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Abstra
t

Sin
e the early days of digital 
ommuni
ation, Hidden MarkovModels (HMMs)

have now been routinely used in spee
h re
ognition, pro
essing of natural

languages, images, and in bioinformati
s. An HMM (Xi, Yi)i≥1 assumes ob-

servations X1, X2, . . . to be 
onditionally independent given an �explanotary�

Markov pro
ess Y1, Y2, . . ., whi
h itself is not observed; moreover, the 
on-

ditional distribution of Xi depends solely on Yi. Central to the theory and

appli
ations of HMM is the Viterbi algorithm to �nd a maximum a poste-

riori estimate q1:n = (q1, q2, . . . , qn) of Y1:n given the observed data x1:n.
Maximum a posteriori paths are also 
alled Viterbi paths or alignments. Re-


ently, attempts have been made to study the behavior of Viterbi alignments

of HMMs with two hidden states when n tends to in�nity. It has indeed

been shown that in some spe
ial 
ases a well-de�ned limiting Viterbi align-

ment exists. While innovative, these attempts have relied on rather strong

assumptions. This work proves the existen
e of in�nite Viterbi alignments

for virtually any HMM with two hidden states.

Keywords

Hidden Markovmodels, maximum a posterior path, Viterbi alignment, Viterbi
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1 Introdu
tion

We 
onsider hidden Markov models (HMM) (Y,X) with two hidden states.

Namely, Y represents the hidden pro
ess Y1, Y2, . . . , whi
h is an irredu
ible

aperiodi
 Markov 
hain with state spa
e S = {a, b}. In parti
ular, the transi-

tion probabilities P = (plm), l,m ∈ S, are positive and the stationary distri-

bution π = πP is unique. For te
hni
al 
onvenien
e, Y1 is assumed to follow

π, however, the results of the paper hold for arbitrary initial distributions. To
every state l ∈ S there 
orresponds an emission distribution Pl on X = R

d
.
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Given a realization y1:∞ ∈ S∞
of Y , the observations X1:∞ := X1, X2, . . .

are generated as follows. If Yi = a (resp. Yi = b), then Xi is distributed

a

ording to Pa (resp. Pb) and independently of everything else. We refer to

this model as the (general) 2-state HMM.

In (Cappé et al., 2005), HMMs are 
alled `one of the most su

essful sta-

tisti
al modelling ideas that have [emerged℄ in the last forty years'. Sin
e

their 
lassi
al appli
ation to digital 
ommuni
ation in 1960s (see further

referen
es in (Cappé et al., 2005)), HMMs have had a de�ning impa
t on

the mainstream resear
h in spee
h re
ognition (Huang et al., 1990, Jelinek,

1976, 2001, M
Dermott and Hazen, 2004, Ney et al., 1994, Padmanabhan and

Pi
heny, 2002, Rabiner and Juang, 1993, Rabiner et al., 1986, Shu et al., 2003,

Steinbiss et al., 1995, Ström et al., 1999), natural language models (Ji and

Bilmes, 2006, O
h and Ney, 2000), and more re
ently 
omputational biology

(Durbin et al., 1998, Eddy, 2004, Krogh, 1998, Lomsadze et al., 2005). Thus,

for example, DNA regions 
an be labeled as a, `
oding', or b, `non-
oding',
with Pa and Pb representing the respe
tive distributions on the {A,C,G, T }
alphabet.

Given observations x1:n := x1, . . . , xn, and treating the hidden states

y1:n := y1, . . . , yn as parameters, inferen
e in HMMs typi
ally involves v(x1:n),
a maximum a posteriori (MAP) estimate of Y1:n. It has now been re
ognized

that `[in℄ spite of the theoreti
al and pra
ti
al importan
e of the MAP path

estimator, very little is known about its properties' (Caliebe, 2006). The

same estimates are also known as Viterbi, or for
ed alignments and 
an be

e�
iently 
omputed by a dynami
 programming algorithm also bearing the

name of Viterbi. When substituted for true y1:n in the likelihood fun
tion

Λ(y1:n;x1:n, ψ), Viterbi alignments 
an also be used to estimate ψ, any un-

known free parameters of the model. Starting with an initial guess ψ(0)
and

alternating between maximization of the likelihood Λ(y1:n;x1:n, ψ) in y1:n
and ψ is at the 
ore of Viterbi training (VT), or extra
tion (Jelinek, 1976),

also known as segmental K-means (Ephraim and Merhav, 2002, Juang and

Rabiner, 1990). Resulting estimates ψ̂VT(x1:n, ψ
(0)) are known to be di�er-

ent from the maximum likelihood (ML) estimates ψ̂ML(x1:n, ψ
(0)) whi
h in

this 
ase are most 
ommonly delivered by the EM pro
edure (Baum and

Petrie, 1966, Bilmes, 1998, Ephraim and Merhav, 2002). Even if ψ were

known, Viterbi alignments v(x1:n;ψ) would typi
ally di�er from true paths

y1:n, and the long-run properties of v(x1:n;ψ) are not obvious (Caliebe, 2006,
Caliebe and Rösler, 2002, Koloydenko et al., 2007, Lember and Koloydenko,

