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Abstract
The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved

to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance

is the study of Loop Quantum Cosmology (LQC), a symmetry reduced theory that is related to

Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently,

a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop

Quantum Cosmology and the standard Wheeler-DeWitt theory and in particular the passage to

the limit in which the auxiliary parameter (interpreted as “quantum geometry discreetness”) is

sent to zero in hope to get rid of this ‘regulator ambiguity’ in the LQC dynamics. In this note

we outline the first steps toward reformulating this question within the program developed by the

authors for studying the continuum limit of polymeric theories, which was successfully applied to

simple systems such as a Simple Harmonic Oscillator and the Free Particle.
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I. INTRODUCTION

Loop quantum gravity has become one of the most popular, non-stringy, approaches to
quantum gravity [1]. With the aim of understanding it better a simpler, mechanical, model
known as polymer quantum mechanics was developed, where a system with a finite number
of degrees of freedom replaces a field theory.

The kinematical basis of polymer quantum mechanics is based on a non-regular rep-
resentation of the Heisenberg-Weyl algebra (which turns out to be inequivalent to the
Schrödinger’s representation). Of course, von Neumann’s theorem tells us that such repre-
sentation must suffer from some kind of pathology. The pathology in this case is the inability
of polymer quantum mechanics to capture the usual topology of the real line corresponding
to the position observables [2]. This pathology is responsible for the non existence of the
limits suggested by a direct quantization of the Hamiltonian (or any other observable which
involves a polynomial of the momentum). In the same fashion, within full loop quantum
gravity, the unique diffeo invariant quantization [3] is such that the holonomy observables
which lie at its core do not enjoy of the continuity properties suggested by the topology of
the space manifold, and the limits suggested by the regularization of the curvature do not
exist.

A more specific motivation to better understand polymer quantum mechanics is that it is
the mathematical basis of loop quantum cosmology (LQC) [4]. In complete analogy with the
full theory, the polymeric representation used in LQC is such that the holonomies are well
defined but the connection and curvature are not and, furthermore, the intuitive limits that
one would use to define them though holonomies do not exist. The curvature is therefore
defined by fixing a minimal area λ2 when computing the holonomies, that is motivated by
the discreetness of the quantum geometry in LQG [1].

There is a general proposal to define effective theories, coarse graining and continuum
limits in a Wilsonian manner within the framework of loop quantization [5]. In this context
the renormalization process modifies the continuum limit relevant for dynamics in a way that
may enhance its continuity aspects. Recently the authors applied this proposal to a model of
the simple harmonic oscillator in polymer quantum mechanics [6]. The resulting dynamics
in the continuum limit was shown to be equivalent to that of the Schrödinger representation
of the simple harmonic oscillator (compare to the original treatment of the model [2]). The
continuum limit in this context is different from the kinematical continuum limit because
the renormalization prescription which runs the renormalization process demands that the
Hamiltonian be physically meaningful. This contribution targets specifically loop quantum
cosmology, so we will direct our efforts in that direction. In particular, a natural question
is whether such results can be generalized to LQC, in which case one would be interested in
studying the resulting continuum limit and its relation to the Wheeler DeWitt theory.

In this contribution we will set the stage to analyze a simplified model of loop quantum
cosmology introduced by Ashtekar, Corichi and Singh in [7] known as ‘sLQC’, from the per-
spective of the Wilsonian renormalization introduced in [6] to polymer quantum mechanics.
In the next section we will recall the basic formalism of [6]. Later we review the solvable
model of loop quantum cosmology of [7] and give a summary of what is known about the
renormalization of this model. We will close our contribution with a list of open issues
regarding the application of our formalism to loop quantum cosmology, we will give some
remarks and some partial conclusions.
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II. EFFECTIVE THEORIES, COARSE GRAINING AND CONTINUUM LIMIT

In this section we define the concept of effective theories and their continuum limit. The
first ingredient is the definition of a scale to which an effective theory is associated. For a
detailed treatment of the subject presented in this section see [6].

