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Abstract

We investigate DBI inflation using N multiple branes and show how the configuration
is equivalent to a single wrapped D5-brane with flux. We then show how 1/N corrections
can be implemented, and we examine the sound speed and levels of non-Gaussianities in two
distinct cases. For models with constant warping we find that the non-Gaussian amplitude is
bounded from above (as a function of γ). For AdS backgrounds we find that the signature is
generally large and positive, although is no longer globally defined over the full phase space.
We then investigate an inflationary mechanism using a representation cascade, whereby the
transition from a reducible representation to the irrep drives inflation.
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1 Introduction

In the absence of any direct test of string theory, cosmology remains the best laboratory with
which to test string theoretic models [1]. Over the past few years we have witnessed cosmology
become a precision science, with COBE, WMAP and SDSS [2] providing crucial support for the
flatness of the universe, the existence of dark energy and for a period of cosmic inflation. Whilst
the dark energy puzzle remains an outstanding problem for theoretical physics in general [3],
inflation has been a carefully developed paradigm with many explicit models. Unfortunately as
far as inflationary model building is concerned, there are still many problems to be resolved.
Particularly since many of the models suffer from super-Planckian VEV’s for the inflaton field [1],
and therefore find themselves in a region where quantum gravity effects are non-negligible.
Conversely the lack of a background independent formulation of string theory has prevented the
explicit construction of top-down models, and much of string cosmology has been done explicitly
at the field theory level. Whilst there is nothing wrong with this in principle, many of the models
are somehow missing much of the underlying string theoretic structure which is where we would
expect the more interesting physics to emerge.

There are indications that this picture is about to change [1]. Our understanding of both
geometric [4] and non-geometric flux compactifications [5] of type II string theory has increased
immeasurably in recent years, allowing for the construction of more realistic inflationary models
[8]. Additionally models emerging from heterotic M-theory [13] can also now be placed on a more
secure footing, and may yet unify both the standard model and inflaton sectors. Of course there
remains much work to be done, but the general prognosis is that inflationary model building
will only improve.

One of the simpler models of string inflation relies on the motion of branes, where the
inflaton is now reflected in terms of geometry. Either as the distance between a pair of D3− D̄3-
branes [10], or as the distance between a single brane and some reference point in a warped
throat [9]. These models are especially appealing, not just because of their simplicity, but
because the inflaton is an open string mode which will vanish at the end of inflation and therefore
one doesn’t need to worry about how it interacts with the standard model sector [35]. In the
light of recent developments in type IIB flux compactifications, and the existence of a potential
multitude of warped throats with which to resolve the hierarchy problem, these models have
become even more appealing. Given the vast number of free parameters that we often find in
string model building, it is relatively easy to construct a model that satisfies the WMAP data.
Therefore we should be interested in predictions that can be ruled out. These should not be
regarded as being deficiencies of string theory, on the contrary in fact, as we are narrowing
the parameter space with each one eliminated. Much of the community is now involved in
determining which signatures of a particular model can be tested. Indeed many of them rely on
bounds placed on cosmic (super)string formation during or after inflation [6].

One particular model based on the non-linear structure of the DBI action itself, named
DBI inflation [11], has an interesting signature in that it predicts large levels of non-Gaussian
perturbations during inflation [24]. This is important since the result is apparently background
independent [1]. There has been much work on this model and its implications [20–23], but
the general consensus now is that the simplest scenario is no longer viable. This means it is
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essential for us to develop more realistic variations of this model [15–17]. There have been several
proposals for extending this work, ranging from multi-brane configurations to branes wrapping
non-trivial cycles. Although these extensions are able to satisfy the experimental bounds, there
is still some concern about the range of validity of such models.

In this paper we will initiate an investigation into the multi-brane proposal of [17], and
begin to institute higher order corrections to the action [31]. In this case the corrections we are
interested in are the 1/N corrections in the large N limit. These corrections are important as
the primary constraint on the model is that N << M , where N is the number of branes and
M is the total flux in a throat. In the compact case we know that M is bounded from above,
by considering compactification of F-theory onto Calabi-Yau (CY) four-folds [4], and therefore
this restricts the number of dynamical branes accordingly. The large N limit ensures that the
action simplifies, moreover the relevant physical scales are either suppressed or enhanced by this
large number allowing us to evade many of the tight constraints. However assuming large N
also means that the backreaction could be dangerously out of control. What we would like is
therefore to keep N relatively large but also understand how some of the 1/N corrections alter
things. Given the highly non-linear structure of the DBI even at leading order, we expect that
these corrections will be analytically complicated. Therefore rather than search for concrete
models of inflation we will restrict ourselves to analysis of the interesting observables associated
with DBI inflation. In short we will be interested in i) how the corrections alter the sound
speed and ii) how the corrections alter the prediction of large non-Gaussianity. We leave a more
detailed investigation of the model dynamics to another publication.

In section II we will introduce the action for the multi-brane configuration we are describing
and its features. We will also demonstrate how this is equivalent to a model based on a D5-brane
wrapping a two-cycle and carrying flux along its internal directions - and therefore overlapping
with the model proposed in [19]. In section III we will show how these 1/N corrections can be
implemented, and how they alter the leading order behaviour of the Lagrangian. We will then
investigate how the corrections alter the predictivity of the model. In the final section we will
consider an alternative model using a similar set-up, but we will use the group representation
space as the inflationary phase space.

2 Multiple brane inflation

Our primary interest here is to study DBI inflation driven by multiple branes in a warped
geometry [15–17, 32]. By now there is a considerable mass of evidence to suggest that the
simplestD3-brane scenario does not lead to new physically observable signatures, and is therefore
indistinguishable from standard slow roll inflaton models [18,19]. As a result we must beyond the
simplest models, and search for other regions of solution space which could give us inflationary
trajectories. Perhaps the next simplest approach, which we will consider here, is to replace
the single brane by N D3-branes and study the corresponding dynamics. In particular we will
consider the case where all the branes are localised at distances less than the string length.
In terms of the world-volume field theories this means that we are studying the U(N) theory
rather than the U(1)N theory [28,29]. This differs significantly from a theory of N -branes that
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are separated at larger distances [15,16], which will fall into the class of Assisted Inflation [12].
What is important in these models is that each of the N -fields follow an attractor trajectory
so that we can treat each field as having an equal contribution to the Hubble scale. If they do
not, then we will generally find signatures of isocurvature modes. Although these were shown to
be suppressed in the case of DBI inflation [15]. Other models using the large N limit typically
involve axions [14,25].

Unlike in the case of a single D-brane, the action for multiple coincident branes is still
unknown. As a leading order solution we will employ the use of the Myers action, which is
known to deviate from the full string theory scattering amplitude at O(F 6) [28]. However
despite this not being the full solution, it will almost certainly be part of the full solution -
and therefore one should regard our model building program as being the first step towards the
complete string description.

One may also regard this solution as being more generic than the single brane models -
since we expect these objects to be created quantum mechanically at the end of brane/flux
annihilation [32]. Tuning the fluxes to ensure that only a single D3-brane emerges through this
process imposes additional fine tuning of the parameters, and is often unsatisfactory. Moreover
the annihilation itself is reasonably well understood, and the residual branes will find themselves
localised in the IR end of a warped throat [20]. The relevant physical scales are thus significantly
red-shifted with regard to an observer sitting in the bulk space, and one hope is that the standard
model will be localised upon some intersecting brane stack in another throat.

We will take the ten-dimensional background metric to be of the following form, which can
be regarded as a cone over the base space X5

ds210 = h2gµνdx
µdxν + h−2(dρ2 + ρ2dX2

5 ) (2.1)

where the radial direction is parameterised by ρ rather than r since the latter is often assigned to
the ratio of tensor to scalar perturbations. The factors of h are the warp factors for the geometry,
and are functions of the transverse coordinates. For simplicity we will set all gauge fields to
zero, and in addition we will assume that the NS two-form B(2) is also zero2 since this simplifies
things considerably. We assume that the warped inflationary throat is one of many throats glued
onto the internal Calabi-Yau space, although the gluing is a model dependent effect and may
well induce corrections to the flux induced potential [4] We will assume that the Chern-Simons
sector consists solely of the RR four-form C(4), and that this is simply proportional to the warp
factor.

The relevant contribution to the Myers action [28] can be written as follows

S = −Tp
∫

dp+1ξSTr

(
√

−det(Êµν + Êµi(Q−1 − δ)ijÊjν)
√

detQi
j

)

(2.2)

supplemented by the non-Abelian Chern-Simons contribution

SCS = µp

∫

dp+1ξSTr
(

eiλiφiφ
∑

Ĉ(n)
)

. (2.3)

2In the Klebanov-Strassler geometry [30] the two-form runs logarithmically with the radial displacement, and
so can be tuned to vanish near the tip of the throat.
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Let us explain the terminology used above. Firstly the scalar fields are now matrix valued, and
therefore we require a prescription for taking their trace. This is done using the symmetrised
trace, which requires us to take the fully symmetric averaging over all possible orderings before
taking the trace. This is required in order to reproduce the known (lowest order) string scattering
amplitudes. The kinetic term in the action contains the matrix Qij, which also appears as a
potential term. This matrix is explicitly given by

Qij + δij + iλ[φi, φj ]Ekj (2.4)

and we will work to leading order in its expansion. The metric Eµν is a linear combination
of the metric and NS two-form, although in our simplistic scenario it reduces to the metric
only. Greek indices run over the non-compact directions, whilst roman indices correspond to
the transverse directions. As usual hats denote pullbacks of the space time fields to the world-
volume. The Chern-Simons term involves a summation over all possible RR fields present in the
theory, coupled to an expansion of so-called interior derivatives. Usually the Chern-Simons term
involves coupling to lower degree form fields through the introduction of non-vanishing Chern
classes, the introduction of the interior derivatives also induces couplings to higher dimensional
form fields through their action

iφiφC
(p) =

1

2
[φi, φj ]C

(p)
ji (2.5)

and so the Chern-Simons action can be written schematically in the form

SCS ∼
∫

dp+1ξ
(

C(p+1) + iλiφiφC
(p+3) + . . .

)

. (2.6)

Our interest is in coupling this system to four-dimensional Einstein gravity. Since in our solution
the dilaton is fixed at zero - there is no concern about string frame effects3. The transverse scalars
in this instance are now matrices, and we choose the fields to be proportional to generators of
a non-Abelian gauge group. Since there is often a transverse S2 present in these models, we
choose the group to be SO(3) ∼ SU(2) to reflect this transverse symmetry. As a result we have
the following ansatz for our fields

φi = R(t)αi (2.7)

where αi are the irreducible representation of the SU(2) algebra. We then plug this ansatz into
the action and follow the prescription discussed in [17] to obtain the action. Let us simply state
the relevant results. The diagonal components of the energy momentum tensor can be written
as follows

ρ = NT3
(

Wh4γ − h4 + V (φ)
)

P = −NT3
(

Wh4γ−1 − h4 + V (φ)
)

(2.8)

where γ = (1− φ̇2/(h4T3))−1/2 and W = (1+4φ4/(h4λ2T 2
3C2))

1/2 are the relativistic factor and
the fuzzy potential terms respectively. Note that C2 is the quadratic Casimir of SU(2), which
is related to the number of branes through the relation C2 = N2 − 1. We will keep the explicit
dependence on the Casimir, although it should be noted that we have already assumed that
1/N2 terms are negligible in obtaining the above expressions. The scalar potential V (φ) has

3Although this means that the string coupling is essentially unity.
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been included in order to account for other brane/flux interactions which may be present. The
expression for the sound speed is also the same as in single brane models [11]

C2
s =

1

γ2
(2.9)

which implies that the level of non-Gaussian fluctuations should be independent of N , which is
a somewhat surprising result4. The fact that the large N limit gives the same speed of sound
as the single brane model is actually not surprising, since (as we will show in the next section)
this configuration actually has a dual interpretation in terms of a single wrapped brane [28].
As is well known, in the full warped deformed conifold solution [30] the second Betti number of
this background is zero which means that there are no stable non-trivial two-cycles within the
geometry. This implies that any brane wrapped along this cycle can shrink to a point. However
one way to stabilise the brane on this cycle is to turn on F1-string charge. Thus our string
solutions will typically have to carry some extra U(1) gauge theory on their world volumes.