2007, 2008). Furthermore, (Koloydenko et al., 2007, Lember and Koloydenko,

2007, 2008) propose a hybrid of VT and EM whi
h takes into a

ount the

asymptoti
 dis
repan
y between ψ̂ML(x1:n, ψ
(0)) and ψ̂VT(x1:n, ψ

(0)) in order

to in
rease 
omputational and statisti
al e�
ien
ies of estimation of ψ for n
large. Thus or otherwise, an important question is how to �nd the asymp-

toti
 properties of Viterbi alignments, given that (n+1)th observation 
an in

prin
iple 
hange the previous alignment entirely, i.e. v(x1:n+1)i 6= v(x1:n)i,

2



1 ≤ i ≤ n? Do the Viterbi alignments then admit well-de�ned extensions?

We answer this question positively in (Lember and Koloydenko, 2008) for

general HMMs (in parti
ular, allowing more than two hidden states) by 
on-

stru
ting proper in�nite Viterbi alignments. Generalizing and 
larifying re-

lated results of (Caliebe, 2006, Caliebe and Rösler, 2002), the approa
h in

(Lember and Koloydenko, 2008) is to extend alignments pie
ewise, separat-

ing individual pie
es by nodes (see �2 below). Although the 
onstru
tion is

natural, a detailed formal proof of its 
orre
tness for general HMMs is rather

long and requires 
ertain mild te
hni
al assumptions. This paper, on the

other hand, shows that in the spe
ial 
ase of two state HMMs, the existen
e

of in�nite Viterbi alignments needs no spe
ial assumptions and 
an be proven


onsiderably more easily. The results of this paper essentially 
omplete and

generalize those of (Caliebe, 2006, Caliebe and Rösler, 2002).

2 Preliminaries

Let λ be a suitable σ-�nite referen
e measure on R
d
so that Pa and Pb have

densities with respe
t to λ. For example, λ 
an be a Lebesgue measure, or,

as in the 
ase of dis
rete observations, a 
ounting measure. Thus, let fa and

fb be the densities of Pa and Pb, respe
tively. Throughout the rest of the

paper, we assume that Pa 6= Pb or, equivalently,

λ{x ∈ X : fa(x) 6= fb(x)} > 0. (1)

Assumption (1) is natural sin
e there would be no need to model the observa-

tion pro
ess by an HMM should the emission distributions 
oin
ide. Note also

that unlike in the general 
ase, the positivity of the transition probabilities is

also a natural assumption for the two state HMMs. No more assumption on

the HMM is made in this paper. In parti
ular, unlike (Caliebe, 2006, Caliebe

and Rösler, 2002), we do not assume the square integrability of log(fa/fb),
or equality of the supports of Pa and Pb. However, the latter 
ondition is

not very restri
tive, sin
e for the two state HMMs with unequal supports

the existen
e of in�nite Viterbi alignments follows rather trivially (Corollary

2.1).

Thus, for any n ≥ 1 and any x1:n ∈ Xn
and y1:n ∈ Sn

, the likelihood

Λπ(y1:n;x1:n) is given by

P(Y1:n = y1:n)

n
∏

i=1

fyi
(xi), where P(Y1:n = y1:n) = πy1

n
∏

i=2

pyi−1yi
.

Sin
e estimation of ψ is not a goal of this paper, the dependen
e on ψ is

suppressed. De
omposition (2) and re
ursion (3) below provide a basis for the

Viterbi algorithm to 
ompute alignments. Namely, for all u ∈ {1, 2, . . . , n−1},

max
y1:n∈Sn

Λπ(y1:n;x1:n) = max
l∈S

[

δu(l)× max
yu+1:n∈Sn−u

Λ(pl·)(yu+1:n;xu+1:n)

]

, (2)
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where (pl·) is the transition distribution given state l ∈ S, and the s
ores

δu(l) := max
y1:u−1∈Su−1

Λ((y1:u−1, l);x1:u), l = a, b,

are de�ned for all u ≥ 1, and x1:u ∈ X u
. Thus, δu(l) is the maximum of the

likelihood of the paths terminating at u in state l. Note that δ1(l) = πlfl(x1)
and δu(l) depends on x1:u.