The role of scales will be played by regular decompositions of R as a disjoint union of
closed-open intervals of length an = a0

2n
.

Definition 1 (Scale) In our context, a scale Cn is a decomposition of the real line of the
form R = ∪αi∈Cn

αi, where αi = [L(αi), R(αi)), and the vertex set is {L(αi+1) = R(αi) =
ian}αi∈Cn

.

To every scale Cn we associate a space of states at scale Cn, Cyl(n), with a basis {eα}α∈Cn

labeled by the cells of Cn. The inner product is given by (eαi
, eαj

)Cn
= δij . The completion

of Cyl(n) is the Hilbert space at the scale Cn, Hn. This inner product is inherited from the
corresponding polymer Hilbert space, see [6].

We will also work with the dual space H⋆
n. Since the space of states at any given scale is a

Hilbert space, its dual is isomorphic to it, but for us the dual space will be of special interest.
Notice that its elements have a natural ∼n-preserving action on Cyl(R)x (the vector space of
cylindric functions on the real line). This action is particularly simple to see for the elements
of the dual basis {ωα}α∈Cn

; for them we have ωα(δx0
) = χα(x0) where δx0

(x) = 0 if x 6= x0
and δx0

(x) = 1 if x = x0, and χα is the characteristic function of the set α ⊂ R. Thus, we
write H⋆

n ⊂ Cyl(n)⋆ where by Cyl(n)⋆ we mean the ∼n-preserving subspace of Cyl(R)⋆x.
In order to define the continuum limit of the effective theories we have to relate different

scales by mapping between the corresponding Hilbert spaces and its duals.

Definition 2 (Coarse graining) Given two scales we write Cm ≤ Cn and say that Cm is
a coarse graining of Cn (or Cn is a refinement of Cm) if any interval αi ∈ Cm is a finite
union of intervals of Cn.

Our coarse graining maps work by decimation. If we have two scales related by refinement
Cm ≤ Cn our decimation map will be defined to be the injective isometry d : Hm → Hn

characterized by d(eαi
) = eβj

⇐⇒ L(αi) = L(βj). It is important to notice that if
Cm ≤ Cn ≤ Co the corresponding d-triangle diagram commutes.1

On the other hand, d⋆ : H⋆
n → H⋆

m sends part of the elements of the dual basis to zero
while keeping the information of the rest: d⋆(ωβj

) = ωαi
if j = i2n−m, in the opposite case

d⋆(ωβj
) = 0.

At any given scale we have an effective theory and we can calculate the expected values
of every observable at this scale. For an observable Ô we consider its expectation value on
normalized states κ2Cn

(ψ, onψ)Cn
= on(ψ), on : Hn → R. The normalization factors in the

inner product κ2Cn
∈ R

+ have to be adjusted in such a way that, at least in the continuum
limit, the observables of different scales are pasted correctly by the decimation maps.2

1 It is called coarse graining because these mappings induce a ‘coarse graining’ of the measure and the

observables.
2 In standard introductions the continuum limit in the renormalization group framework includes a wave

function renormalization; here we choose the equivalent action of renormalizing the inner product instead.

We choose to absorb the normalization factors in the inner product to find a non trivial action of the

completely renormalized observable Ô in Hpoly,x.
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At a given scale Cm we can “include the effects of more microscopic degrees of freedom”
by using our decimation map. When Cm ≤ Cn we define

om(n) := d⋆m,non. (1)

That is, om(n)(eαi
) := on(dm,neαi

). If these microscopically corrected observables converge,
their limit will be called a completely renormalized observable at the given scale orenm : Hm →
R,

orenm := lim
Cn→R

om(n). (2)