The important prediction of DBI inflation is that it can lead to large levels of non-Gaussian
fluctuations [11,18,21]. The current sensitivity of the WMAP data at the 0.95 confidence level [2]
only places the minimal bound on these fluctuations to be

− 256 < fnl < 332. (2.10)

If one also assumes that the scalar perturbations are given by ζ = ζL(1 − 3/5fnlζL), where ζL
denotes the linearised Gaussian perturbations, then one can derive the following three-point
function in momentum-space [24]

< ζ(k1)ζ(k2)ζ(k3) >= (2π)7δ3(k1 + k2 + k3)

∑

i k
3
i

Πik3i

(

−3fnl
10

(P ζk )
2

)

(2.11)

where P ζk is the scalar amplitude in momentum space. Now the non-Gaussianity amplitude fnl
has six contributions, of which only two are relevant for DBI inflation since the others are of
order of the slow roll parameters. In the equilateral triangle limit, where all three momenta are
equal, we can approximate the amplitude of these fluctuations through the following expression

fnl =
35

108

(

1

C2
s

− 1

)

− 5

81

(

1

C2
s

− 1− 2Λ

)

(2.12)

where the Λ function is determined through the following relation

Λ =
X2P,XX + 2

3X
3P,XXX

XP,X + 2X2P,XX
(2.13)

where we have defined X = φ̇2/2. For slow roll inflation, the sound speed is always unity
and moreover there are no contributions to the Λ term therefore fnl ∼ 0. However for DBI
inflation, both for a single brane and for a large number of coincident branes, the sound speed
is small. The result5 is that fnl ∼ 0.32γ2 and therefore could be observable for large γ. In

4The N dependence plays a role in setting the scale of the amplitude fluctuations [17].
5We are using the conventions of [24], which maybe of the opposite sign to those employed by the WMAP

normalisation [2].
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practice this provides us with a tight constraint on the allowed range of γ, which we can use to
tune the inflationary scale. One important thing to note about this result is that the solution
is independent on the warp factor of the background, and is therefore a universal result even
though the inflationary solutions are background dependent. Of course γ is itself a function
of the warping, however once we treat this as being a variable in itself we see that there is no
additional warp factor dependence. However the running of the non-Gaussian amplitude, which
is approximately given by nnl − 1 ∼ −2s where s = Ċs/(CsH), is sensitive to the particular
choice of background.

The relevant cosmologically observable scales are set through the size of the Hubble param-
eter, which we define as

H2 =
ρ

3M2
p

(2.14)

where we are using the reduced Planck mass as is usual in String cosmology. An important
relationship between the four-dimensional physics and the ten-dimensional physics is set through
the definition of the four-dimensional Planck scale 6

M2
p =

V w
6

κ210
(2.15)

where V w
6 =

∫

d6χ
√
gh(χ) is the warped six-dimensional volume, and κ210 = 1

2(2π)
7g2sα

′4 is
the ten-dimensional Newtons constant. This relationship is crucial when discussing the Lyth
bound on the allowed range for the inflaton field. In the single brane models it was shown that
a relativistic inflaton was not compatible with this bound, when normalised to the WMAP 3
data. However the multi-brane model contributes an additional factor of

√
N to the allowed

field range, and is therefore able to by-pass these stringent conditions and therefore still provides
a testable prediction [17–19]. Of course the fact that large N will also lead to back-reaction on
the geometry implies that our solution must be extremely fine-tuned, But we will return to this
issue in a later section. As an approximation we can assume that the warped volume factorises
into the bulk (CY) contribution, and the throat contribution. It is readily noted that the throat
volume is given by

Ṽ6 ∼ Vol(X5)

∫ ρc

0
dρ
ρ5

h4
(2.16)

where ρc corresponds to the UV cutoff in the throat. In some models this cutoff will be taken
to the the place where the throat is glued to the CY, whereas in other models the cutoff will
represent the limit of reliability of the theory. In the expression note that Vol(X5) is dependent
on the explicitly choice of five-dimensional manifold, but its volume will always scale like aπ3

where a is some constant which is in the range O(100 − 101). As a result the Planck mass can
be assumed to be bounded through the relationship

M2
p >

Ṽ6
κ210

(2.17)

For inflationary trajectories we typically demand that NT3V dominates the contribution to
the Hubble scale in (2.14). In the usual DBI model this implies that V >> h4(γ − 1), which
can be achieved even for relativistic rolling provided that the warp factor suppression is large

6See [25] for recent discussion of this point.
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enough. However one must be more careful when in the slow roll regime if this is not satisfied.
Generally the warping will be exponentially suppressed, and is a function of the flux ratio. With
appropriate fine tuning of these fluxes one would anticipate that the warping can be sufficiently
small. In our model we find a slightly modified bound compared to the previous case given by
V >> h4(Wγ − 1), and we must also ensure that M/N >> 1 in order for the back reaction
to be negligible. Now the fuzzy potential W is bounded by unity from below, and is typically
an increasing function of φ (depending upon the interplay with the warp factor). This means
that the relevant scale is now set by Wγ and not just γ. This gives rise to a two-dimensional
parameter space, and therefore access to a larger range of inflationary trajectories.

First notice that for solutions where W ∼ 1, the potential constraint reduces to the usual
D3-brane models. However we must also supplement this with the W-condition which imposes
a bound on the inflaton range

V (φ) >> h4(γ − 1) → φ2 <<
M2
s h

2
√
C2

8π2gs
. (2.18)

This illustrates the sensitivity of the field to the warping, the string scale and the coupling
constant. For solutions where the warp factor approaches a constant (i.e position independent)
the solution will be sensitive to the UV cutoff. Let us assume that the maximal allowed value
for the inflaton is given by φc = ρc

√
T3. In turn this means that the W-bound becomes a bound

on the number of branes, and we see that

Nconst <
M2
s ρ

2
c

πh2
(2.19)

suggesting that it is more preferable for the warp factor to be constant over longer distances.
For semi-explicit string models the warping will typically be of the form h ∼ h0 ± h1ρ

α+ . . ., in
which case the cutoff corresponds to the maximal allowed value of ρ that allows us to neglect
the ρα terms. Alternatively we can consider backgrounds such as AdS5 ×X5, in which case the
normalised warping is given by h ∼ φ/(R

√
T3) where R4 = 4πgsMl4s is the usual curvature of

the AdS geometry and M is the total background flux. Combining the W-condition with the
flux constraint gives us the following (weak) bound on N , namely

NAdS5
>>

4gs
π
. (2.20)

without having to resort to imposing the Lyth bound [18].

The W ∼ 1 limit essentially maps onto the single-brane case, therefore the more interesting
limit is to consider solutions whereW >> 1, implying that the bound on the potential becomes:

V (φ) >>
8π2h2φ2gs

M2
s

√
C2

(2.21)

where we have used the fact that the W-condition demands that φ2 >> M2
s h

2
√
C2/(8π

2gs).
This latter solution requires the warp factor to be extremely small if we wish to consider IR
inflation [20], as we still want the solution to consist of perturbative string states.

On cosmological scales we see from (2.14) that inflation will impose an additional bound on
the number of branes, since we require H2 >> m2

φ, where mφ is the inflaton mass which arises
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from the subleading terms in the potential (at least for IR inflation). This means we can write
a bound on N through the relation

N >> 24π3gs

(

M2
pm

2
φ

M4
s

)

. (2.22)

Note that this is sensitive to the splitting between the inflationary scale and the string scale.
For us to be confident about neglecting the backreaction we require N to be as small as possible
whilst still allowing the 1/N2 terms to be negligible. This suggests that the string scale should
be high in these models, in which case the inflaton mass only need be of order the GUT scale.
In a fully compactified theory, we could also use the F-theory tadpole constraint to view this
as an additional constraint upon the ratio m2

φ/M
4
s , since the fluxes are bounded by the Euler

number of the particular Calabi-Yau [4, 18].

Let us restrict ourselves to the case of relativistic motion, where we approximate φ̇ ∼
h4T3 which gives us the inflaton equation of motion for a choice of warp factor. For con-
stant warping the solution is φ(t) ∼ φ0 + h2

√
T3(t − t0), whilst for AdS space it becomes

φ ∼ φ0exp(
√
T3(t− t0)/R). The relativistic limit is of interest because this is the regime where

the non-linearities play an important role. For the non-relativistic case we refer the reader
to [23]. The equation for the conservation of energy gives us a term on the RHS which goes
like −3HNT3h

4Wγ(1 − O(γ−2)) however we can neglect the 1/γ2 terms as we are assuming
the relativistic limit. Combining this with the Hamilton Jacobi formalism, where we assume a
monotonic trajectory for the inflaton field, we see that the first cosmologically relevant parameter
becomes [7]

ǫ1 = − Ḣ

H2
∼

2M2
p

NW∗γ∗

(

H ′

∗

H∗

)2

(2.23)

which is a slight modification of the usual DBI ’fast roll’ parameter. In the solution above note
that a prime denotes differentiation with respect to φ, and ∗ denotes that the parameter is
evaluated at horizon crossing. The other two relevant terms are written below

ǫ2 =
φ̈

Hφ̇
ǫ3 =

Ḟ

2HF
(2.24)

where F = P,X +XP,XX as usual. The resulting expressions reduce to the following

ǫ2 = −
2M2

p

NW∗γ∗

(

H ′

∗

H∗

)(

H ′′

∗

H ′

∗

− W ′

∗

W∗

− γ′
∗

γ∗

)

ǫ3 = −
M2
p

NW∗γ∗

(

H ′

∗

H∗

)(

W ′

∗

W∗

+
3γ′

∗

γ∗

)

. (2.25)

Note that typically we will findW ′/W ≥ 0 which therefore makes the relevant parameters more
negative. Assuming the validity of the fast roll expansion, namely that ǫi << 1, we see that the
spectral indices for the curvature and tensor perturbations may be written as follows

ns = 1− 2(2ǫ1 + ǫ2 + ǫ3)

nt = −2ǫ1 (2.26)

9



or in terms of the generalised background parameters

ns = 1− 2M2
p

NW∗γ

(

H ′

∗

H∗

)(

4H ′

∗

H∗

− H ′′

∗

H ′

∗

− 2γ′
∗

γ∗

)

nt = −
4M2

p

NW∗γ∗

(

H ′

∗

H∗

)2

. (2.27)

Note that because the solutions of interest correspond to large γ, we see that nt is actually
independent of the fuzzy potential. One can see this because once we write γ as a function of φ
we find that in the ultra-relativistic regime

Wγ ∼
2M2

p |H ′|√
T3h2N

(2.28)

and therefore the relevant scalar tilt is only a function of H and its derivatives. Now the relevant
amplitudes for these perturbations in a de-Sitter background have been calculated for all the
most general cases of interest [7]. We repeat them here for convenience

P2
s ∼ H2

∗

8π2M2
p ǫ1∗Cs∗

P2
t ∼ 2H2

∗

π2M2
p

. (2.29)

Note that, as usual, the inflaton doesn’t mix with gravitational modes and so there is no addi-
tional field dependence in this amplitude besides the contribution to the Hubble scale.