δu+1(a) = max{δu(a)paa, δu(b)pba}fa(xu+1), (3)

δu+1(b) = max{δu(a)pab, δu(b)pbb}fb(xu+1), u ≥ 1,

Example 2.1 Let X1, X2, . . . be i.i.d. following a mixture distribution πaPa+
πbPb with density πafa(x; θa) + πbfb(x; θb) and mixing weights πa, πb > 0.
Su
h a sequen
e is an HMM with the transition probabilities πa = paa = pba,
πb = pbb = pab. In this spe
ial 
ase the alignment is easy to exhibit. Indeed,

in this 
ase re
ursion (3) writes for any u ≥ 1 as

δu+1(a) = cπafa(xu+1), δu+1(b) = cπbfb(xu+1), (4)

where c = max{δu(a), δu(b)}. Hen
e, the alignment v(x1:n) 
an be obtained

pointwise as follows:

v(x1:n) = (v(x1), . . . , v(xn)),where v(x) = argmax{πafa(x), πbfb(x)}.

Equivalently (ignoring possible ties), using a generalized Voronoi partition

X = Xa ∪ Xb with

Xa = {x ∈ X : πafa(x) ≥ πbfb(x)}, Xb = {x ∈ X : πbfb(x) > πafa(x)},

v(x) = a if and only if x ∈ Xa, and otherwise (i.e. x ∈ Xb) v(x) = b.

Generally, it follows from (3) that, if

δu(a)paa > δu(b)pba, δu(a)pab > δu(b)pbb, (5)

for some u, 1 ≤ u, and some x1:u ∈ X u
, then for any n > u and for any

extension xu+1:n ∈ Xn−u
, the Viterbi alignment goes through state a at time

u. Namely, trun
ation v(x1:n)1:u 
oin
ides with the Viterbi alignment v(x1:u)
(indeed, (5) implies δu(a) > δu(b)). Thus, under 
ondition (5), maximization

of Λπ((y1:n, l);x1:n) 
an be reset at time u by 
learing x1:u from the memory,

retaining v1:u, and repla
ing the initial distribution π by (pa·) for further

maximization of Λ(pa·
)(yu+1:n;xu+1:n). Following (Lember and Koloydenko,

2008), if 
ondition (5) holds, then xu is 
alled a strong a-node (of realization
x1:n, n > u), where `strong' refers to the inequalities in (5) being stri
t.

Suppose x1:∞ 
ontains in�nitely many strong a-nodes at times u1 < u2 <
. . .. Let v1 = v(x1:u1

), and let vk maximize Λ(pa·
)(yuk−1+1:uk

;xuk−1+1:uk
), for
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all k ≥ 2. Then, 
on
atenation (v1, v2, v3, . . .) is naturally 
alled the in�nite

pie
ewise Viterbi alignment (Lember and Koloydenko, 2008). Apparently,

the almost sure existen
e of our in�nite alignments dire
tly dependends on

the existen
e of in�nitely many (strong) nodes. At the same time, whether

or not xu is a node depends on x1:u and hen
e is di�
ult to verify dire
tly.

Fortunately, in many 
ases xu is guaranteed to be a node based on several

pre
eding observations xu−m:u, 1 ≤ m < u, ignoring the rest. Spe
i�
ally,

suppose for example that x ∈ X is su
h that

piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S. (6)

It is easy to 
he
k that for any u ≥ 2, xu = x is a strong a-node for any

x1:u−1. Hen
e, if x1:∞ 
ontains in�nitely many observations satisfying (6),

then x1:∞ also 
ontains in�nitely many strong nodes. This previous 
ondition

in its turn is met provided

λ ({x ∈ X : piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S}) > 0. (7)

Indeed, sin
e our underlying Markov 
hain Y is ergodi
, it is rather easy to

see that X is ergodi
 as well (Ephraim and Merhav, 2002, Genon-Catalot

et al., 2000, Leroux, 1992). Also, (7) implies that

Pa ({x ∈ X : piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S}) > 0.

Thus, it follows from ergodi
ity of X that almost every realization of X
has in�nitely many elements satisfying (6) and, hen
e in�nitely many strong

nodes. We have thus proved the following Lemma.

Lemma 2.1 Assume that (7) holds. Then almost every sequen
e of obser-

vations x1:∞ has in�nitely many strong a-nodes.

(Clearly, inter
hanging a and b gives the same results in terms of b-nodes.)
Lemma 2.1 is essentially Theorem 1 in (Caliebe and Rösler, 2002) (disre-

garding a misprint in the statement). Condition (7) holds for many two-state

HMMs in
luding the so-
alled additive Gaussian noise model (Caliebe, 2006),

where the emission distributions are Gaussian. Another trivial example is the

model with unequal supports of Pa and Pb. Indeed, in that 
ase (7) holds

(at least up to swapping a and b). Hen
e, the following Corollary.

