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Abstrat

Sine the early days of digital ommuniation, Hidden MarkovModels (HMMs)

have now been routinely used in speeh reognition, proessing of natural

languages, images, and in bioinformatis. An HMM (Xi, Yi)i≥1 assumes ob-

servations X1, X2, . . . to be onditionally independent given an �explanotary�

Markov proess Y1, Y2, . . ., whih itself is not observed; moreover, the on-

ditional distribution of Xi depends solely on Yi. Central to the theory and

appliations of HMM is the Viterbi algorithm to �nd a maximum a poste-

riori estimate q1:n = (q1, q2, . . . , qn) of Y1:n given the observed data x1:n.
Maximum a posteriori paths are also alled Viterbi paths or alignments. Re-

ently, attempts have been made to study the behavior of Viterbi alignments

of HMMs with two hidden states when n tends to in�nity. It has indeed

been shown that in some speial ases a well-de�ned limiting Viterbi align-

ment exists. While innovative, these attempts have relied on rather strong

assumptions. This work proves the existene of in�nite Viterbi alignments

for virtually any HMM with two hidden states.
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1 Introdution

We onsider hidden Markov models (HMM) (Y,X) with two hidden states.

Namely, Y represents the hidden proess Y1, Y2, . . . , whih is an irreduible

aperiodi Markov hain with state spae S = {a, b}. In partiular, the transi-

tion probabilities P = (plm), l,m ∈ S, are positive and the stationary distri-

bution π = πP is unique. For tehnial onveniene, Y1 is assumed to follow

π, however, the results of the paper hold for arbitrary initial distributions. To
every state l ∈ S there orresponds an emission distribution Pl on X = R

d
.
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Given a realization y1:∞ ∈ S∞
of Y , the observations X1:∞ := X1, X2, . . .

are generated as follows. If Yi = a (resp. Yi = b), then Xi is distributed

aording to Pa (resp. Pb) and independently of everything else. We refer to

this model as the (general) 2-state HMM.

In (Cappé et al., 2005), HMMs are alled `one of the most suessful sta-

tistial modelling ideas that have [emerged℄ in the last forty years'. Sine

their lassial appliation to digital ommuniation in 1960s (see further

referenes in (Cappé et al., 2005)), HMMs have had a de�ning impat on

the mainstream researh in speeh reognition (Huang et al., 1990, Jelinek,

1976, 2001, MDermott and Hazen, 2004, Ney et al., 1994, Padmanabhan and

Piheny, 2002, Rabiner and Juang, 1993, Rabiner et al., 1986, Shu et al., 2003,

Steinbiss et al., 1995, Ström et al., 1999), natural language models (Ji and

Bilmes, 2006, Oh and Ney, 2000), and more reently omputational biology

(Durbin et al., 1998, Eddy, 2004, Krogh, 1998, Lomsadze et al., 2005). Thus,

for example, DNA regions an be labeled as a, `oding', or b, `non-oding',
with Pa and Pb representing the respetive distributions on the {A,C,G, T }
alphabet.

Given observations x1:n := x1, . . . , xn, and treating the hidden states

y1:n := y1, . . . , yn as parameters, inferene in HMMs typially involves v(x1:n),
a maximum a posteriori (MAP) estimate of Y1:n. It has now been reognized

that `[in℄ spite of the theoretial and pratial importane of the MAP path

estimator, very little is known about its properties' (Caliebe, 2006). The

same estimates are also known as Viterbi, or fored alignments and an be

e�iently omputed by a dynami programming algorithm also bearing the

name of Viterbi. When substituted for true y1:n in the likelihood funtion

Λ(y1:n;x1:n, ψ), Viterbi alignments an also be used to estimate ψ, any un-

known free parameters of the model. Starting with an initial guess ψ(0)
and

alternating between maximization of the likelihood Λ(y1:n;x1:n, ψ) in y1:n
and ψ is at the ore of Viterbi training (VT), or extration (Jelinek, 1976),

also known as segmental K-means (Ephraim and Merhav, 2002, Juang and

Rabiner, 1990). Resulting estimates ψ̂VT(x1:n, ψ
(0)) are known to be di�er-

ent from the maximum likelihood (ML) estimates ψ̂ML(x1:n, ψ
(0)) whih in

this ase are most ommonly delivered by the EM proedure (Baum and

Petrie, 1966, Bilmes, 1998, Ephraim and Merhav, 2002). Even if ψ were

known, Viterbi alignments v(x1:n;ψ) would typially di�er from true paths

y1:n, and the long-run properties of v(x1:n;ψ) are not obvious (Caliebe, 2006,
Caliebe and Rösler, 2002, Koloydenko et al., 2007, Lember and Koloydenko,

2007, 2008). Furthermore, (Koloydenko et al., 2007, Lember and Koloydenko,

2007, 2008) propose a hybrid of VT and EM whih takes into aount the

asymptoti disrepany between ψ̂ML(x1:n, ψ
(0)) and ψ̂VT(x1:n, ψ

(0)) in order

to inrease omputational and statistial e�ienies of estimation of ψ for n
large. Thus or otherwise, an important question is how to �nd the asymp-

toti properties of Viterbi alignments, given that (n+1)th observation an in

priniple hange the previous alignment entirely, i.e. v(x1:n+1)i 6= v(x1:n)i,
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1 ≤ i ≤ n? Do the Viterbi alignments then admit well-de�ned extensions?