Typically in IR models of DBI inflation [18, 20], the inflaton potential will be of the form
V ∼ V0 − m̃2φ2 + . . ., where we have omitted the subleading corrections. In the notation of this
paper m̃ has units of (mass)−1 and therefore corresponds to some length scale, which is different
to the inflaton mass scale 7 mφ =

√
T3m̃. In any event this leads to the approximation

(

H ′

∗

H∗

)

∼ −m̃
2φ∗
V0

. (2.30)

Using this as our basis we can work out the detailed inflationary dynamics of this configuration
in arbitrary backgrounds once we specify the form of the harmonic function. An interesting
example is when we consider h ∼constant as in the Klebanov-Strassler (KS) throat [30]. In
terms of observable signatures, the most useful turns out to be the tensor index, which is given
by

nt ∼ −2NV 2
0

(

1−
3M2

p m̃
2Ne

N2V 2
0

)

(2.31)

where Ne is the number of e-foldings before the end of inflation. If the term in brackets is close
to zero, then ǫ1 ∼ 0 and inflation occurs rapidly. However if this term is still appreciable then
we see that the tensor index goes like N and is therefore an interesting observable. This has
been discussed at length elsewhere [17], so we will not mention it further here.

7We hope this will not further confuse the reader. We have tried to keep the overall dimensionful quantities
as pre-factors throughout the paper.
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2.1 The dual picture

Let us now demonstrate how this configuration is related to that of a wrapped D5-brane [19]. In
order for this configuration to exist we must ensure that there is two-cycle within the transverse
space that our D5-brane can be wrapped upon. If we factorise the compact metric into products
of spheres, then the metric can be factorised into dψ2 + sin2 ψdθ2 + . . . and we will choose
our internal embedding coordinates to be (ψ, θ). The remaining world-volume coordinates are
extended in the non-compact directions as usual. For this wrapped configuration to be dual
to the one introduced in the previous section, we must ensure that there is a non-zero U(1)
’magnetic’ flux on the world-volume. In order not to break Lorentz invariance, this flux must
lie along the compact directions. In fact the introduction of the magnetic charge will not
stabilise the configuration, as it is well known that non-zero electric charge is required for full
stabilisation of the cycle. For simplicity we shall also only consider the leading order Chern-
Simons contribution to the action. The introduction of world-volume flux also allows for non-
trivial contributions to the pullback of the C(4), but we will ignore these effects in this section.
Calculation of the DBI part of the action results in the following expression

S = −T5
∫

d6ξh4
√

1− h−4ρ̇2
√

h−4ρ4 sin2 ψ + λ2F 2
ψθ. (2.32)

Since the magnetic field is fully localised in the compact directions, it should be proportional
to the cycle volume so we will take the following ansatz for the flux where there are N units of
charge

F (2) = Nω2 (2.33)

where ω2 is the two form on the transverse S2. This choice of field simplifies the full action
tremendously and we can find

S = −2πT5

∫

d4ξ
(

h4
√

1− h−4ρ̇2
√

h−4ρ4 + λ2N2 − h4λN
)

(2.34)

where we have included the contribution coming from the Chern-Simons term, and also inte-
grated out the compact directions. If we now factorise this expression and use the following
relation T5/T3 =M2

s /(4π
2), and also switch to the canonical field description where φ = ρ

√
T3,

then the brane contribution to the Lagrangian density becomes

L = −NT3h4
(

γ−1W − 1
)

(2.35)

where both W and γ are the functions derived in the previous section (provided one takes the
large N limit). Another consequence of the nature of this picture is that we can understand
why the backreaction of the D5-brane is non-negligible, since the dual picture consists of N -
coincident branes - which perturb the background due to their cumulative mass. One should
also note that this configuration should also be dual to a D7-brane wrapping a non-trivial four-
cycle, provided that the D7-brane has a non-vanishing second Chern-Class so that the action
will contain a coupling of the form

∫

C(4)∧F ∧F . Therefore one could start building inflationary
models from the D7-brane perspective by including additional world-volume flux in the compact
directions.

The dual nature of this model suggests that we can consider the cosmology of either N
coincident D3-branes, or a single wrapped D5-brane with N units of magnetic charge. This
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latter description has recently been investigated in [19]. One important consequence of this
description is that the moving D5-brane naturally excites its U(1) world-volume gauge fields.
This suggests that the multi-brane configuration will also excite its world-volume fields, which
will now of course be charged under the U(N), and therefore the standard model degrees of
freedom will be reheated. In the single brane scenario, the inflaton sector is gravitationally
coupled to the standard model sector and the expectation is that reheating will occur through
tunneling of the KK modes between the inflaton throat and the standard model throat. Whilst
this is a reasonably robust mechanism, the U(1) gauge boson associated with the open string
modes on the D3-brane will remain a relevant degree of freedom and therefore at least some
of the inflationary energy will go into exciting these string states [35]. Whilst this remains
a hidden sector from the standard model perspective, the open string excitations should still
provide a definite physical signature and it would be interesting to work this out in detail. The
multi-brane model does not suffer from this problem, since the inflationary energy is expected
to be dumped into open string states at the end of inflation with only a small amount emitted
via tunneling. However the brane configuration will be near the UV end of the throat and so
one must understand how the branes will backreact on this internal geometry in order to discuss
their evolution in this region. Moreover since the branes are all assumed to be parallel, there will
not be any chiral fermions in the spectrum. There are potentially two ways in which this can
be alleviated. Firstly one could assume that the dynamical brane stack intersects with another
(stationary) stack localised at the tip of another throat, in which case the symmetry group will
be enhanced to U(N) × U(N ′) which will give rise to both adjoint and fundamental matter.
The second possibility is that although the branes are within a string length of one another,
they may not be exactly parallel and therefore could be sensitive to tidal forces or the exact
profile of the unstable potential. This means that some of the branes may be intersecting, but
at initially unobservable scales. Alternatively one may imagine that the dynamically induced
fluctuations will lead to some branes intersecting. It is important to develop these ideas in more
detail in order to understand how the inflaton sector couples to the standard model, since this
is a particularly weak area for these models [35].

Since we know from the wrapped D5-brane picture that backreactive effects can be impor-
tant, we should also try to understand how they might emerge in the multi-brane case which we
attempt to address in the following section.

3 Including 1/N Corrections

Our results have been written explicitly in terms of N and C2 = N2 − 1, and so we could
clearly incorporate 1/N corrections simply by keeping the 1/N2 pieces of the quadratic Casimir.
However we must seek to ensure that there are no other corrections appearing at this order
which could cancel these terms. We can do this by considering the corrections coming from the
symmetrised trace prescription.

Whilst the full non-Abelian DBI action remains unknown, we know that the Myers prescrip-
tion agrees with the wrapped D5-brane description in the large N limit [28]. We also know
from string scattering amplitudes that we must include some symmetrisation [29] if we are to
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project out unwanted terms at leading order. This suggests that we should at least consider the
possibility that symmetrisation terms could play a role in the full description of the non-Abelian
action. This our proposal here is certainly not the full solution, but will comprise part of it.

Recall that our main focus was on the large N limit in obtaining the action for the inflaton.
We would like to go beyond this approximation to capture the next leading order corrections [31],
and see if they alter the dynamics of the solution. The question we need to address is therefore
how does symmetrisation affect the gauge trace? Since our D3-brane solution has no world-
volume gauge fields, the only terms to be traced over are the generators of the SO(3) algebra.
Therefore our question reduces to a simpler one, namely calculating the symmetrised trace over
these generators. This is actually just a question of combinatorics, however we can use an
alternate description in terms of chord diagrams, or so called ”bird track” diagrams.

Let us introduce the following graphical description of the group generator αi using

(αi)
a
b =

a b

i

where the i runs from 1 → 3 and a, b are matrix labels. to reflect the fact that we are in
the adjoint representation. Now our generators will come in pairs, so our problem amounts to
determining the solution of STr(αiαi)n in order to calculate the full solution once we expand
the square root terms of the DBI action. Let us focus on the case n = 1 initially. In this case
we must join multiply the two generators together, and then trace over the gauge index. In our
graphical notation this amounts to joining the free ends of the line to make a circle. Thus we
see that

1

N
Tr(αiαi) = ✫✪

✬✩r
r = C2 (3.1)

which is the only possible diagram that we can form. Note that we have pulled out the factor of
N coming from the trace over the identity matrix, which is a standard convention employed in
the literature. Now let us consider the case where n = 2, which will have two different diagrams
as follows

Tr(αiαiαjαj) = ✫✪
✬✩rr r

r

Tr(αiαjαiαj) = ✫✪
✬✩rr r

r

. (3.2)

However if we also keep track of the relative weighting of each diagram we see that the first
contributes a weighing of 2/3, whilst the second is 1/3. It is these weighting factors which are
important for the symmetrisation procedure. At this stage we want to turn our diagrams above
into something algebraic, since we know that they should correspond to some function of the
Casimir. In fact the first diagram is simply the direct product of two copies of (3.1), and so this
diagram is equal to 2C2

2/3 when we include the weighting factor. The second diagram is more
complicated, however we can remove one of the internal lines using

✫✪
✬✩rr r

r

= (C2 − 4) ✫✪
✬✩r

r (3.3)
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which reduces the diagram to C2(C2 − 4). If we add the contribution coming from both terms
then we find that

1

N
STr(αiαi)2 = C2

2

(

1− 4

3C2

)

. (3.4)

What about the next order terms coming in at n = 3? There are five unique diagrams con-
tributing at this order, which are shown below

✫✪
✬✩rr

r

r

r

r

, ✫✪
✬✩r

r
✔

✔
✔✔

r

r

❚
❚
❚❚

rr , ✫✪
✬✩rr r

r

❚
❚
❚❚

r

r

, ✫✪
✬✩r r r

r

rr

, ✫✪
✬✩r

r
r

r

r

r

where we have omitted the weighting factors of each diagram. The decomposition occurs in
much the same way as before and the final result can be written as follows

1

N
STr(αiαi)3 = C3

2

(

1− 4

C2
+

16

3C2
2

)

. (3.5)

One immediate thing to note is that the leading term in these expansions goes like Cn2 , which
is in fact the only coefficient that gets picked out in the large N limit. The other terms are
clearly the sub-leading corrections we are looking for. At level n = 4, there are 18 different chord
diagrams to draw, which becomes 105 diagrams at level five and so on. Each corresponding value
of n contributes a larger set of diagrams, much in the same way as the Feynman expansion. Let
us write down a series of definitions which help to simplify things:

• Let I denote the number of intersections of a pair of chords.

• Let T denote the number of triple intersections of three chords.

• Let Q denote the number of quadratic intersections of four chords in the shape of a box.