Corollary 2.1 If the supports of Pa and Pb are not equal, then almost every

sequen
e of observations has in�nitely many strong nodes.

The goal of this work is essentially to remove 
ondition (7) from Lemma 2.1.

To this end, following (Lember and Koloydenko, 2008), we 
all an ob-

servation satisfying (6) an a-barrier of length 1. More generally, a blo
k of

observations z1:k ∈ X k
is 
alled a (strong) barrier of length k ≥ 1 if for

every m ≥ 0 and x1:m ∈ Xm
, z1:k 
ontains a (strong) node of realization

5



(x1:m, z1:k). In (Lember and Koloydenko, 2008), we prove the existen
e of

in�nitely many barriers for a very general 
lass of HMMs. For the two-state

HMMs, the 
onditions of our result in (Lember and Koloydenko, 2008) are

given by (8) and (9) below.

Pa ({x ∈ X : fa(x)max{paa, pba} > fb(x)max{pbb, pab}}) > 0 and (8)

Pb ({x ∈ X : fb(x)max{pbb, pab} > fa(x)max{paa, pba}}) > 0. (9)

To a
hieve our goal, we will �rst prove the same result for the two-state HMM

under the relaxed assumption that (8) or (9) holds. As we shall see below

(Lemma 3.1), in our two-state HMM one of these 
onditions is automati
ally

satis�ed and, moreover, all barriers are strong. Hen
e, o

urren
e of in�nitely

many strong barriers in this 
ase will be shown (Theorem 4.1) to require no

additional assumptions.

Finally, if a node is not strong and v(x1:n) is not unique, an alignment

might exist that does not go through this node. Su
h type of pathologies


ause te
hni
al in
onvenien
es in de�ning an in�nite Viterbi alignment and

are treated in (Lember and Koloydenko, 2008). Fortunately, unlike in the

general 
ase, in the 
ase of two-state HMMs almost every realization has in-

�nitely many strong nodes (Theorem 4.1). This allows for a simple resolution

of the non-uniqueness in the 
ase of two-state HMMs.

3 Main results

3.1 Three types of the two-state HMM

The following three 
ases exhaust all the possibilities:

1. paa > pba (⇔ pbb > pab);

2. paa < pba (⇔ pbb < pab);

3. paa = pba (⇔ pbb = pab).

From the de�nition of nodes, it follows that xu is not a node only in one of

the following two 
ases:

(A)

{

δu(a)paa > δu(b)pba
δu(b)pbb > δu(a)pab

or (B)

{

δu(b)pba > δu(a)paa
δu(a)pab > δu(b)pbb

Case (A) is equivalent to

pbb
pab

>
δu(a)

δu(b)
>
pba
paa

(10)

and 
ase (B) is equivalent to

pbb
pab

<
δu(a)

δu(b)
<
pba
paa

. (11)

6



Thus, in 
ase (A), we have δu+1(a) = δu(a)paafa(xu+1) and δu+1(b) =
δu(b)pbbfb(xu+1), so that for any n > u, the Viterbi alignment v(x1:n) must
satisfy v(x1:n)u = v(x1:n)u+1. Similarly, in 
ase (B) δu+1(a) = δu(b)pbafa(xu+1)
and δu+1(b) = δu(a)pabfb(xu+1), i.e. v(x1:n)u 6= v(x1:n)u+1. Evidently, 
ase

1 and 
ase (B) are mutually ex
lusive, and so are 
ase 2 and 
ase (A). There-

fore, if the transition matrix satis�es the 
onditions of 
ase 1, then xu is not

a node if and only if 
onditions (A) are ful�lled. This implies that in 
ase 1,

nodes are the only possibility for v(x1:n) to 
hange state. On the other hand,

if the transition matrix satis�es the 
onditions of 
ase 2, then xu is not a

node if and only if (B) holds. Hen
e, in 
ase 2 nodes are the only possibility

for v(x1:n) to remain in one state. Case 3 
orresponds to the mixture model

(see Example 2.1 above). Apparently (4), every observation is a node in this


ase (see also Figure 1 below).

Let us now examine 
onditions (8) and (9). From equation (1), it follows

that

λ ({x ∈ X : fa(x) > fb(x)}) > 0, λ ({x ∈ X : fa(x) < fb(x)}) > 0 (12)

and, for any α > β > 0,

λ ({x ∈ X : αfa(x) > βfb(x)}) > 0 ⇔ Pa ({x ∈ X : αfa(x) > βfb(x)}) > 0 (13)

λ ({x ∈ X : αfb(x) > βfb(x)}) > 0 ⇔ Pb ({x ∈ X : αfb(y) > βfb(y)}) > 0. (14)

Therefore, we have the following Lemma.

