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Semiclassical Horizons
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Abstract: The entropy of apparent horizons is derived using coherent states
or semiclassical states in quantum gravity. The leading term is proportional
to area for large horizons, and the correction terms differ according to the
details of the graph which is used to regularise the quantum gravity phase
space variables.
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1 Introduction

A black hole space-time is characterised by parameters like mass, angular mo-
mentum and charge. This behaviour is similar to thermodynamic systems
like that of a ideal gas, where details of the dynamics of the molecules is aver-
aged over and the entire system is described by macroscopic parameters like
temperature, volume, pressure etc. Further, the laws of black hole mechanics
are very similar to laws of thermodynamics, including a second law which
says the area of horizon increases in any physical process. This led to the
conjecture that horizons have entropy like a thermodynamic system, and the
entropy is equal to area of the horizon divided by four Planck length squared
(AH/4l

2

p). This conjecture is not proven experimentally though for theoret-
ical consistency, a quantum theory of gravity is searching for a microscopic
origin of horizon entropy.
Black holes like the Schwarzschild space-time are vacuum solution of Ein-
stein’s equation. One cannot say that these are comprised of fundamental
constituents like the gas molecules and the averaging over these degrees of
freedom give the macroscopic entropy and temperature. Even if the fun-
damental structure of space-time is quantised, then it has to be explained
why the black hole is not a pure ‘condensate’ of such fundamental degrees
of freedom. Thus it appears that a plausible explanation is the entropy has
originated from tracing over a part of the system. There clearly is a loss
of information for ‘a part of the system’ for the classical outside observer,
due to the presence of the horizon. In a quantum mechanical description
of the black hole space-time, if the outside and the inside of the horizon
are described by two different Hilbert spaces, and the outside observer, has
access to one of them, one has to trace over the Hilbert space inside the
horizon. A density matrix then describes the system outside the horizon. If
the two Hilbert spaces inside and outside the horizon are entangled, then the
reduced density matrix is a mixed one and a entropy results. Thus the task
would be to find a ‘quantum mechanical’ wavefunction for the horizon and
trace over the part of the wavefunction within the horizon. Since horizons
are macroscopic and lightcones which determine the causal properties of any
space-time and are classically well defined, any attempt to obtain a ‘exact
quantum black hole’ would require non-perturbative ‘solitonic’ sectors to ex-
ist in the quantum theory, or they should be recovered from semi-classical
states just as light waves emerge from coherent states which are condensates
of photons described by the electromagnetic ‘quantum’ states.
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Loop quantum gravity (LQG) is a approach to quantum gravity, where the
canonical metric variables and the extrinsic curvature is redefined as a SU(2)
gauge connection, and it’s conjugate momentum or electric field. A kinematic
Hilbert space can be identified for this theory, though the constraints have
to be solved yet. A coherent state can be described in the kinematic Hilbert
space, which have all the properties of the usual coherent states including
minimum uncertainty, overcompleteness, and peakedness about classical so-
lutions [1, 2, 8]. While this is not a complete description, as the coherent
states are defined in the kinematic Hilbert space, certain questions about
quantum fluctuations about the classical geometry, resolution of the singu-
larity at the center of the black hole, and correlations across the horizon can
be answered.
The LQG Hilbert space uses regularised canonical variables, defined along
one dimensional piecewise analytic edges (e) of a graph (Γ). The config-
uration space variables are the holonomy he of a SU(2) gauge connection
comprising of the tangent space ‘spin connection’ and the extrinsic curvature
of the spatial slice. The ‘dual’ momentum P I

e (I=1,2,3 is the SU(2) index) is
the set of triads describing the intrinsic geometry of the spatial slice, smeared
in two dimensional surfaces, which the edges intersect. The pair he, P

I
e com-

prise the phase space variables, and one can define a coherent state for each
edge in the graph ψt(geh

−1

e ), peaked at the classical values of the complexified
version of these variables ge = exp(iT IP I

e )he, where T
I are the generators

of SU(2) [2]. The semiclassicality parameter t controls the quantum fluctua-

tions. This parameter is fixed as t =
l2p
AH

where lp is the Planck length, and
AH is the area of the horizon associated with a black hole. Thus for large
black holes t is small, and the semi-classical approximation is better, and for
Planck size black holes, the semiclassicality parameter t is order 1, and hence
one has to fully quantise the system in that regime. Once a graph is obtained
discretising the entire spatial slice, as observed in [3, 4, 5], the regularised
variables are well defined even at the central singularity of the black hole,
and smooth across the horizon for a particular spatial slicing.