Every chord diagram D(n) can be written in terms of these intersection numbers as follows

D(n) = Cn2 − 2ICn−1
2 + 2Cn−2

2 (I(I − 1) + 4Q− 2T ) + . . . (3.6)

where there are higher order terms which we are suppressing. It can be shown that these terms
can be summed to give the leading order terms for the symmetrised trace

1

N
STr(αiαi)n = Cn2 − 2

3
n(n− 1)Cn−1

2 +
2

45
n(n− 1)(n − 2)(7n − 1)Cn−2

2 + . . . . (3.7)

If we regard this as a differential operator acting on some function of the Casimir such that

STr(αiαi)n = DCn2 (3.8)

then we can see that

STrF (αiαi) =

∞
∑

n=0

FnDC
n
2 = DF (C2) (3.9)

where we write

D := N

(

1− 2C2

3

∂2

∂C2
2

+
8C2

9

∂3

∂C3
2

+ . . .

)

(3.10)
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where there are higher order terms that we have neglected. Therefore we see that the leading
order term is justN multiplied by the original function of the Casimir, which exactly corresponds
to the large N limit of the DBI action. The next to leading order terms can be determined
through the action of the differential operator.

Note that in the dual D5-brane picture we expect these corrections to correspond to non-
commutative deformations of the gauge field structure, which in principle can be determined
through the use of a star product on the world-volume. In what follows we will restrict our
analysis to solutions where the warp factor becomes constant in the IR, such as in the KS
geometry [21, 30]. This is not the most general case one could consider, but the calculation of
the corrections is hampered in this instance by the additional dependence of the warp factor
upon powers of the quadratic Casimir.

Typically in IR models of DBI inflation, the last 60 e-folds will be occur when the branes
move away from the tip of the throat, and therefore the warp factor will play an important
role. For the UV scenarios - which we can also include in this analysis, the constant warping is
required for the last 60-efolds of inflation to occur. Let us assume a general form for the warp
factor h(ρ) and calculate the full corrections to the DBI Lagrangian including the 1/N terms.
It will be useful to define the following variables

α = 1− 4δhcC2

h

β = 4C2

(

δh2c
h2

− δhcc
h

)

− 4δhc
h

(3.11)

where in this notation δhc corresponds to a derivative with respect to C2. However since we
know that h = h(ρ), and that ρ2 = λ2R̂2C2 through the definition of the physical radius of the
fuzzy sphere, we can write the derivatives of the warp factor explicitly in terms of derivatives
with respect to the inflaton field φ through the identification

δhc =
h′φ

2C2
. (3.12)

As an example let us consider the case where the metric is AdS5 ×X5, and therefore the warp
factor can be written as follows h = φ/(

√
T3R), where R is the usual AdS scale. The above

expression then reduces to δhc = h/(2C2) and is therefore suppressed by a factor of C2 with
respect to the original function.

Therefore we can write the expression for the energy density with the 1/N corrections as
follows

ρ = NT3h
4
(

Wγ − 1 + V h−4 − F1(W,γ)
)

(3.13)
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where the function F1 is defined below

F1(W,γ) =
γ

6C2

(

W 2 − 1

W
(2C2β − 2α+ α2 (W

2 + 1)

W 2
) +

2α2(W 2 − 1)(γ2 − 1)

W

)

+
γ

6C2

(

W (γ2 − 1)[α2(3γ2 − 1)− 2α− 2βC2]
)

+
γ

6C2

(

4C2
2

γh4
[δV ′′ − 8δV ′δhc

h
− 4V δhcc

h
+

20V h2c
h2

]

)

+
8h′γ

3h

(

α(W 2 − 1)

W
+Wα(γ2 − 1) +

2C2

γh4
[δV ′ − 4V δhc

h
]

)

+
8C2

3

(

Wγ − 1 +
V

h4

)(

3h2c
h2

+
δhcc
h

)

(3.14)

Note that δV ′, δV ′′ corresponds to taking derivatives with respect to C2 here, and not the inflaton
field. The corresponding solution for the pressure may be written as

P = −NT3h4
(

W

γ
− 1 +

V

h4
− F2(W,γ)

)

(3.15)

where the correction function F2 is defined to be as follows

F2(W,γ) =
1

6γC2

(

W 2 − 1

W
(2C2β − 2α+ α2 (W

2 + 1)

W 2
)− 2α2(W 2 − 1)(γ2 − 1)

W

)

+
1

6γC2

(

−W (γ2 − 1)[α2(3γ2 − 1)− 2α− 2βC2] + 2Wα2(γ2 − 1)2
)

+
1

6γC2

(

4γC2
2

h4
[δV ′′ − 8δV ′δhc

h
− 4V δhcc

h
+

20V δh2c
h2

]

)

+
8δhc
3γh

(

α(W 2 − 1)

W
−Wα(γ2 − 1) +

2C2γ

h4
[δV ′ − 4V δhc

h
]

)

+
8C2

3

(

W

γ
− 1 +

V

h4

)(

3δh2c
h2

+
δhcc
h

)

(3.16)

These expressions clearly show the sensitivity of the solution to the warp factor, and therefore
we should restrict ourselves to specific backgrounds in order to understand how the corrections
alter the physics.

3.1 The limit of constant warping.

The above expressions will clearly simplify when we assume constant warping, as in the Klebanov-
Strassler geometry. After careful computation, the respective energy and pressure densities in-
cluding the 1/N corrections can be written using parameterisation invariant functions as follows

ρ = NT3h
4

(

Wγ − 1 +
V

h4
− γF1(W,γ)

6C2

)

P = −NT3h4
(

W

γ
− 1 +

V

h4
− F2(W,γ)

6γC2

)

(3.17)
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where we have defined

F1(W,γ) =
2(W 2 − 1)(γ2 − 1)

W
+ 3W (γ2 − 1)2 − (W 2 − 1)2

W 3
+

4C2
s δV

′′

γh4

F2(W,γ) =
(W 2 − 1)2

W 3
+

2(W 2 − 1)(γ2 − 1)

W
+W (γ2 − 1)2 − 4γC2

2δV
′′

h4

Clearly we see that the corrections are essentially all suppressed by powers of 1/C2 with respect
to the leading order solution. The only place where one has to be careful is with the δV ′′ term,
which in both cases is enhanced by a factor of C2. Of course for potentials which are essentially
constant over the regime of interest, as assumed in IR inflation, these terms will vanish from the
expressions above. Using these expression we can see that the inflationary constraint upon the
potential dominance is now modified to read

V >> h4
(

γ

(

W − F1(W,γ)

6C2

)

− 1

)

. (3.18)

If we set W ∼ 1 in the above expressions then the constraint on V in the large γ limit is very
weak due to the dependence on γ4/C2.

We could enquire about how the Lyth bound is now altered by the presence of these 1/N
corrections, however things rapidly become complicated. In the notation of Lidsey and Huston
[18] we find that the correction term P3 is not a function, but rather a functional of both
P1(φ,X) and P2(φ,X) where X is the usual canonically normalised kinetic piece. As such one
cannot easily extend their analysis to this more general case without first picking a restrictive
gauge choice. Since the parameter space of multi-brane inflation is larger than in the single
brane case, we are able to find inflationary trajectories even when we include these correction
terms. What is more interesting from our perspective is to see how the 1/N terms alter the
speed of sound and the non-Gaussian spectrum, since this is where the signature of the model is
important. Although the sound speed is not an observable quantity, it is an important parameter
to calculate since fluctuations enter the horizon at kCs = aH The corresponding expression for
the sound speed in a constantly warped background is found to be

C2
s =

1

γ2

(

W − 1
6C2

[

(W 2
−1)

W

{

(W 2
−1)

W 2 − 2(1 + γ2)
}

−W (γ2 − 1)(1 + 3γ2)
])

(

W − 1
6C2

[

(W 2−1)
W

{

2(3γ2 − 1)− (W 2−1)
W 2

}

+ 3W (γ2 − 1)(5γ2 − 1)
]) (3.19)

which reduces to the usual solution C2
s ∼ 1/γ2 in the large N limit. Let us investigate various

limits of this expression in order to see if it imposes any conditional constraints upon the dy-
namics. Firstly let us consider the solution when W ∼ 1, which would also be the case for a
single D3-brane in the throat. At leading order in a large γ expansion (assuming γ2 >> 1) we
find that

C2
s ∼ 1

γ2

(

2C2 + γ4

2C2 − 5γ4

)

+ . . . (3.20)

where the ellipsis denote subleading terms. For this to be non-negative we require that the
denominator satisfy a reality condition, which when combined with the large γ approximation
implies that this expression is valid when N2 >> 7/2, which is a rather weak bound on the
number of D3-branes. More interestingly we see that if we keep the Next to Leading Order
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(NLO) terms in the sound speed then we can solve the reality bound as a constraint on γ itself,
which turns out to be

γ2
∗
<

6

15

(

1 +

√

1 +
15C2

6

)

(3.21)

which links γ directly to the number of branes. This behaviour is a strictly subleading effect,
and is not observed in the large N (or single brane) case. If we consider the non-relativistic
expansion in this limit, then again we see that C2

s → 1 as in ordinary slow-roll models - washing
out the effect of the 1/N corrections.

If we now consider the converse approximation, assuming slow roll from the start, then the
functional form of the speed of sound appears to admit a non-trivial solution which picks up
corrections even in the ’squeezed limit’ of zero velocity due to the non-trivial contribution from
the fuzzy potential

C2
s ∼ 1 +A

1−A
A =

(1 + 3W 2)(W 2 − 1)

6C2W 4
(3.22)

however one can check that this is an imaginary solution unless we also take the W >> 1 limit.
Another interesting limit is the one capturing the non-Abelian structure of the theory, which
assumes W >> 1. In this case we find that all W dependence drops out of the sound speed
leaving the following expression for all γ

C2
s ∼ 1

γ2

(

1 + γ4/(2C2)

1− γ2(5γ2 − 4)/(2C2)

)

. (3.23)

However this clearly imposes a bound on the physical values of γ, since this expression has a
divergence at the critical limit where γ2

∗
= 0.4(1+

√

1 + 10C2/4), which is very similar to (3.21)
therefore when analysing this limit we must again ensure that γ is below this bound in order for
the solution to be regarded as being physical. Of course we clearly see that γ2

∗
increases as the

number of branes increases, so we again find a non-trivial dependence of the relativistic factor
on N .

One interesting observation is that the effect of the 1/N corrections acts to ’squeeze’ the
sound speed along the γ direction. The function is no longer monotonic in this limit, indeed
we find that the function decreases with increasing γ until it becomes small. However because
of the corrections the sound speed then increases to become large. Clearly this is not what is
required for inflation. However note that when the velocity is constant, γ is also a constant
which means that W becomes important. Since W effectively parameterises a flat direction of
the sound speed, we can still find inflation trajectories where the sound speed is small albeit for
fixed γ. Once we move to larger N , the squeezing reduces and we find the sound speed is small
over a larger range of γ values.

Given the expression for the sound speed in these backgrounds, we can also calculate fnl -
however this is a far more complicated function since the additional corrections introduce new
position/momentum interactions in the conjugate phase space. What we can easily observe
about the form of fnl is its behaviour as a function of γ, since it will be more sensitive to the
new γ interactions. Since both the sound speed and the non-Gaussianities can be calculated
without imposing additional cosmological constraints, we will view N as being a free parameter.
Of course, as we saw in the first section, smaller values of N typically require Ms ∼ Mp and
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a low inflaton mass scale and therefore will correspond to finely tuned solutions. As one may
expect the spectrum is sensitive to the precise value of N and therefore we have plotted the non-
Gaussianities for different numbers of branes as shown in Figures [1-4], where we have assumed
that the potential is roughly constant over the inflationary region.