Lemma 3.1 Any two state HMM satis�es at least one of the 
ondtions (8)

and (9).

Proof. In 
ase 1, (8) and (9) are equivalent to

Pa ({x ∈ X : fa(x)paa > fb(x)pbb}) = Pa

({

x ∈ X :
fb(x)pbb
fa(x)paa

< 1

})

> 0 (15)

Pb ({x ∈ X : fb(x)pbb > fa(x)paa}) = Pb

({

x ∈ X :
fa(x)paa
fb(x)pbb

< 1

})

> 0, (16)

respe
tively. If paa = pbb, then (12) implies that both (15) and (16) are

satis�ed, and hen
e both (8) and (9) hold. If paa > pbb, then (15), and

subsequently (8), follow from (13). If paa < pbb, then (16), and subsequently

(9), follow from (14). Hen
e, at least one of the assumptions (8), (9) is always

guaranteed to hold.

In 
ase 2, (8) and (9) are equivalent to

Pa ({x ∈ X : fa(x)pba > fb(x)pab)} = Pa

({

x ∈ X :
fb(x)pab
fa(x)pba

< 1

})

> 0 (17)

Pb ({x ∈ X : fb(x)pab > fa(x)pba)} = Pb

({

x ∈ X :
fa(x)pba
fb(x)pab

< 1

})

> 0, (18)

7



respe
tively. Again, if paa = pbb, then (17) and (18) both hold without further
assumptions. If paa > pbb, then (17) is automati
ally satis�ed. Likewise, (18)

holds if paa < pbb. Hen
e, one of the assumptions (8), (9) is always guaranteed

to hold.

In 
ase 3, (8) and (9) write

Pa ({x ∈ X : fa(x)πa > fb(x)πb}) > 0, (19)

Pb ({x ∈ X : fb(x)πb > fa(x)πa}) > 0. (20)

Assume πa ≥ πb. Then, (12) implies λ ({x ∈ X : πafa(x) > πbfb(x)}) > 0,
whi
h in turn implies (19).

Finally, we state and prove the main results for ea
h of the three 
ases.

❡ ❡ ❡ ❡

❡

❡ ❡

❡ ❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡

❡ ❡

❡

❡

❡

❡

❡

❡

❡ ❡

❡

❡ ❡

❡❡ ❡

❡ ❡

❡

❡❦

❦ ❦

❦

❦

❦

❦

❦ ❦ ❦

❦

❦

❦

❦❦

�
�
�

�
�
� ❅

❅
❅ �

�
� ❅

❅
❅ �

�
� ❅

❅
❅ �

�
�

�
�
� ❅

❅
❅

❅
❅
❅ �

�
� ❅

❅
❅�

�
�

b

a

b

a

a

b

Figure 1: Distin
t patterns of the Viterbi alignment in the two-state HMM:

Top: Case 1, state 
an possibly 
hange only at nodes (larger 
ir
les). Middle:

Case 2, states always alternate, ex
ept possibly at nodes. Bottom: Case 3,

every observation is a node.
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3.2 Case 1

First, note that 
ondition (7) in this 
ase is equivalent to

λ ({x ∈ X : pbafa(x)pab > pbbfb(x)pbb}) > 0, (21)

As mentioned in �2, 
ondition (7) need not hold in general. Nonetheless, for

the two-state HMM, we have the following Lemma.

Lemma 3.2 In 
ase 1, almost every realization of the two-state HMM has

in�nitely many strong barriers.

Proof. Without loss of generality, assume paa ≥ pbb. Then (15) holds

implying that there exists ǫ > 0 su
h that

Pa(Xa) > 0, where Xa :=

{

x ∈ X :
fb(x)pbb
fa(x)paa

< 1− ǫ

}

.

Let integer k be su�
iently large for (1−ǫ)k < pabpba/(paapbb) to hold. Then
every sequen
e z1:k ∈ X k

a satis�es

k
∏

j=1

fb(zj)pbb
fa(zj)paa

< (1 − ǫ)k <
pabpba
paapbb

. (22)

Let u > k be arbitrary and let z0:k ∈ X k+1
a be the last k+1 observations in a

generi
 sequen
e x1:u ∈ X u−k−1 × X k+1
a . To shorten the notation, we write

dj(zi) for δu−k+i(j) for every i = 0, 1, . . . , k, j = a, b. Next, we show that

xu−k:u 
ontains at least one strong node, and 
onsequently, z0:k is a strong

barrier. Indeed, if none of the observations xu−k:u were a strong a-node then
we would have

db(zk) = db(z0)
k
∏

j=1

fb(zj)pbb.

