is so, what can this symmetry be? It has recently been

realized by the author that one way to view the theories (2) is to regard them as

the topological BF theory (whose action is given by the first term in (2)) in which

a part of the topological symmetry is gauge fixed by the second Λij term. Different

amount of gauge fixing leads to different theories. Thus, e.g., the theory (2) with

all components of Λij considered independent removes more gauge symmetries of

BF theory than it is necessary to get GR and leads to an uninteresting model. If

one accepts this point of view seriously, it then starts to look like the true gravity

theory is given by the topological BF theory “gauge fixed” by some mechanism

to be understood. We are then seeing gravity simply because we have means of

asking the topological BF theory non gauge-invariant questions. This can only be

the case if we have fields coupling to our theory in a non-gauge invariant way,

which is indeed the case: the coupling of matter fields to the two-form fields Bi

breaks the topological symmetry of BF theory. This points in the direction of matter

fields as being responsible for the “gauge fixing” that leads to gravity and for an

“illusion” of purely gravitational degrees of freedom. Needless to say, these ideas

are in their very preliminary stages of development. But they point out in the

direction of the topological symmetry of BF theory as being behind the scene in the

theories of gravity under consideration. In the opinion of the author, it is a better

understanding of all these issues that will one day help to establish the true status

of the “renormalizability” conjecture.

3.3. If the conjecture is true

This is the most optimistic scenario which does not conflict with anything known.

The renormalizability property would give us a window into the Planck scale physics,

as we could then conclude that the gravity theory at the Planck scale is a (quantum)

theory from the class (2), with some function φ that needs to be determined. In
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spite of our ignorance as to the form of this function, the above statement would be

extremely strong, as it would give us means to make at least qualitative statements

about the Planck-scale physics.

What about the form of the function φ? If the conjecture is true, then the

renormalization group flow for theories (2) is a flow in the (infinite dimensional)

space of functions φ. The best-case scenario is then that of the asymptotic safety

of Weinberg 12, which is that this renormalization group flow has a non-trivial

and reasonably well-behaved ultra-violet fixed point. It would then make sense to

use the fixed point theory as the gravitational theory singled out by its extremely

appealing renormalizability properties. This is one possible scenario for fixing the

form of the function φ. Note, however, that the coupling of gravity to matter will

most probably have a strong effect on its UV behavior, so it would be unreasonable

to study this question in the domain of pure gravity. But the idea of fixing the form

of the function φ to be that at the UV fixed point can as well be used when matter

is present. This gives at least a preliminary scenario. Clearly much more work is

required before a “correct” scenario for fixing the form of φ is found.

3.4. If the conjecture is false

This is what one’s experience with quantum fields in Minkowski spacetime would

suggests. If this is the case, one is back where one started: quantum gravity is non-

renormalizable, and its quantization does not seem to give any insight on how it

behaves at Planckian energies. Nevertheless, the class of theories described in the

present review may be of interest even in this case. As we have described above, the

theories (2) do incorporate at least some of the quantum corrections to GR. One

may then argue that, at “low” energies, the terms containing the derivatives of Ψij

are less important and that the low energy limit of the quantum corrected theory

of gravity is given by (2). This is similar to what we know to happen with the usual

metric-based gravity: the terms containing higher derivatives become insignificant

at low energies and drop out. It would still be a challenge to explain how a non-

trivial function φ in (3), if viewed as a result of quantum corrections to GR, could

survive at low energies, but this is not impossible, in case, for example, when there

is a low energy scale present in the matter Lagrangian. All in all, even in case the

renormalizability conjecture fails, the class of theories (2) is of interest as a very

simple class of “modified gravity” theories that does not contain new degrees of

freedom.

4. Conclusions

A class of gravitational theories propagating two degrees of freedom and formulated

without any direct reference to the spacetime metric was described. A theory from

this class is specified by an (arbitrary) function φ of two arguments. General rela-

tivity belongs to the class considered and corresponds to φ = const = Λ, Λ being

the cosmological constant. One way to describe the nature of the modification is
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to say that the cosmological constant became a non-trivial function of the “curva-

ture”. However, the theories we consider cannot be obtained by simply inserting

a scalar function of the Weyl curvature into the Lagrangian. The construction is

much more subtle, and involves, in particular, replacing the paradigm of gravity

being a dynamical theory of the metric by a new paradigm of gravity being about

the dynamics of the Hodge dual operator. We have described some simple physical

consequences of this modification of gravity, as well as reviewed the status of the

question of coupling these theories to matter. Thus, gauge fields couple seamlessly,

but no descriptions for fermions in this framework is as of yet known. Work is

currently in progress on this very important issue.

It is tempting to try to apply the new class of gravity theories to the fundamental

problems of cosmology, namely those of “dark matter” and “dark energy”. We have

indicated how this might be possible, but much more work is needed, in particular

on coupling of these theories to massive matter fields, to see if any realistic model

can be built along these lines.

We have reviewed a conjecture to the effect that the described class of theories

(with varying φ) is closed under the renormalization. Some arguments in support

of this conjecture were given, but its status remains open.
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