For the first case with only ten branes, we are dropping terms of order 1/N2 which is at the
one-percent level. This should be regarded as being the absolute limit of our approximations.
The backreaction will be reasonably under control in this instance provided that M >> N is
still satisfied. What it clear from the figures is that there exists a turning point in the profile of
fnl as a function of γ. Beyond the turning point, the spectrum becomes large and negative due
to the second term in (2.12) becoming dominant. This is also the region where the sound speed
is starting to increase again, and will therefore not necessarily allow for inflation. However near
the turning point we know that the sound speed is small, and that inflation can occur along a
trajectory through W,γ phase space, therefore the corrections predict a maximal value for fnl
which is sensitive to the number of branes in the model.

As we increase N , the location of this maximum moves to larger values of γ and the solution
approaches the large N behaviour. Again this is because the sound speed is smaller over a larger
range of γ. The location of this maximum is roughly at γ ∼

√

N/2, which is why it is not visible
in the large N limit. Note that the maximum amplitude is bounded from above due to the
competition between the two terms, and is also much smaller in amplitude than one may have
anticipated. This is again a result of the corrections, and it appears that larger N leads to a
larger observable signal. Once we cross over a threshold number of branes, the turning point is
pushed to larger and larger values of γ and is therefore essentially unobservable.

The equation of motion for the inflaton can be determined using the Hamilton-Jacobi for-
malism, and the relevant energy-momentum tensor components. The Hubble equation corre-
spondingly becomes

Ḣ = −NT3h
4

2M2
p γ

(

W (γ2 − 1) +
1

6C2

(

(W 2 − 1)2(1 + γ2)

W 3
− 2(W 2 − 1)(1 − γ2)2

W
+W (1− 3γ2)(γ2 − 1)2

))

where we have explicitly assumed that the δV ′′ term vanishes for simplicity. Rather than solve
the full equation of motion, let us consider a physical approximation where we assume W ∼ 1
and that γ is large. In this instance we find the following expression at leading order

φ̇ ∼ −
2M2

pH
′

Nγ

1

(1 + γ4/(2C2))
+ . . . (3.24)

where we have explicitly assumed that the field is a monotonic function. This expression is
remarkably similar to the one derived in both the large N and single brane cases [11,17]. As a
result the corresponding fast roll variable governing its dynamics is given by

ǫ1 ∼
2M2

p

Nγ

1

(1 + γ4/(2C2))

(

H ′

H

)2

(3.25)

which is sensitive to the ratio γ4/(2C2). Since we know that the 1/N corrections imply a non-
trivial relationship between γ and N we will generally see that this correction term is typically
small, although non vanishing, and will therefore act to suppress the slow roll parameter. With
appropriate tuning one can easily find inflation trajectories, as in the large N limit [17].
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Figure 1: N = 10.
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Figure 3: N = 100
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3.2 The limit of AdS warping.

Another interesting case to consider is that of the AdS5 ×X5 solution, where the warp factor
goes like h ∼ φ/(

√
T3R). It is easy to see that α = −1, β = 0 in this instance and the resulting

corrections to the Fi functions can be written below as (assuming that the potential is roughly
constant over the regime of interest)

F1 =
γ

6C2

(

(W 2 − 1)(1 + 3W 2)

W 3
+

2(W 2 − 1)(γ2 − 1)

W
+W (γ2 − 1)(1 + 3γ2) +

24V

γh4

)

+
8γ

6C2

(

−(W 2 − 1)

W
−W (γ2 − 1)− 4V

γh4

)

+
8

6C2

(

Wγ − 1 +
V

h4

)

(3.26)

F2 =
1

6γC2

(

(W 2 − 1)(1 + 3W 2)

W 3
− 2(W 2 − 1)(γ2 − 1)

W
−W (γ2 − 1)(3γ2 + 1) +

24γV

h4

)

+
8

6γC2

(

−W
2 − 1

W
+W (γ2 − 1)− 4γV

h4

)

+
8

6C2

(

W

γ
− 1 +

V

h4

)

+
W

3γC2
(γ2 − 1)2.

This expression is far more complicated than the solution in the constant background due to the
explicit contribution from the warp factor. Note that the corrections in this case are now also
dependent on the inflationary scale - due to the appearance of V in the above expressions. The
fuzzy potential is now also a constant, given by WAdS = (1 + 4R4/(λ2C2))

1/2, which explicitly
depends on the ratio M/N2

The resulting expression for the sound speed becomes

C2
s =

1

γ2

(

W 4(−4γ2 + 3γ4 − 6C2)− 2W 2(γ2 − 1)− 1

W 4(8− 24γ2 + 15γ4 − 6C2) +W 2(8− 6γ2)− 1

)

(3.27)

which is again independent of both warp factor and potential. Note that when we take γ to
dominate, the sound speed approaches zero much like in the large N limit. Similarly taking
N → ∞ also reproduces the usual result proportional to 1/γ2. Unlike in the previous case, the
sound speed now has zeros located at the following critical values of γ

γ2c =
2

3
+

1

3W 2
±

√
2

3W 4

√

2W 4 − 4W 6 + 2W 8 + 9C2W 8. (3.28)

The function becomes imaginary in between these zeros and should therefore be regarded as
being an un-physical region of phase space. The width of this region decreases as we increase
N , and is therefore more pronounced for smaller values of N . For intermediate values of N , the
unphysical region is small, and the sound speed is small over a large range of γ.

If the fuzzy potential is taken to be large, which is the most likely scenario due to the
dependence on the flux/brane ratio, then it drops out of the expression altogether and we are
left with a two-parameter system - however the zeros of the function remain.
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The effect of the zeros on the non-Gaussian amplitude are obvious, they give rise to singular
spikes in the N, γ phase space which are located at larger values of γ as we increase N . This is
shown in Figure 5, where we assumed W ∼ 10 - although numerically the value of W has little
effect on the overall behaviour until it becomes very large. Away from these spikes, the amplitude
is always increasing monotonically as one would expect since the corrections are washed out and
shown in Figures 6-8. Physically the spectrum implies that the running of fnl with γ is bounded,
either from above or below once the 1/N corrections come into play. In the solution with large
N , the singular region occurs at very large values of γ which already lie outside the observed
experimental bounds.

Because the warping is not constant in this background, the additional field dependence in-
duces a contribution to the running of the spectral index. In the ultra-relativistic approximation
(which is unfortunately the only case that admits an analytic solution) we find that

nnl ∼ 1 +
4γ

φ∗

√

3M2
p

NV (φ∗)
(3.29)

where φ∗ denotes the field at horizon crossing. Since inflation also demands that the potential
term dominates the kinetic term, this running should still be small regardless of the precise form
of the potential. Inflationary trajectories obey a similar slow roll expression as the one in the
constant warping limit, therefore implying that provided one tunes the fluxes and the potential
inflation will be generic.

We have seen in this section how the subleading corrections distinctly alter the sign of the
non-Gaussianities. In particular we note that the 1/N correction leads to a maximal bound for
the amplitude in constantly warped backgrounds whilst imposing restrictions upon the size of
the parameter space in AdS5 × X5 backgrounds. Although both models are characterised by
|fnl| >> 1, and thus may satisfy the bounds (2.10), the range of validity is restricted once we
include 1/N corrections. This is similar to the case examined in [15] where the isocurvature
perturbations lead to an unusual sign change relative to the standard expression. This suggests
that in general corrections to the large N DBI inflation model will typically lead to new or
refined signatures, which can be used as a more robust test of inflation in string theory. This
is especially evident for the finite N case [17] where N = 2, 3, since there the backreaction is
fully under control but the sound speed runs like C2

s ∼ 1/(3γ2) which is even more suppressed
relative to the single brane case, and therefore the non-Gaussian amplitude is enhanced.
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Figure 5: Non-Gaussian amplitude in

the (N, γ) phase space, where W = 10.
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4 Inflation via the Representation Cascade

The analysis of DBI inflation using multiple D3-branes, or a wrapped D5-brane, allows us
to evade many of the theoretical (and observational) constraints present in inflationary model
building. However besides the backreactive effects, there is also the issue of the scalar potential
for the inflaton field. Up to this point we have been rather cavalier about this, and just as-
sumed that the potential is generated in the usual manner through interactions with D̄3-branes,
D7-branes or symmetry breaking effects present in the compactification [11]. Whilst this is a
reasonable assumption for the D3-brane scenario, one must ask about the validity of this for the
case of wrapped branes [19]. In the absence of a pure string calculation, we are simply forced
to insert the scalar potential by hand. However the non-Abelian structure of the Myers action
already contains a potential term, and so one could enquire whether this could be used to drive
a period of inflation [28].

Because the world-volume theory for coincident branes is non-Abelian we find that the
induced scalars are no longer singlets, but are instead promoted to matrices. The simplest
solution for all these problems is to use the symmetry of the transverse space and select the
scalars to lie in representations of SO(6). A particularly nice and simple choice, which is the
one that gives us a theory dual to a spherically wrapped D5-brane, is to assume the scalars are
valued in SO(3) ∼ SU(2). Typically we represent this through the ansatz

φi = R̂αi (4.1)

where αi are the N -dimensional irrep generators of SU(2) and R̂ is some parameter with di-
mensions of mass. Because our theory is embedded in a non-commuting target space, we see
that our geometry is also non-commuting and because of the identification with SO(3) we argue
that the scalars lie on a fuzzy S2, the radius of which is defined by

r2 =
λ2

N
Tr(φiφi) = λ2R̂2C2 (4.2)

where as usual we denote the Casimir of SU(2) by C2.

Previous work on brane inflation has implicitly assumed that the open string mode r should
be identified as the inflaton, leading to a sustained period of inflation. The change of the warp
factor as a function of r allows for DBI inflation to occur in these warped models. However this
justification already assumes that the scalar field is in the irreducible representation of the gauge
group. A priori there is no reason why this representation will be selected, and so one could
argue for solutions where the initial configuration was a reducible representation. Of course
we know that the irrep will lead to the smallest energy configuration, so we would expect the
reducible solution to cascade down to the irrep. The representation flow itself will appear as a
scalar field on the world-volume and could therefore be an inflaton candidate. Indeed this would
seem to be the most generic behaviour given the context of the string landscape.

So our primary assumption in this section is that the branes are static and fixed at some point
in the IR of a warped throat. But the scalar fields are now initially in a reducible representation.
How do we model such a cascade? A simple example. which should be representative of a more
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general class of solutions, is to take as an ansatz [33,34]

φi = R̂
(

(1− g(t))αi + g(t)J i
)

(4.3)

where now J i is a generator in a reducible representation of the gauge group, and we fix the
boundary conditions as g(0) = 1 and g(te) = 0, so that as time evolves the scalar flows from the
reducible to the irreducible representation. Dynamical transitions such as these occur in a class
of N = 1∗ SYM theories, where the choice of representation has important physical properties.
Since our branes are not dynamical we see that R̂ is independent of time. A nice, and convenient
parameterisation, is to choose J i such that it corresponds to the spin j′⊕j′ representation i.e the
reducible representation is comprised of two blocks of N ′ = N/2. Physically this means that our
moduli space consists of two coincident fuzzy spheres which coalesce to form a single sphere [33].
To further simplify things we denote D2 as the Casimir of the reducible rep D2 = N2/4−1, and
we will also assume that Tr(αiJj) = 0.