Similarly, if none among the observations xu−k+1:u were a strong b-node, we
would have

δu(a) ≥ δu−k(b)pba(

k
∏

j=1

fa(zj))p
k−1
aa .

Hen
e,

δu(b)

δu(a)
≤
δu−k(b)pbb(

∏k

j=1 fb(zj))p
k−1
bb

δu−k(b)pba(
∏k

j=1 fa(zj))p
k−1
aa

=

∏k

j=1(fb(zj)pbb)
∏k

j=1(fa(zj)paa)

paa
pba

and by (22)

δu(b)

δu(a)
<
pab
pbb

9



that 
ontradi
ts (10). Thus, at least one of xu−k:u must be a strong node.

Sin
e Pa(Xa) > 0, by ergodi
ity of HMM, almost every realization has in-

�nitely many barriers z0:k ∈ X k+1
a , implying also that every realization has

in�nitely many strong nodes.

The next Theorem re�nes the previous result.

Theorem 3.1 Suppose the (transition matrix of the) two-state HMM meets

the 
ondition of 
ase 1. If paa ≥ pbb, then almost every realization has in-

�nitely many strong a-barriers. (If paa ≤ pbb, then almost every realization

has in�nitely many strong b-barriers.)

Proof. Let paa ≥ pbb and use the notation of the proof of Lemma 3.2. First,

we show that none of the observations xk−u+1:u is a b-node. Indeed, sin
e

db(z1) = max{da(z0)pab, db(z0)pbb}fb(z1),

at least one of the following two inequalities must hold:

pabfb(z1)pba ≥ paafa(z1)paa, pbbfb(z1)pba ≥ pbafa(z1)paa (23)

in order for xu−k+1 to be a b-node. However, (15) implies that pbafa(z1)paa >
pbbfb(z1)pba and, sin
e pbb > pab, we have pbbfb(z1)pba > pabfb(z1)pba. Hen
e,
neither of the two inequalities (23) holds. Thus, xu−k+1 
annot be a b-
node, and the same argument shows that none of the subsequent observations

xu−k+2, . . . , xu 
an be a b-node either.
The argument of the proof of Lemma 3.2 then shows that one of the

observations in xu−k:u is a strong a-node and therefore z0:k is a strong a-
barrier. The ergodi
 argument �nishes the proof. (The same argument with

a and b swapped establishes the se
ond part of the Theorem.)

Note that the 
ondition pbb ≥ paa is su�
ient but not ne
essary for (16)

to hold. In fa
t, for many 2-state HMMs, su
h as the one with additive white

Gaussian noise, both (15) and (16) hold for any (positive) values of paa and

pbb. On the other hand, it might happen that one of the 
onditions (15) and

(16), say (16), fails. This would mean Pb ({x ∈ X : pbbfb(x) > paafa(x)}) = 0
or, equivalently,

λ ({x ∈ X : pbbfb(x) > paafa(x)}) = 0. (24)

Corollary 3.1 In 
ase 1, equation (24) implies that almost every sequen
e

of observations has in�nitely many strong a-barriers and no strong b-nodes.
Furthermore, equation (24) in 
ase 1 implies that for almost every realization,

if a b-node does o

ur, it o

urs before the �rst a-node.

Proof. From the proof of Theorem 3.1, it follows that no observation x ∈ X
su
h that pbbfb(x) ≤ paafa(x) (i.e. from the 
omplement of the set in (24))

10




an be a strong b-node; a 
loser inspe
tion of the proof a
tually shows that

even a weak (i.e. not strong) b-node 
annot o

ur after an a-node (sin
e in

ase 1 pbb > pba). Theorem 3.1 then implies that almost every sequen
e of

observations has in�nitely many strong a-barriers.
Corollary 3.1 in its turn implies that starting with the �rst strong a-

node onward, the Viterbi alignment v(x1:n) stays in state a. As we have

already mentioned, Viterbi alignments need not be unique (see (Lember and

Koloydenko, 2008)), i.e. ties are possible in general, and in this 
ase, in

parti
ular, they are possible up until the �rst strong a-node. However, the

impossibility of strong b-nodes in this 
ase implies that the ties 
an be broken

in favor of a, resulting in the 
onstant all a alignment.