We answer this question positively in (Lember and Koloydenko, 2008) for

general HMMs (in partiular, allowing more than two hidden states) by on-

struting proper in�nite Viterbi alignments. Generalizing and larifying re-

lated results of (Caliebe, 2006, Caliebe and Rösler, 2002), the approah in

(Lember and Koloydenko, 2008) is to extend alignments pieewise, separat-

ing individual piees by nodes (see �2 below). Although the onstrution is

natural, a detailed formal proof of its orretness for general HMMs is rather

long and requires ertain mild tehnial assumptions. This paper, on the

other hand, shows that in the speial ase of two state HMMs, the existene

of in�nite Viterbi alignments needs no speial assumptions and an be proven

onsiderably more easily. The results of this paper essentially omplete and

generalize those of (Caliebe, 2006, Caliebe and Rösler, 2002).

2 Preliminaries

Let λ be a suitable σ-�nite referene measure on R
d
so that Pa and Pb have

densities with respet to λ. For example, λ an be a Lebesgue measure, or,

as in the ase of disrete observations, a ounting measure. Thus, let fa and

fb be the densities of Pa and Pb, respetively. Throughout the rest of the

paper, we assume that Pa 6= Pb or, equivalently,

λ{x ∈ X : fa(x) 6= fb(x)} > 0. (1)

Assumption (1) is natural sine there would be no need to model the observa-

tion proess by an HMM should the emission distributions oinide. Note also

that unlike in the general ase, the positivity of the transition probabilities is

also a natural assumption for the two state HMMs. No more assumption on

the HMM is made in this paper. In partiular, unlike (Caliebe, 2006, Caliebe

and Rösler, 2002), we do not assume the square integrability of log(fa/fb),
or equality of the supports of Pa and Pb. However, the latter ondition is

not very restritive, sine for the two state HMMs with unequal supports

the existene of in�nite Viterbi alignments follows rather trivially (Corollary

2.1).

Thus, for any n ≥ 1 and any x1:n ∈ Xn
and y1:n ∈ Sn

, the likelihood

Λπ(y1:n;x1:n) is given by

P(Y1:n = y1:n)

n
∏

i=1

fyi
(xi), where P(Y1:n = y1:n) = πy1

n
∏

i=2

pyi−1yi
.

Sine estimation of ψ is not a goal of this paper, the dependene on ψ is

suppressed. Deomposition (2) and reursion (3) below provide a basis for the

Viterbi algorithm to ompute alignments. Namely, for all u ∈ {1, 2, . . . , n−1},

max
y1:n∈Sn

Λπ(y1:n;x1:n) = max
l∈S

[

δu(l)× max
yu+1:n∈Sn−u

Λ(pl·)(yu+1:n;xu+1:n)

]

, (2)
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where (pl·) is the transition distribution given state l ∈ S, and the sores

δu(l) := max
y1:u−1∈Su−1

Λ((y1:u−1, l);x1:u), l = a, b,

are de�ned for all u ≥ 1, and x1:u ∈ X u
. Thus, δu(l) is the maximum of the

likelihood of the paths terminating at u in state l. Note that δ1(l) = πlfl(x1)
and δu(l) depends on x1:u.

δu+1(a) = max{δu(a)paa, δu(b)pba}fa(xu+1), (3)

δu+1(b) = max{δu(a)pab, δu(b)pbb}fb(xu+1), u ≥ 1,

Example 2.1 Let X1, X2, . . . be i.i.d. following a mixture distribution πaPa+
πbPb with density πafa(x; θa) + πbfb(x; θb) and mixing weights πa, πb > 0.
Suh a sequene is an HMM with the transition probabilities πa = paa = pba,
πb = pbb = pab. In this speial ase the alignment is easy to exhibit. Indeed,

in this ase reursion (3) writes for any u ≥ 1 as

δu+1(a) = cπafa(xu+1), δu+1(b) = cπbfb(xu+1), (4)

where c = max{δu(a), δu(b)}. Hene, the alignment v(x1:n) an be obtained

pointwise as follows:

v(x1:n) = (v(x1), . . . , v(xn)),where v(x) = argmax{πafa(x), πbfb(x)}.