Plugging all this into the coincident D3-brane action, for large N , we see that it can be
written as follows

S = −NT3
∫

d4ξh4c

√

1− r2(C2 +D2)ġ2

h4c(C2(1− g)2 + g2D2)

√

1 +
1

h4λ2
4r4c

(C2(1− g)2 + g2D2)

= −NT3
∫

d4ξh4c(W (r, g)γ̃−1 − 1) (4.4)

where C2 is once again the effective Casimir of the irrep, whilst D2 is the effective Casimir
of the reducible representation and W (r, g) is the fuzzy potential. We have also included the
contribution from the Chern-Simons term in the last line above, and we have denoted the fixed
value or r by rc. Finally γ̃ is the obvious analogue of the kinetic contribution to the action -
not to be confused with γ in the previous sections. In general the full inflationary dynamics will
depend on both g, r as the branes move through the throat, and also undergo the cascade in
representation space. However the analysis is complicated. Note that we are not making any
assumptions about the specific background here, all that we are imposing is that the radial term
is approximately constant during the cascading phase.

One can see that as t → te the theory reproduces the action in the first chapter as it should.
We now couple this action to four-dimensional Einstein gravity. Because we are assuming that
the branes are not moving in the radial direction, then both the Chern-Simons term and any
scalar potential we can add to the action will simply be constants and will drop out of the
dynamical analysis, thus essentially we have a theory reminiscent of the open string tachyon
dynamics - where the only terms of interest arise through the NS-sector alone. Analysis of the
static potential shows that (aside from the boundary conditions) there is a local maximum at
gc = C2/(C2+D2), which approaches 4/5 as N increases. This is in fact a tachyonic point of the
theory, but is smoothed out somewhat once we turn on velocity terms. This provides a small
barrier for the field as it rolls towards g = 0. If the field has no initial kinetic energy - then
the inflaton will sit near g = 1 and the energy density (hence Hubble parameter) will essentially
be constant and can drive a sustained period of inflation. The field can tunnel through this
barrier, and will eventually flow towards its boundary point - which is indeed the lowest energy
configuration as we argued for. This is essentially a phase of ’Old Inflation’, although in a new
context.
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We see that the following general cosmological equations must be satisfied

H2 =
NT3h

4(Wγ̃ − 1)

3M2
p

ä

a
=

NT3h
4

3M2
p

(

3W

2γ̃
− Wγ̃

2
± 1

)

(4.5)

where the + sign corresponds to a D̄3-brane, whilst the minus sign is for the usual D3-brane.
Typically in DBI inflation we assume the existence of D3-branes. For IR inflation this appears
natural since one can assume that the initial conditions conspire to create D3-branes after
flux annihilation. For UV models, we are assuming that the scalar potential is generated by
D̄3-branes which sit in the IR of a throat to screen the relative D3-charge of the RR fluxes.
Therefore in order to realise a solution where we have coincident D̄3-branes, we could assume
that they are positioned at some point in the throat as a screen for the fluxes. The uplifting of
Minkowski vacua in the simplest KKLT scenario [27] employs such a configuration (albeit with
a single brane), however the ISD nature of the fluxes prevents the branes from being dynamical
objects8. So this configuration is not as unnatural as it may first appear.

From these expressions it follows immediately that inflation is only possible when the fol-
lowing inflationary constraint is satisfied

W (3− γ̃2) ≥ ∓2γ̃ → γ̃ ≤
√
1 + 3W 2 ± 1

W
(4.6)

where in the last step we wrote this explicitly as a constraint upon γ̃. Note that in the limit of
extremely large W satisfying W >> 1, this condition reduces to the non-relativistic approxima-
tion that γ̃2 ≤ 3 for both types of branes. Note that these two limits are compatible with each
other and therefore there is a small inflationary window available. Note the importance of the
Chern-Simons term above.

For D3-branes we see that when W ∼ 1 the constraint collapses to γ̃ = 1 which implies that
the solution is non-dynamical. Clearly for this to be a physical solution we are forced to fix
the field at g = 1 which is the location of the metastable de-Sitter minimum. Thus inflation
will occur for as long as the system is in the reducible representation. Eventually the field
must tunnel out from this false vacuum via the Hawking-Moss instanton9 and inflation will end
rapidly. Let us estimate the probabilities and associated time scales for this to occur. First it is
necessary to re-write the action in canonical form which can be achieved through the following
field re-definitions

V (φ) = NT3h
4
c(W − 1), φ =

√

2NT3h4cr
2(C2 +D2)

∫

√
Wdg

√

C2(1− g)2 + g2D2

. (4.7)

As the potential can be seen to vanish when W = 1, we must consider the slow-roll expansion
of the DBI action in order to derive the above conditions. If we allows the inflaton to have a
small, but non-zero velocity, then this automatically forces W > 1 and a potential exists. Now

8Although these terms explicitly break the N = 1 supersymmetry of the solution
9This is because the barrier separating the two minima is relatively small in height, and thus the no-wall

approach provides a better description than the thin wall approximation [26,27].
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the Hawking-Moss instanton solution treats the inflaton as undergoing Brownian motion from
the false vacuum to the global maximum. The tunneling suppression probability is given by

P = exp

(

−
24π2M4

p

V (φ0)
+

24π2M4
p

V (φ1)

)

(4.8)

where the false vacuum is defined at V (φ0). The result of Hawking and Moss is that because
of the Brownian motion there is not homogeneous tunneling, rather the homogeneity is spread
over the scale H−1. With our solution the tunneling probability is therefore well approximated
by

P ∼ exp

(

−
12π2M4

pλ
2D2

2

NT3r4(C2 +D2)

)

(4.9)

where the exponent runs like N with our specific choice of representations. Therefore the term
in the exponent is large and negative, indicating that the tunneling suppression probability is
relatively small. This means that the field will most likely tunnel through the small barrier than
climb over it. The time for decay should therefore also be small and is given by

tdecay ∼ tr exp

(

−
12π2M4

pλ
2C2D2

NT3r4(C2 +D2)

)

(4.10)

where tr is the recurrence time defined through the relation tr ∼ exp(24π2M4
p /V (φ0)). Clearly

tdecay << tr indicating that the solution will quickly tunnel from the false vacuum. Again the
solution is exponential decreasing as a function of N with our representation choice.

The fact that the inflaton rolls to its global minimum does offer the possibility of avoiding
the graceful exit problem that plagues models of old inflation. For all other solutions, the field
must be in a phase of slow roll satisfying 1 ≤ γ̃2 ≤ 3 which is a very restrictive condition.
Because of the field dependence of both potential and kinetic terms, one would expect this
inflationary phase to end rapidly - yielding at the very most a single e-folding of inflation. If
one views this optimistically then it may be possible to obtain the requisite amount of e-foldings
by assuming that there are at least 60 reducible representations. In this case the field will roll
down a potential, which is rather step like in shape - each transition contributing a single e-
folding. From the non-commutative geometry viewpoint this would be interpreted as the steady
coalescence of N/60 fuzzy spheres into a single sphere. Indeed one could model such a flow by
reverting to an ansatz of the form

φk = R̂

(

d
∑

α=0

Nαgα(t)J
kα + (Nα − gα(t))J

k(α+1)

)

(4.11)

where Nα is an appropriate boundary parameter for the flow through representation space,
and we are summing over representations from 0 . . . d, with the zeroth representation being the
fundamental one.

One may argue that this is not the most general dynamical process, since several spheres may
coalesce at the same time and thus prevent the system from generating enough inflation. One
may also argue that this would typically require N to be much larger than originally presumed
in order for there to be such a large number of reducible representations. This poses a problem
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since the back-reaction will inevitable be uncontrollable. However one possible resolution to
these problems lies in the fact that the model is extremely simple, relying on the fact that the
brane stack is fixed in spacetime. This will not be the most general solution, and in fact we
expect both the representation cascade and the open string modes associated with the radial
embedding will combine to drive inflation. This is analogous to a purely spinflation based model
(see the nice discussion of this effect in [22]), where the branes are fixed at some radial distance in
the throat geometry but have non-trivial angular momentum. The amount of inflation obtained
is roughly the same in both cases.

In the case of D̄3-branes with W ∼ 1 we find that γ̃2 ≤ 9 which is a much weaker constraint
on the flow velocity compared to the D3-brane case - although it falls into the region of ’in-
termediate’ velocities i.e somewhere between slow roll and relativistic rolling. In fact it can be
seen that the maximal allowed value of γ̃ is a decreasing function of the fuzzy potential. Let
us consider this solution. Assuming that the velocity saturates the bound on γ̃, and using the
continuity equation we find that (up to a factor of 1/γ̃2 ∼ 1/9)

ġ ∼ −
16M2

pH
′F (g)

9NT3γ̃r2(C2 +D2)
(4.12)

where we have defined F (g) = C2(1 − g)2 + D2g
2 as the flow parameter. Solving for γ̃ as a

function of g we can then estimate the primary slow roll parameter to be

ǫ1 ∼
h2
√

F (g)

C2 +D2

(

H ′

H

)2

. (4.13)

Since this is suppressed by the warpfactor, and the largest possible value of the remaining
prefactor is D2/(C2 +D2) which is less than unity, the Hubble terms are the most important.
At leading order we then find the following bound on the Hubble scale during inflation

H2 >
9× 10−2M4

ph
2
c(5N

2 − 4)
√

F (g)

r2c
(4.14)

where the lowest Hubble scale occurs around g ∼ gc as one would expect. This will also set the
scale of the tensor perturbations since they are proportional to H2 at horizon crossing. As one
would anticipate, the Hubble scale increases with the number of branes, but is still modulated
by the warp-factor. For solutions such as Klebanov-Strassler, the warp factor is exponentially
suppressed at the tip of the throat and therefore the Hubble scale will be lower in throats with
large flux quanta.

The equation of motion for the inflaton is given by

ġ2αβ

2
− 3Hαġ − V ′ ∼ 0 (4.15)

where we have dropped terms proportional to g̈ as is usual for slow roll models. To simplify the
expression we have used the following definitions

α =
2NT3h

4
cr

2
cW (C2 +D2)

C2(1− g)2 +D2g2
, β = 1− 2α′

α
(4.16)
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and primes denote derivatives with respect to the inflaton. For solutions where ġ2 << (W +
1)(C2(1 − g)2 + g2D2)/(Wr2(C2 +D2)), we can neglect the kinetic contribution to the Hubble
parameter and therefore we can explicitly solve for the inflaton to find

ġ ∼
√
3V

βMp



1±
√

1−
βM2

p r
4F ′

3h4π2l4sαW (W + 1)F 2



 (4.17)

which is a complicated function of the flow parameter. Numerically we can scan the space of
solutions, and we see that inflation is possible but only a handful of e-foldings are generated.
This suggests that our simple model must be modified in order for it to be a viable candidate.
There are at least two ways in which this could occur. Firstly as already mentioned, we can
allow for the field to be in a different initial representation so that the cascade has more steps.
If there are n different transitions each yielding Ne efolds of inflation then we may anticipate
that the model could generate nNe e-foldings during the cascade. This could easily be tuned to
satisfy the WMAP data [2]. The alternative is to consider this as a multi-field model where the
inflaton is some combination of g, r where r represents the radial motion in the throat. Indeed
our assumption that the branes are fixed is in principle difficult to achieve due to interactions
with the fluxes. Therefore we could generally that the combined amount of inflation driven
by dynamical branes and also by the cascade, will easily satisfy the bounds. Moreover the
constraints on the brane positions will be slightly weakened due to the presence of the extra
fields.