By construction, when the completely renormalized observables exist, they are compatible
with each other in the sense that d⋆m,no

ren
n = orenm . A collection of compatible observables

defines in itself a continuum limit observable.
A natural choice of normalization factors that leads to convergence in (2) for the case of

the simple harmonic oscillator (SHO) [6] is κ2Cn
= 2n which means that the renormalized

inner product in H⋆
n is (ωαi

, ωαj
)renCn

= 1
2n
δij

3. The Hilbert space of covectors together
with such inner product will be called H⋆ren

n . A sequence of covectors {Ψren
Cn

∈ H⋆ren
n } is

called compatible if d⋆Ψren
Cn

= Ψren
Cm

for each pair with m ≤ n. These compatible sequences

form the Hilbert space
←−
H

⋆ren

R and the inner product in this space is ({ΨCn
}, {ΦCn

})renR :=

limCn→R(ΨCn
, ΦCn

)renCn
. Observables in this continuum limit oren

R
:
←−
H

⋆ren

R → R are defined by

orenR ({ΨCn
}) := lim

Cn→R
on(( ΨCn

, ·)renCn
). (3)

The continuum limit of the effective theories exists if the above limit exists for enough
observables of physical interest.

A physical Hilbert space can be defined when one considers the degeneracy of the inner
product and the observables that we just defined. In the case of SHO it is shown that the
corresponding physical Hilbert space is unitarily isomorphic to L2(R, dx), the usual Hilbert
space of the Schrödinger theory[6].

III. LOOP QUANTUM COSMOLOGY

In this section we shall follow [7] closely in order to define the model of interest. The
gravitational phase space variables in the homogeneous, isotropic, spatially flat sector of
general relativity can be expressed as,

Ai
a = c V

−(1/3)
0

oωi
a and Ea

i = p V
−(2/3)
0

√
q0

oeai (4)

where V0 is the volume as given by the fiducial metric oqab of an auxiliary cell that is used to
make the integrals in the variational principle (and canonical formulation) of homogeneous

3 In the case of LQC the symmetric gravity plus matter constrained system is parametrized as an uncon-

strained system with one degree of freedom evolving in the relative clock of the matter. That parametrized

system is then represented in a Hilbert space at “scale” n which is similar to the Hn defined above, but

whose inner product is not δij . A renormalized inner product for the dual Hilbert space would have to be

defined following our procedure.
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models finite and oωi
a is the dual basis to a fiducial triad oeai , compatible with oqab. In terms

of geometrodynamical variables |p| is proportional to a2, where a is the scale factor of the
FRW metric, and c is proportional to ȧ (which determines the extrinsic curvature).

The fundamental Poisson bracket for the gravity variables is given by, {c, p} = 8πGγ
3

,
where γ is the Barbero-Immirzi (BI) parameter that parametrizes an ambiguity in the loop
quantization.

Defining the new coordinates,

b :=
c

|p|1/2 and V := p3/2 (5)

V is the physical volume of the auxiliary cell. The new coordinate b is then equal to
b = c

a
. On the constraint surface, that is, on classical solution to the equations of motion it

becomes b = γȧ
a

= γ HHubble. The Poisson bracket now becomes, {b, V } = 4πGγ. In these
new coordinates, the Hamiltonian constraint of the gravitational part coupled to a massless
scalar field φ is:

C := − 6

γ2
V b

2 + 8πG
p2φ
V

= 0 (6)

with pφ the momentum conjugate to φ. One has to define a corresponding operator Ĉ. But
on the polymeric Hilbert space b̂ is not well defined. In order to ‘regulate it’, the natural
basis to consider is: |νn〉 = |λn〉, with V̂ |νn〉 = 2πℓ2p ν̂|νn〉 = 2πℓ2p νn |νn〉 That is, the
lattice has uniform spacing in the coordinate ν with spacing given by λ, the parameter that
dictates the scale as understood in the previous section. Note that it is an eigenbasis of
the volume operator. A wave function Ψ̃(ν) has only support on the discrete set νn = λn.

Intuitively, in the regularization one is going to replace b for: b̂ −→ ̂sin(λb)
λ

(see [7] for the
precise construction). The constraint is

∂2φ Ψ̃(ν, φ) = 3πG |ν| sinλβ
λ

|ν| sin λβ
λ

Ψ̃(ν, φ) (7)

which takes the form [7]:

∂2φ Ψ̃(ν, φ) =
3πG

4λ2
ν
[

(ν + 2λ)Ψ̃(ν + 4λ)− 4νΨ̃(ν) + (ν − 2λ)Ψ̃(ν − 4λ)
]

(8)

With the physical inner product given by

(Ψ̃, Φ̃)phy =
∑

n∈Z−0

1

|4nλ| Ψ̃(νn) Φ̃(νn) .