Theorem 3.1 is a generalization of Theorem 7 in (Caliebe, 2006), whi
h

basi
ally states that in 
ase 1, if (15) and (16) hold then under some additional

assumptions (equal supports of Pa and Pb and further 
onditions A2), almost

every realization has in�nitely many nodes. Thus, (Caliebe, 2006) stops short

of realizing that in 
ase 1 
onditions (15) and (16) alone ensure the existen
e

of a− and b-nodes. This results in (Caliebe, 2006) invoking Theorem 2 of

(Caliebe and Rösler, 2002) to prove the existen
e of nodes, hen
e super�uous

assumptions A1, A2. Also the proof of Theorem 7 in (Caliebe and Rösler,

2002) 
ould be simpli�ed and shortened with the help of the notions of nodes

and barriers. Finally, Corollary 3.1 generalizes Theorems 8 and 9 of (Caliebe,

2006).

3.3 Case 2

Re
all that we have been proving the existen
e of barriers without 
ondition

(7). Note that in 
ase 2, 
ondition (7) be
omes

λ ({x ∈ X : paafa(x)paa > pabfb(x)pba}) > 0.

Re
all (�2) also that inter
hanging a with b gives a similar 
ondition for

strong b-nodes to o

ur in�nitely often in almost every realization.

It follows from (12) that for some ǫ > 0, the sets

Xa := {x ∈ X : fa(x)(1− ǫ) > fb(x)}, Xb := {x ∈ X : fa(x) < fb(x)(1− ǫ)}

both have positive λ-measure. Hen
e Pa(Xa) > 0 and Pb(Xb) > 0. Then, for
x1:2 ∈ Xa ×Xb, the following holds:

fb(x1)fa(x2)

fa(x1)fb(x2)
< (1− ǫ)2. (25)

Lemma 3.3 In 
ase 2, almost every realization has in�nitely many strong

barriers.

11



Proof. Let Xa and Xb be as above. Choose k su�
iently large for

(1 − ǫ)2k <
paapbb
pbapab

to hold. Next, 
onsider a sequen
e z0:2k ∈ X 2k+1
, where z0, z2i ∈ Xa, z2i−1 ∈

Xb, for every i = 1, . . . , k. We show that for every u > 2k, every sequen
e

of observations x1:u ∈ X u
su
h that xu−2k:u = z0:2k, 
ontains a strong node,

making z0:2k a strong barrier.

The 
hoi
e of k and z0:2k implies

∏k

i=1 pbafa(z2i−1)pabfb(z2i)
∏k

i=1 pabfb(z2i−1)pbafa(z2i)
< (1− ǫ)2k <

pbbpaa
pbapab

. (26)

If there is no strong node among xu−2k:u, then

db(z2k) = db(z0)

k
∏

i=1

pbafa(z2i−1)pabfb(z2i)

and

da(z2k) ≥ db(z0)
pbb
pab

k
∏

i=1

pabfb(z2i−1)pbafa(z2i).

Hen
e, by (26)

db(z2k)

da(z2k)
≤

∏k

i=1 pbafa(z2i−1)pabfb(z2i)
pbb

pab

∏k

i=1 pabfb(z2i−1)pbafa(z2i)
<
paa
pba

whi
h 
ontradi
ts (11).

Next, we re�ne this result. Without loss of generality assume pba ≥ pab.
Therefore

pabpaa ≥ pbapbb, (27)

and also, for every x ∈ Xa,

pbafa(x) > pabfb(x). (28)

Hen
e, (17) holds. We multiply the right side of (28) by pbapbb and the left

side by pabpaa, and use (27) to obtain

fa(x)paa > fb(x)pbb. (29)

Finally, for x ∈ Xb, we have

fa(x) < fb(x). (30)

We will need the following Lemma.

12



Lemma 3.4 Assume (in addition to being in 
ase 2) that pab ≤ pba.

a) In any pair of observations z1:2 ∈ Xa ×Xb, z1 is not a b-node.

b) In any pair of observations z2:3 ∈ Xb ×Xa, if z2 is a b-node, then z3 is a

strong a-node.

Proof. Assume that pab ≤ pba, and 
onsider a). First note that sin
e we are
in 
ase 2, z1 is a b-node if and only if

db(z1)pbb ≥ da(z1)pab. (31)

Suppose �rst that z0 is not a node, in whi
h 
ase db(z1) = da(z0)pabfb(z1)
and da(z1) = db(z0)pbafa(z1). Then

da(z1)pab = db(z0)pbafa(z1)pab ≥ da(z0)paafa(z1)pab

> da(z0)pbbfb(z1)pab = da(z0)pabfb(z1)pbb = db(z1)pbb.