2 Entropy of Horizons

The coherent state is defined for a graph which when embedded in the clas-
sical space-time comprises of edges along the coordinate lines of spherically
symmetric axis (r, θ, φ). The apparent horizon equation ∇aS

a −KabS
aSb −
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K = 0 ( Sa is the normal to the apparent horizon,Kab the extrinsic curvature
of the spatial surface and K, the trace of the extrinsic curvature) is re-written
in the regularised ‘classical variables’ is satisfied in the classical limit, and
encodes correlation across the horizon [4]. Written in terms of the holonomies
at a vertex v1 outside the horizon, and v2 inside the horizon, one obtaines

4P 2

eθ

[

Tr
(

T Jh−1

eθ
V 1/2heθ

)

v1
− Tr

(

T Jh−1

eθ
V 1/2heθ

)

v2

]

Tr
(

T Jh−1

eθ
V 1/2heθ

)

v1

− 1√
β

∂

∂β
Tr
(

T I βheθ
)

P I
eθ v1 = 0 (1)

eθ denotes a edge along the coordinate lines of θ, β denotes the Immirzi
parameter, heθ and P I

eθ
denote the holonomy and momenta along the edge

eθ, one set for a edge beginning/ending at vetex v1 another set for a edge
beginning/ending at vertex v2. Symbolically it has the following form

Â[B̂I(v1)− B̂I(v2)]Ĉ
I(v1)− D̂ = 0 (2)

where Â, B̂, Ĉ, D̂ are operators given as functions of he, P
I
e of the angular

edges which begin/end at a vertex v1 outside the horizon and those angular
edges which begin/end at a vertex inside the horizon. In the coherent states
this can be written as

Limitt→0 < Ψ|Ĥ|Ψ >= 0, (3)

The expectation value of the horizon operator is thus vanishing only in
the semi-classical limit, realised as t → 0. where Ĥ = ÂB̂I(v1)Ĉ

I(v1) −
ÂB̂I(v2)Ĉ

I(v1)− D̂.
Note that this set of equations show that the coherent state wavefunc-

tion within the horizon must be correlated with the coherent state outside the
horizon. The correlation was encoded in a conditional probability function to
derive what the zeroeth order entropy should be, but the actual computation
of the correlations and the density function should be obtained using physical
coherent states, a first step towards which has been taken in a recent paper
by Thiemann et al [8]
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In the above, the graph at the horizon is taken to simply comprise of
radial edges linking vertices inside the horizon to those outside the horizon.
Further the coherent states of the angular edges (along the θ, φ coordinates)
ending/beginning at vertices v1 outside the horizon get correlated with coher-
ent states of angular edges ending/beginning at vertices v2 inside the horizon.
Note v1 and v2 are linked by a radial edge eH . Thus the coherent state is
written thus

|Ψ >=
∏

f(v1, v2)|ψv1 > |ψH > |ψv2 > (4)

A tracing over of the edges inside the horizon (or the set of coherent states
in the above tensor product state labelled by v2), gives a mixed density
matrix ρ, which in the classical limit is diagonal [5]. The entropy obtained
as −Tr(ρ ln ρ) of this density matrix, is the number of ways to induce the
horizon area as the degeneracy due to the horizon state |ψH > contributes to
the trace (The degeneracy of a horizon state which induces a area (je+1/2)t
is 2je + 1. Thus given a set of radial edges inducing the horizon with area,
one simply obtaines the degeneracy associated with the coherent state for
those edges, given the total area of the horizon, and a log of that gives the
entropy.

Note that this way of deriving entropy of log of the spins at the horizon
has been used, and is similar to the ‘it for bit’ formulation introduced by
Bekenstein, however, this is a quantum mechanical derivation of the similar
principle using a coherent state wavefunction. Also this differs from the
derivations of [7] as there is no additional constraint to restrict the degeneracy
of area at the horizon. In my formulation, the horizon wavefunction is free
as per the apparent horizon equation (1) in the semiclassical limit.
Thus the degeneracy of the horizon coherent state at the horizon is deter-
mined by the number of edges, as well as the spins associated with those
edges. This brings us to the choice of the graph at the horizon, which will
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determine the number of ways to induce the horizon area. Having only one
graph, with the edges each carrying spin je, with the area equally distributed
on the horizon sphere one can count the entropy as simply by summing the
degeneracy (2je + 1) associated with each edge. The constraint is that if N
is the number of edges, (je + 1/2)N = AH

l2p
. The log of the degenracy is thus

SBH =
AH

l2p
ln(2je + 1) (5)

The entropy calculation is exact, and there are no corrections to the
Bekenstein-Hawking term.