The physical inner product (and Hilbert space) in this section refers to those objects that are
needed in order to make physical predictions from the solutions of the quantum constraints
for constrained systems (as is the case here). This has to be contrasted with the physical
Hilbert space defined as an appropriate limit in [6].

Let us now take functions of Ψ(b, φ). In this case the quantum constraint of sLQC (after
a rescaling χ = Ψ/ν), is given by,

∂2

∂φ2
· χ(b, φ) = 12πG

(

sin(λb)

λ

∂

∂ b

)2

· χ(b, φ) (9)
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with b ∈ (0, π/λ) and χ(b, φ) = −χ(π/2λ − b, φ). Let us note that since the variable ν
is discrete, its canonically conjugate variable b is compactified [8]. If we define a new x
coordinate as: x = 1√

12πG
ln
(

tan
(

λb
2

))

, then the basic constraint equation (9) translates

to ∂2φ χ(x, φ) = ∂2x χ(x, φ). A general solution χ(x, φ) to the previous equation can be
decomposed in to left moving and right moving components: χ = F (φ+ x)−F (φ− x) that
furthermore, satisfy the required symmetry.

In SLQC the expectation value for V̂ , is given by:

〈V̂ |φ〉 = V+ e
−
√
12π Gφ + V− e

√
12π Gφ (10)

There is a minimum for the expectation value at the bounce time φV
b given by,

φV
b :=

1

2
√
12πG

ln

(

V+
V−

)

(11)

On the other hand, the WDW equation in the b representation reads,

∂2φ · χ(b, φ) = 12πG[b ∂b]
2 · χ(b, φ) (12)

Introduce y := 1√
12πG

ln(b/2b0) , from which the equation becomes,

∂2φ χ(y, φ) = ∂2y χ(y, φ) (13)

The same equation as in LQC! What is the main difference then? Of course, the represen-
tation of the Dirac observables V̂φ:

WDW : ν̂ := exp(
√
12πGy) ∂y ; LQC : ν̂ := cosh(

√
12πGx) ∂x (14)

Therefore, in the WDW theory

〈V̂ 〉 = V 0 e
±(
√
12πG φ) (15)

with the sign depending on the choice of branch. For a given λ we can have a WDW
description in terms of the Klein Gordon equation where the choice of the parameter b0 is
rather convenient: set b0 = 2/λ. In this case, if we fix a state F (x+) for φ0 = 0 given, that
corresponds to an initial state with support on small values of x ≪ −1, we can expect it
to have a small density (by fixing pφ and having large volume). For that class of states,
we shall compare the WDW and sLQC. The Hilbert space is the same, so the same wave
function (solution to KG) is a physical state on both theories, and the expectation value of
the volume can be arbitrary close for both theories. The difference is given by [7],

〈V̂ |φ〉wdw − 〈V̂ |φ〉λ = V− e
−
√
12πGφ (16)

with V− ≪ 1 the initial difference, that goes to zero as λ→ 0. Note that this prescription is
such that [〈V̂ |φ〉wdw−〈V̂ |φ〉λ] → 0 when φ→ ∞, but that the difference grows unboundedly
for the other sigh of φ (in the direction of the big bang).