5 Discussion

Cosmology has entered into a new era of precision data [2], and it is therefore imperative that
top-down models make some falsifiable predictions in order to distinguish them from simple field
theory phenomenology. The simplest models in string theory belong to the class of DBI inflation,
and their defining characteristic is that the sound speed of fluctuations is greatly suppressed
leading to potentially observable non-Gaussian signatures in the CMB [11]. Whilst this has
been an important result, recent work has determined that we need to develop more intricate
models in order to completely satisfy the current observational data. Extending these scenarios
to include wrapped branes, or multiple branes allows us to evade these constraints at the cost
of losing control over the low energy theory. The previous work [17] demonstrated new physical
effects when one uses a finite number of coincident branes, this is the best of both worlds in some
sense - since we can still control the backreaction of the branes upon the warped geometry, but
also capture more interesting world-volume effects. In this paper we have investigated the effect
of the 1/N corrections to the large N solution, since this is essentially a combinatorics issue [31]
and also overlaps with much of the recent work on wrapped configurations [19]. Specifically we
have seen how these corrections, suppressed in the large N limit, affect the speed of sound and
the non-Gaussianity (at least for the equilateral triangle modes) in backgrounds with constant
warping, and backgrounds of the form AdS×X5. In both cases we have seen that the spectrum
of non-Gaussianities has new features present in the non-relativistic (constant warping) and
intermediate (AdS5) limits. This indicates that the 1/N correction plays an interesting role in
the inflationary dynamics. We have also started to develop an alternative inflationary scenario
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using a cascade through representation space to drive inflation. This appears to be sensitive to
the charge of the D3-brane and also imposes tight restrictions on the inflaton velocity. For the
usual D3-brane solution, we find that the field prefers to tunnel from the false vacuum to the
true vacuum and that the decay rate for such a vacuum is relatively short and goes like e−N

at large N . This is very much reminiscent of old inflation, although because the field will still
roll towards the minimum it may evade the graceful exit problem. For D̄3-branes on the other
hand, slow roll inflation appears to be preferred - although we estimate that in order for the
model to satisfy the COBE bounds we require multiple transitions which may not be feasible.

There remains much work to do on building viable models of DBI inflation. The results
shown here and in [15] have shown that the non-Gaussianities can be significantly different from
the leading order term once you start to include sub-leading effects. This suggests that other
corrections could also become important, even in the slow roll regime [23] of DBI inflation.
These corrections could be particularly interesting for the finite N solutions in [17], since the
backreaction of the branes on the warped geometry is still under control - however the sound
speed has dramatically different behaviour to the large N and single brane models. We must
also develop better mechanisms for reheating [35] in these models. Since the non-linear form
of the action captures all the terms in the α′ expansion, one would hope that there could be
some stringy signature present in the standard model which lies just beyond the current collider
physics scale. This is important not only for aesthetics, but also because the string signature
can again be tested. We hope to return to these issues in the future.

Acknowledgements

We wish to thank Steve Thomas, Larus Thorlacius, Adam Ritz, Shinji Tsujikawa, Shinji Muko-
hyama and Maxim Pospelov for useful remarks and comments.

References

[1] C. P. Burgess, 0708.2865 [hep-th]; L. McAllister and E. Silverstein, arXiv:0710.2951 [hep-
th], J. M. Cline, hep-th/0612129; A. Linde, Contemp. Concepts Phys 5, 1-362 (2005),
hep-th/0503203, A. Linde, J. Phys. Conf. Ser 24, 151-160 (2005), hep-th/0503195.

[2] D. N. Spergel et al, ApJS 170, 377 (2007), astro-ph/0604449; S. Perlmutter et al, Astrophys.
J. 517, 565-586 (1999), astro-ph/9812133; A. G. Riess et al, Astron. J. 116, 1009-1038,
astro-ph/9805201; A. G. Riess et al, astro-ph/9810291; W. J. Percival et al, Mon. Not.
Roy. Astron. Soc. 327, 1297 (2001) astro-ph/0105252; S. Cole et al, Mon. Not. Astron.
Soc. 362, 505-535 (2005), astro-ph/0501174; M. Tegmark et al, Phys. Rev. D 73, 023502
(2006), astro-ph/0608632.

[3] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753-1936 (2006),
hep-th/0603057.

30

http://arxiv.org/abs/0710.2951
http://arxiv.org/abs/hep-th/0612129
http://arxiv.org/abs/hep-th/0503203
http://arxiv.org/abs/hep-th/0503195
http://arxiv.org/abs/astro-ph/0604449
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9810291
http://arxiv.org/abs/astro-ph/0105252
http://arxiv.org/abs/astro-ph/0501174
http://arxiv.org/abs/astro-ph/0608632
http://arxiv.org/abs/hep-th/0603057


[4] F. Denef, M. R. Douglas and S. Kachru, hep-th/0701050; M. R. Douglas and S. Kachru,
hep-th/0610102; M. Grana, Phys. Rept. 423, 91-158 (2006), hep-th/0509003; S. B. Gid-
dings, S. Kachru and J. Polchinski, Phys. Rev. D 66, 106006 (2002), hep-th/0105097.

[5] B. Wecht, arXiv:0708.3984 [hep-th]; S. Kachru, M. B. Shulz, P. K. Tripathy and S. P.
Trivedi, JHEP 0303, 061 (2003), hep-th/021182.

[6] E. J. Copeland, R. C. Myers and J. Polchinski, JHEP 0406, 013 (2004), hep-th/0312067;
E. J. Copeland, P. M. Saffin, JHEP 0511, 023 (2005); M. Sakellaridou, hep-th/0602276;
H. Firouzjahi, L. Leblond and S.H. Henry Tye, JHEP 0605, 047 (2006), hep-th/0603161;
S. Thomas and J. Ward, JHEP 0612, 057 (2006), hep-th/0605099; H. Firouzjahi, JHEP
0612, 031 (2006), hep-th/0610130; L. Leblond and M. Wyman, Phys. Rev. D 75, 123522
(2007), astro-ph/0701427;

[7] J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219-225 (1999), hep-th/9904176, J.
Hwang and H. Noh, Phys. Rev. D 66, 084009 (2002), hep-th/0206100; J. Hwang and H.
Noh, Phys. Rev. D 71, 063536 (2005), gr-qc/0412126.

[8] D. Baumann, A. Dymarksy, I. R. Klebanov, L. McAllister and P. J. Steinhardt,
arXiv:0704.3837 [hep-th]; S. Panda, M. Sami and S. Tsujikawa, arXiv:0707.2848 [hep-th];
J.J. Blanco-Pillado, C. P. Burgess, J. M. Cline, C. Escoda, M. Gomez-Reino, R. Kallosh, A.
Linde and F. Quevedo, JEHP 0609, 002 (2006); A. Krause and E. Pajer, arXiv:0705.4682
[hep-th].

[9] S. H. Henry Tye, hep-th/0611148; S. E. Shandera and S. H. Henry Tye, JCAP 0606, 011
(2006), hep-th/0602136; S. Shandera, B. Shlaer, H. Stoica and S. H. Henry Tye, JCAP
JCAP 0402, 013 (2004), hep-th/0311207; G. Shiu and S. H. Henry Tye, Phys. Lett.
B 516, 421-430 (2001); E. Halyo, hep-th/0402155; G. Dvali, Q. Shafi and S. Solganik,
hep-th/0105203.

[10] S. H. S. Alexander, Phys. Rev. D 65, 023507 (2002). hep-th/0105032; C. P. Burgess, M.
Majumdar, D. Nolte, F. Quevedo, G. Rajesh and R-J. Zhang, JHEP 0107, 047 (2001); C.
P. Burgess, P. Martineau, F. Quevedo, G. Rajesh and R-J. Zhang, JHEP 0203, 052 (2002),
hep-th/0111025; C. Choudhury, D. Ghoshal, D. P. Jatkar and S. Panda, JCAP 0207, 009
(2003), hep-th/0305104.

[11] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505 (2004), hep-th/0310221; M. Al-
ishahiha, E. Silverstein and D. Tong, Phys. Rev. D 70, 123505 (2004), hep-th/0404084.

[12] A. R. Liddle, A. Mazumdar and F. E. Schunk, Phys. Rev. D 58, 061301 (1998),
astro-ph/9804177; P. Kanti and K. A. Olive, Phys. Rev. D 60, 043502 (1999),
hep-ph/9903254; K. A. Malik and D. Wands, Phys. Rev. D 59, 123501 (1999),
astro-ph/9804177; E. J. Copeland, A. Mazumdar and N. J. Nunes, Phys. Rev.D 60, 083506
(1999), astro-ph/9904309; J. Hartong, A. Ploegh, T. Van Reit and W. B. Wastra, Class.
Quant. Grav 23, 4593-4614, gr-qc/0602077; K. L. Panigrahi and H. Singh, arXiv:0708.1679
[hep-th]; H. Singh, Mod. Phys. Lett. A 22, 2737 (2007), hep-th/0608032; H. Singh, Nucl.
Phys.B 734, 169 (2006), hep-th/0508101; A. Mazumdar, S. Panda and A. Perez-Lorenzana,
Nucl. Phys. B 614, 101-116 (2001), hep-ph/0107058; M. Majumdar and A. Davis, Phys.
Rev. D 69, 103504 (2004), hep-th/0304226; Y-S. Piao, R-G. Cai, X. Zhang and Y-Z. Zhang,
Phys. Rev. D 66, 121301 (2002), hep-ph/0207143.

31

http://arxiv.org/abs/hep-th/0701050
http://arxiv.org/abs/hep-th/0610102
http://arxiv.org/abs/hep-th/0509003
http://arxiv.org/abs/hep-th/0105097
http://arxiv.org/abs/0708.3984
http://arxiv.org/abs/hep-th/0312067
http://arxiv.org/abs/hep-th/0602276
http://arxiv.org/abs/hep-th/0603161
http://arxiv.org/abs/hep-th/0605099
http://arxiv.org/abs/hep-th/0610130
http://arxiv.org/abs/astro-ph/0701427
http://arxiv.org/abs/hep-th/9904176
http://arxiv.org/abs/hep-th/0206100
http://arxiv.org/abs/gr-qc/0412126
http://arxiv.org/abs/0704.3837
http://arxiv.org/abs/0707.2848
http://arxiv.org/abs/0705.4682
http://arxiv.org/abs/hep-th/0611148
http://arxiv.org/abs/hep-th/0602136
http://arxiv.org/abs/hep-th/0311207
http://arxiv.org/abs/hep-th/0402155
http://arxiv.org/abs/hep-th/0105203
http://arxiv.org/abs/hep-th/0105032
http://arxiv.org/abs/hep-th/0111025
http://arxiv.org/abs/hep-th/0305104
http://arxiv.org/abs/hep-th/0310221
http://arxiv.org/abs/hep-th/0404084
http://arxiv.org/abs/astro-ph/9804177
http://arxiv.org/abs/hep-ph/9903254
http://arxiv.org/abs/astro-ph/9804177
http://arxiv.org/abs/astro-ph/9904309
http://arxiv.org/abs/gr-qc/0602077
http://arxiv.org/abs/0708.1679
http://arxiv.org/abs/hep-th/0608032
http://arxiv.org/abs/hep-th/0508101
http://arxiv.org/abs/hep-ph/0107058
http://arxiv.org/abs/hep-th/0304226
http://arxiv.org/abs/hep-ph/0207143


[13] K. Becker, M. Becker and A. Krause, Nucl. Phys. B 715, 349-373 (2005), hep-th/0501130;
J. Ward, Phys. Rev. D 73, 026004 (2006), hep-th/0511079; A. Ashoorion and A. Krause,
hep-th/0607001; A. Krause, arXiv:0708.4414 [hep-th]; E. I. Buchbinder, Nucl. Phys. B 711,
314-344 (2005), hep-th/0411062.