The �rst inequality above follows from the re
ursion property (3) of s
ores

δ, whereas the se
ond one follows from (29). Thus, when z0 is not a node,

z1 
annot be a b-node. Similarly, supposing that z0 is an a-node, we obtain
that z1 is not a b-node. Suppose �nally that z0 is a b-node. Then db(z1) =
db(z0)pbbfb(z1) and da(z1) = db(z0)pbafa(z1). Applying 
onse
utively pbb <
pab, (28) and pbb < pab again, we obtain: pbbfb(z1)pbb < pabfb(z1)pbb ≤
pbafa(z1)pbb < pbafa(z1)pab. Thus, 
ontrary to (31)

db(z1)pbb = db(z0)pbbfb(z1)pbb < db(z0)pbafa(z1)pab = da(z1)pab,

that is, z1 is not a b-node in this 
ase either. Let us now prove b). If z2
is a b-node, then da(z3) = db(z2)pbafa(z3) and db(z3) = db(z2)pbbfb(z3). By
(29), we now have da(z3)paa = db(z2)pbafa(z3)paa > db(z2)pbbfb(z3)pba =
db(z3)pba. Similarly to the argument regarding b-nodes guaranteed by (31)

above, we now have da(z3) > db(z3), implying da(z3)pab > db(z3)pbb. Thus

z3 is a strong a-node.

Theorem 3.2 If pba ≥ pab, then almost every realization has in�nitely many

strong a-nodes. If pba ≤ pab, then almost every realization has in�nitely many

strong b-nodes.

Proof. Assume again that pba ≥ pab. Let z0:2k be as in the proof of Lemma

3.3 and atta
h one more element z2k+1 ∈ Xb to the end. Thus, z2i ∈ Xa and

z2i+1 ∈ Xb, i = 0, 1, . . . , k.
From (the proof of) Lemma 3.3 we know that z0:2k 
ontains at least one

strong node. If this is an a-node, then the theorem is proven. Otherwise this

is a b-node, whi
h, a

ording to part a) of Lemma (3.4), 
an only be among

z1, z3, . . . , z2k−1. Applying part b) of Lemma (3.4) shows that there must

also be a strong a-node z2, z4, . . . , z2k. Invoking ergodi
ity again �nishes

the proof.
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Clearly, swapping a and b in the above dis
ussion following the proof of

Lemma 3.3, establishes the other part of the theorem.

Inequality (27) guarantees (17). Often, the model is su
h that in ad-

dition to (17), (18) also holds. However, to apply the previous proof (i.e.

of Theorem 3.2) to guarantee the simultaneous existen
e of in�nitely many

strong a and b-nodes, we would need the following 
ounterpart of (29):

Pb({x ∈ X : fb(x)pab > fa(x)pba, fb(x)pbb > fa(x)paa}) > 0, whi
h is

stronger than (18). However, this previous 
ondition is indeed often met,

resulting in in�nitely many strong a- and b-nodes (in almost every realiza-

tion x1:∞).

Lemma 3.3 appears without proof as Theorem 10 in (Caliebe, 2006). The

author of (Caliebe, 2006) a
tually suggests that Theorem 10 and other re-

sults for 
ase 2 are analogous to the 
orresponding results for 
ase 1, mainly

Theorem 7 (of the same work). It is further stated in (Caliebe, 2006) that

the proofs of those results are not given as they �are very similar� to the 
or-

responding proofs in 
ase 1. Our present workings a
tually show that 
ase

2 is quite dissimilar to 
ase 1 (due to the �u
tuating nature of the typi
al

Viterbi alignment) and in parti
ular requires a more 
areful treatment. Note

that, even if Theorem 10 in (Caliebe, 2006) assumed (8) and (9) (as Theorem

7 in (Caliebe, 2006) does) to help one to prove this Theorem by analogy to

Theorem 7, it is still not 
lear how the two proofs 
ould be very similar.

3.3.1 Case 3 (the mixture model)

Re
all that every observation in this 
ase is a (not ne
essarily strong) node.

Furthermore, every observation from {x ∈ X : πafa(x) > πbfb(x)} is a strong
a node. Thus, we have the following 
ounterpart of Theorems 3.1 and 3.2.

Theorem 3.3 If πa ≥ πb, then almost every realization has in�nitely many

strong a-nodes. If πa ≤ πb, then almost every realization has in�nitely many

strong b-nodes.

4 Con
lusion

In summary, we have proved Theorem 4.1 stated below and providing a basis

for the pie
ewise 
onstru
tion and asymptoti
 analysis of the Viterbi align-

ments of two-state HMMs.

Theorem 4.1 Almost every realization of the two-state HMM has in�nitely

many strong barriers. Furthermore

a) if the transition probabilities satisfy paa ≥ pba then (almost every realiza-

tion of) the 
hain has in�nitely many strong s-barriers where s is su
h

that pss = max{paa, pbb},
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b) otherwise (i.e. if paa < pba) (almost every realization of) the 
hain has

in�nitely many strong s-barriers where s is su
h that pts = max{pab, pba}
(for some t ∈ S).
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