This assignment that relates the ‘discrete theory at scale λ’ with WDW, the putative
continuum theory, can also be used for defining a ’coarse graining map’ between scales λ
and λ′ = αλ [7]: Given a state χλ(x, φ) define the new state χλ′

(x, φ) = χλ(x + µ, φ) with
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µ = − 1√
12πG

lnα. This assignment ensures that the difference in volume at that time is very

small: ∆(〈V̂ 〉) = (1 − α) V− ≪ 1, since V− ≪ 1 and α < 1. Again, under time evolution,
the difference will grow unboundedly as φ→ −∞:

∆(〈V̂ 〉)|φ = (1− α) V− e
−
√
12πGφ (17)

Thus, with this prescription the time evolution is such that the physical observables become
closer in the macroscopic domain (where the universe is large), and only depart when ap-
proaching the Planck domain to grow unboundedly on the pre big bang era [7]. It was also
shown that there is no ‘coarse graining map’ for which the observable p̂φ (and any power of

it) and the volume V̂ |φ can preserve their expectation values throughout the ‘renormaliza-
tion flow’, for all times, preserving desired features in the large volume, macroscopic regime
[7]. From this perspective one is lead to conclude that, as the scale λ is refined, there is no
limiting theory. Therefore, it is concluded that there is no continuum limit and thus sLQC
is, in a precise sense, fundamentally discrete [7].

What we still need to understand is how this ‘coarse graining map’ [7] can be translated
to the representation Ψ(ν) where the notion of scales and ‘lattice refinement’ is natural. As
a second step, one needs to study the properties of the limiting Hilbert spaces and the action
of the Hamiltonian of the theory that generates time evolution in φ. We shall leave these
matters for further investigation.

IV. DISCUSSION

Ashtekar, Corichi and Singh introduced a solvable model [7] in order to study several
aspects of loop quantum cosmology including its relation to the more traditional Wheeler
DeWitt theory, a putative candidate for a continuum limit of LQC. Given that the model
is completely solvable, it is a rich arena to study many aspects of loop quantum cosmology,
polymer quantum mechanics and in general to study the physics of models based on non-
regular representations of the Heisenberg-Weyl algebra. Their study of the continuum limit
of the sLQC model, understood as approaching the limit in which the discrete nature of the
quantum geometry is expected to go to the continuum, involved considering the behavior
of the volume observable and its evolution (according to the internal clock defined by the
scalar matter, and fixing the other observable of the theory). In the model there is not one
single evolution operator, but one for each “auxiliary scale”. The results of [7] show that,
as the “auxiliary scale” is refined, the evolution of the volume observable does not converge
to a hypothetical continuum theory (and therefore neither to the Wheeler DeWitt theory).

The work in [7] teaches us some aspects of the dynamics of the solvable loop quantum
cosmology model, and about a specific ‘coarse graining map’ that is naturally suited to the
formulation of the model as a solvable system. However, a detailed study of the model
according to the framework of effective theories, coarse graining and continuum limit for
polymer quantum mechanics as understood in [6], remains to be undertaken. In particu-
lar, the physical Hilbert space of the continuum as defined in [6] has not been explicitly
constructed and the behavior of the observables and the dynamics thereon has yet to be
studied. Work along this line is in progress.

A second and important question pertains to the conclusions one might draw from ei-
ther result coming out of such investigations. In particular there might be very different
expectations depending on some personal bias: For instance, some people may not find the
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notion of “scale” as natural in this case as it was in the case of polymer quantum mechanics.
Therefore there may be several conclusions one may reach from the non existence of the
limit studied in [7]. Here we show two lines of thinking: A) The system is fundamentally
discrete and there is a “scale” λ such that the dynamics encoded in the constraint of sLQC
at that value of λ is the fundamental dynamics. The constraints which use other values of
the parameter are just incorrect; they are not effective theories that describe the system
approximately. B) A “removal of the cut-off” by the limit studied in [7] is not the correct
way to proceed. Instead, one may try to follow the lines of [6] in which at each scale one
has an effective theory and at each such scale one can import corrections from smaller scale
by a coarse graining procedure. The resulting mathematical structure of the limits taken in
such an approach is different from those of [7] and needs to be studied.

If the continuum limit suggested by [6] does not exist, the coarse grained effective dy-
namics does not become better approximations to “the true system” as the scale is refined
and thus either the effective dynamics at a given scale or the coarse graining procedure are
wrong. In this case our procedure of non-perturbative renormalization would fail to define
a theory of sLQC in the continuum. To understand which of these scenarios is realized is a
pressing matter.
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