In the situation one fixes the number of edges a priori, to be a number N
and these edges are allowed to be distributed asymmetrically, i.e. the spins
je of the edges need not be equal, the constraint is

∑

je(je + 1/2) = AH

l2p
the

entropy is

SBH =
AH

l2p

(

3

2
ln 3− ln 2

)

− 1

2
ln(

AH

l2p
) + .. (6)

As seen above, the log area correction appears here with the coefficient
1/2, and this type of correction has been obtained in other derivations of
entropy [7]. However as we show below, this is not unique, and entropy
corrections will differ if the number of edges is allowed to vary.

We then generalised the case of one graph coherent state to the sum over
graphs [6] ‘generalised coherent state’. Keeping the spherical symmetry in
place, the graph at the horizon can vary as per (i) the number of edges
crossing the horizon (ii) the distribution of the edges across the horizon.
These different graphs are labeled as ‘minimal graphs’, as one graph cannot be
obtained by subdividing the edges of the other graph. The generalised LQG
Hilbert space can be written as a direct sum of Hilbert spaces corresponding
to each minimal graph.

H = ⊕ΓHΓ (7)

In a sum over graphs situation, where the number of edges is not fixed
a priori, and the (je) are arbitrary, subject only to the constraint that
∑

je(je + 1/2) = AH/l
2

p, the entropy is not Bekenstein-Hawking anymore.
Two different answers are obtained, as per the two restrictions in the tracing
procedure to obtain the generalised density matrix. (i)The generalised den-
sity matrix is a tensor sum over the density matrices for each Hilbert space,
the entropy is given by
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SBH = (2
AH

l2p
− 1) ln 2 + exp(−(2

AH

l2p
− 1) ln 2) ln(

AH

l2p
) (8)

where, the entropy is Bekenstein-Hawking with corrections. As the area of
the horizon increases, the corrections decrease, and the leading term indeed
is a log area correction term. However, the complete correction, is decreasing
exponentially in area.
(ii)The second situation arises, when the entropy is obtained, from a ‘gen-
eralised coherent state’ which is a superposition of all the orthogonal graph
Hilbert, coherent states. This superposition allows for transition from one
graph-Hilbert space to another. The entropy in this case is

SBH = ln





1√
5

(

3 +
√
5

2

)2AH/l2p

−
(

3−
√
5

2

)2AH/l2p


 (9)

For large areas the leading term is indeed Bekenstein-Hawking, and the cor-
rections are all exponentially decreasing in area.

SBH = 2
AH

l2p
ln

(

3 +
√
5

2

)

+ (6.854)−2AH/l2p + . (10)

Thus, even semiclassically, the different ways of counting give different correc-
tions,though the leading term is universally acknowledged to be Bekenstein-
Hawking term. In particular for this derivation, the entropy is different, as
per the ’coherent state’ used to describe the same classical space-time. If the
coherent state is taken from one-graph Hilbert space, there are no correction
terms (5). If the coherent state is in a superposed state as a sum over different
graph coherent states, then the correction term is exponentially decreasing
in area (10).
Thus the correction terms and the proportionality constant (which is fixed
to 1/4l2p using the Immirzi parameter, and can be done in this formalism
also) in the entropy counting remain ambiguous. A experimental verification
of the correction term will determine the specific ‘generalised coherent state’
the system is in.

3 Quantum fluctuations

In the discussion of the above sections Bekenstein-Hawking entropy is shown
to originate from the t→ 0 limit of the coherent state. Hence the corrections
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to the ‘classical metric’ have not been included in the analysis. What happens
when one starts including corrections to the classical metric? Obviously, the
horizon is not a impervious membrane any more. The order t corrections
are just proportional to t multiplied by the classical values of he, P

I
e [3]. The

apparent horizon equation is no longer satisfied, and the apparent horizon
operator is not vanishing in the coherent states at this order. The apparent
horizon operator gets corrected thus:

< ψ|Ĥ|ψ >= t F (h(v1, v2), P (v1, v2)) +O(t2) (11)

where F is a function of the classical holonomy and momenta of edges linked
at both the vertices v1 (outside the horizon) and v2 (vertices inside the hori-
zon). Thus, information about the phase space variables will start to emerge
from behind the horizon. These fluctuations can be included in the classical
Hamiltonian, and the density matrix evolved in time. Such time evolutions
usually lead to a thermalisation of the density matrix, and hence we are
discovering the semi-classical origin of Hawking radiation.

4 Discussions

The perspective described in this paper, where entropy of horizons is at-
tributed to a ‘entanglement’ entropy when one traces over the semi-classical
wavefunction inside the horizon appears to be a correct way to search for
the origin of black hole entropy. Further work is in progress to obtain the
coherent state in the physical Hilbert space.
Acknowledgements I would like to thank the organisors of Theory Canada
III for giving me the opportunity to talk about this work.
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