[14] S. Dimopolous, S. Kachru, J. McGreevy and J. Wacker, hep-th/0507205; R. Easther and L.
McAllister, JCAP 0605, 018 (2006), hep-th/0512102; Y-S. Piao, Phys. Rev. D 74, 047302
(2006); M. E. Olsson, JCAP 04, 019 (2007), hep-th/0702109.; S. A. Kim and A. R. Liddle,
0707.1982 [astro-ph].

[15] M-x. Huang, G. Shiu and B. Underwood, arXiv:0709.3200 [hep-th].

[16] J. M. Cline and H. Stoica, Phys. Rev. D 72, 126004 (2005), hep-th/0508029.

[17] S. Thomas and J. Ward, Phys. Rev. D 76, 023509 (2007), hep-th/0702229.

[18] D. H. Lyth, Phys. Lett. 78, 1861-1863 (1997), hep-ph/9606387; D. Baumann and L. McAl-
lister, Phys. Rev. D 75, 123508 (2007); J. E. Lidsey and I. Huston, JCAP 0707, 002 (2007),
arXiv:0705.0240 [hep-th].

[19] T. Kobayashi, S. Mukohyama and S. Kinoshita, arXiv:0708.4285 [hep-th]; S. Mukohyama,
arXiv:0706.3214 [hep-th]; M. Becker, L. Leblond and S. Shandera, arXiv:0709.1170 [hep-th].

[20] R. Bean, X. Chen, H. V. Peiris and J. Xu, arXiv:0710.1812 [hep-th]; R. Bean, S. E. Shan-
dera, S. H. Henry Tye and J. Xu, JCAP 0705, 004 (2007), hep-th/0702107; X. Chen,
Phys. Rev. D 72, 123518 (2005), astro-ph/0507053; X. Chen, JHEP 0508, 045 (2005),
hep-th/0501184; X. Chen, Phys. Rev. D 71, 063506 (2005), hep-th/0408084;

[21] G. Shiu and B. Underwood, Phys. Rev. Lett 98, 051301 (2007), hep-th/0610151;
S. Kecskemeti, J. Maiden, G. Shiu and B. Underwood, JHEP 0609, 076 (2006)
hep-th/0605189; H. V. Peiris, D. Baumann, B. Friedmann and A. Cooray, arXiv:0706.1240
[astro-ph]; X. Chen, S. Sarangi, S. H. Henry Tye and J. Xu, JCAP 0611, 015
(2006), hep-th/0608082; C. P. Burgess, J. M. Cline, K. Dasgupta and H. Firouzjahi,
hep-th/0610320; K. Dasgupta, H. Firouzjahi and R. Gwyn, hep-th/0702193; H. Firouz-
jahi and S. H. Henry Tye, Phys. Lett. B 584, 147-154 (2004); F. Gmeiner and C. D.
White, arXiv:0710.2009 [hep-th]; L. P. Chimento and R. Lazkoz, arXiv:0711.0712 [hep-th].

[22] D. Easson, R. Gregory, G. Tasinato and I. Zavala, JHEP 0704, 026 (2007), hep-th/0701252;
D. A. Easson, R. Gregory, D. F. Mota, G. Tasinato and I. Zavala, arXiv:0709.2666 [hep-th];
D. A. Easson, arXiv:0709.3757 [hep-th].

[23] S. E. Shandera, JCAP 0504, 011 (2005), hep-th/0412077; M. Spalinski, JCAP 0704, 018
(2007), hep-th/0702118.

[24] M-x. Huang and G. Shiu, Phys. Rev. D 74, 121301 (2006), hep-th/0610235; X. Chen, M-x.
Huang, S. Kachru and G. Shiu, JCAP 0701, 002 (2007), hep-th/0605045; D. Seery and J.
E. Lidsey, JCAP 0701, 008 (2007), astro-ph/0611034; J. E. Lidsey and D. Seery, Phys. Rev.
D 75, 043505 (2007), astro-ph/0610398; D. Seery and J. E. Lidsey, JCAP 0509, 011 (2005),
astro-ph/0506056, D.Seery and J. E. Lidsey, JCAP 0506, 003 (2005), astro-ph/0503692; J.
M. Maldacena, JHEP 0305, 013 (2003), astro-ph/0210603..

32

http://arxiv.org/abs/hep-th/0501130
http://arxiv.org/abs/hep-th/0511079
http://arxiv.org/abs/hep-th/0607001
http://arxiv.org/abs/0708.4414
http://arxiv.org/abs/hep-th/0411062
http://arxiv.org/abs/hep-th/0507205
http://arxiv.org/abs/hep-th/0512102
http://arxiv.org/abs/hep-th/0702109
http://arxiv.org/abs/0709.3200
http://arxiv.org/abs/hep-th/0508029
http://arxiv.org/abs/hep-th/0702229
http://arxiv.org/abs/hep-ph/9606387
http://arxiv.org/abs/0705.0240
http://arxiv.org/abs/0708.4285
http://arxiv.org/abs/0706.3214
http://arxiv.org/abs/0709.1170
http://arxiv.org/abs/0710.1812
http://arxiv.org/abs/hep-th/0702107
http://arxiv.org/abs/astro-ph/0507053
http://arxiv.org/abs/hep-th/0501184
http://arxiv.org/abs/hep-th/0408084
http://arxiv.org/abs/hep-th/0610151
http://arxiv.org/abs/hep-th/0605189
http://arxiv.org/abs/0706.1240
http://arxiv.org/abs/hep-th/0608082
http://arxiv.org/abs/hep-th/0610320
http://arxiv.org/abs/hep-th/0702193
http://arxiv.org/abs/0710.2009
http://arxiv.org/abs/0711.0712
http://arxiv.org/abs/hep-th/0701252
http://arxiv.org/abs/0709.2666
http://arxiv.org/abs/0709.3757
http://arxiv.org/abs/hep-th/0412077
http://arxiv.org/abs/hep-th/0702118
http://arxiv.org/abs/hep-th/0610235
http://arxiv.org/abs/hep-th/0605045
http://arxiv.org/abs/astro-ph/0611034
http://arxiv.org/abs/astro-ph/0610398
http://arxiv.org/abs/astro-ph/0506056
http://arxiv.org/abs/astro-ph/0503692
http://arxiv.org/abs/astro-ph/0210603


[25] R. Kallosh, N. Sivanandam and M. Soroush, arXiv:0710.3429 [hep-th]; T. W. Grimm,
arXiv:0710.3833 [hep-th].

[26] S. W. Hawking and I. G. Moss, Phys. Lett. B 110, 35 (1982).

[27] S. Kachru, R. Kallosh, A. Linde and S. P. Trivedi, Phys. Rev. D 68, 046005 (2003),
hep-th/0301240; S. Kachru, R. Kallosh, A. Linde, J. Maldacena, L. McAllister and S. P.
Trivedi, JCAP 0310, 013 (2003), hep-th/0308055.

[28] R. C. Myers, Class. Quant. Grav. 20, S347-S372 (2003), hep-th/0303072; R. C. Myers,
JHEP 9912, 022 (1999), hep-th/9910053.

[29] A. A. Tseytlin, hep-th/9908105; A. A. Tseytlin, Nucl. Phys. B 501, 41-52 (1997),
hep-th/9701125.

[30] I. R. Klebanov and M. J. Strassler, JHEP 0008, 052 (2001), hep-th/0007191; C. P. Herzog,
I. R. Klebanov and P. Ouyang, hep-th/0108101.

[31] S. McNamara, C. Papageorgakis, S. Ramgoolam and B. Spence, JHEP 0605, 060 (2006),
hep-th/0512145; C. Papageorgakis, S. Ramgoolam and N. Toumbas, JHEP 0601, 030
(2006), hep-th/0510144. S. Ramgoolam, B. J. Spence and S. Thomas, Nucl. Phys. B 603,
237-276 (2004), hep-th/0405256.

[32] O. DeWolfe, S. Kachru and H. Verlinde, JHEP 0405, 017 (2004), hep-th/0403123; S.
Kachru, J. Pearson and H. Verlinde, JHEP 0206, 021 (2002), hep-th/0112197.

[33] D. P. Jatkar, G. Mandal, S. R. Wadia and K. P. Yogendran, JHEP 0201, 039 (2002),
hep-th/0110172.

[34] C. Bachas, J. Hoppe and B. Pioline, JHEP 0107, 041 (2001), hep-th/0007067.

[35] L. Kofman, A. Linde and A. Starobinsky, Phys. Rev. D 56, 3258-3295 (1997),
hep-ph/9704452; L. Kofman and P. Yi, Phys. Rev. D 72, 106001 (2005), hep-th/0507257:;
D. Chialva, G. Shiu and B. Underwood, JHEP 0601, 014 (2006), hep-th/0508229; J. H.
Brodie and D. A. Easson, JCAP 0312, 004 (2003), hep-th/0301138; A. R. Frey, A. Mazum-
dar and R. Myers, Phys. Rev. D 73, 026003 (2006); C. Chen and S. H. Henry Tye, JCAP
0606, 011 (2006), hep-th/0602136; B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod.
Phys. 78, 537-589 (2006), astro-ph/0507632.

33

http://arxiv.org/abs/0710.3429
http://arxiv.org/abs/0710.3833
http://arxiv.org/abs/hep-th/0301240
http://arxiv.org/abs/hep-th/0308055
http://arxiv.org/abs/hep-th/0303072
http://arxiv.org/abs/hep-th/9910053
http://arxiv.org/abs/hep-th/9908105
http://arxiv.org/abs/hep-th/9701125
http://arxiv.org/abs/hep-th/0007191
http://arxiv.org/abs/hep-th/0108101
http://arxiv.org/abs/hep-th/0512145
http://arxiv.org/abs/hep-th/0510144
http://arxiv.org/abs/hep-th/0405256
http://arxiv.org/abs/hep-th/0403123
http://arxiv.org/abs/hep-th/0112197
http://arxiv.org/abs/hep-th/0110172
http://arxiv.org/abs/hep-th/0007067
http://arxiv.org/abs/hep-ph/9704452
http://arxiv.org/abs/hep-th/0507257
http://arxiv.org/abs/hep-th/0508229
http://arxiv.org/abs/hep-th/0301138
http://arxiv.org/abs/hep-th/0602136
http://arxiv.org/abs/astro-ph/0507632

	Introduction
	Multiple brane inflation
	The dual picture

	Including 1/N Corrections
	The limit of constant warping.
	The limit of AdS warping.

	Inflation via the Representation Cascade
	Discussion