Equivalently (ignoring possible ties), using a generalized Voronoi partition

X = Xa ∪ Xb with

Xa = {x ∈ X : πafa(x) ≥ πbfb(x)}, Xb = {x ∈ X : πbfb(x) > πafa(x)},

v(x) = a if and only if x ∈ Xa, and otherwise (i.e. x ∈ Xb) v(x) = b.

Generally, it follows from (3) that, if

δu(a)paa > δu(b)pba, δu(a)pab > δu(b)pbb, (5)

for some u, 1 ≤ u, and some x1:u ∈ X u
, then for any n > u and for any

extension xu+1:n ∈ Xn−u
, the Viterbi alignment goes through state a at time

u. Namely, trunation v(x1:n)1:u oinides with the Viterbi alignment v(x1:u)
(indeed, (5) implies δu(a) > δu(b)). Thus, under ondition (5), maximization

of Λπ((y1:n, l);x1:n) an be reset at time u by learing x1:u from the memory,

retaining v1:u, and replaing the initial distribution π by (pa·) for further

maximization of Λ(pa·
)(yu+1:n;xu+1:n). Following (Lember and Koloydenko,

2008), if ondition (5) holds, then xu is alled a strong a-node (of realization
x1:n, n > u), where `strong' refers to the inequalities in (5) being strit.

Suppose x1:∞ ontains in�nitely many strong a-nodes at times u1 < u2 <
. . .. Let v1 = v(x1:u1

), and let vk maximize Λ(pa·
)(yuk−1+1:uk

;xuk−1+1:uk
), for
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all k ≥ 2. Then, onatenation (v1, v2, v3, . . .) is naturally alled the in�nite

pieewise Viterbi alignment (Lember and Koloydenko, 2008). Apparently,

the almost sure existene of our in�nite alignments diretly dependends on

the existene of in�nitely many (strong) nodes. At the same time, whether

or not xu is a node depends on x1:u and hene is di�ult to verify diretly.

Fortunately, in many ases xu is guaranteed to be a node based on several

preeding observations xu−m:u, 1 ≤ m < u, ignoring the rest. Spei�ally,

suppose for example that x ∈ X is suh that

piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S. (6)

It is easy to hek that for any u ≥ 2, xu = x is a strong a-node for any

x1:u−1. Hene, if x1:∞ ontains in�nitely many observations satisfying (6),

then x1:∞ also ontains in�nitely many strong nodes. This previous ondition

in its turn is met provided

λ ({x ∈ X : piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S}) > 0. (7)

Indeed, sine our underlying Markov hain Y is ergodi, it is rather easy to

see that X is ergodi as well (Ephraim and Merhav, 2002, Genon-Catalot

et al., 2000, Leroux, 1992). Also, (7) implies that

Pa ({x ∈ X : piafa(x)paj > pibfb(x)pbj , ∀i, j ∈ S}) > 0.

Thus, it follows from ergodiity of X that almost every realization of X
has in�nitely many elements satisfying (6) and, hene in�nitely many strong

nodes. We have thus proved the following Lemma.

Lemma 2.1 Assume that (7) holds. Then almost every sequene of obser-

vations x1:∞ has in�nitely many strong a-nodes.

(Clearly, interhanging a and b gives the same results in terms of b-nodes.)
Lemma 2.1 is essentially Theorem 1 in (Caliebe and Rösler, 2002) (disre-

garding a misprint in the statement). Condition (7) holds for many two-state

HMMs inluding the so-alled additive Gaussian noise model (Caliebe, 2006),

where the emission distributions are Gaussian. Another trivial example is the

model with unequal supports of Pa and Pb. Indeed, in that ase (7) holds

(at least up to swapping a and b). Hene, the following Corollary.

Corollary 2.1 If the supports of Pa and Pb are not equal, then almost every

sequene of observations has in�nitely many strong nodes.

The goal of this work is essentially to remove ondition (7) from Lemma 2.1.

To this end, following (Lember and Koloydenko, 2008), we all an ob-

servation satisfying (6) an a-barrier of length 1. More generally, a blok of

observations z1:k ∈ X k
is alled a (strong) barrier of length k ≥ 1 if for

every m ≥ 0 and x1:m ∈ Xm
, z1:k ontains a (strong) node of realization
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(x1:m, z1:k). In (Lember and Koloydenko, 2008), we prove the existene of

in�nitely many barriers for a very general lass of HMMs. For the two-state

HMMs, the onditions of our result in (Lember and Koloydenko, 2008) are

given by (8) and (9) below.

Pa ({x ∈ X : fa(x)max{paa, pba} > fb(x)max{pbb, pab}}) > 0 and (8)

Pb ({x ∈ X : fb(x)max{pbb, pab} > fa(x)max{paa, pba}}) > 0. (9)

To ahieve our goal, we will �rst prove the same result for the two-state HMM

under the relaxed assumption that (8) or (9) holds. As we shall see below

(Lemma 3.1), in our two-state HMM one of these onditions is automatially

satis�ed and, moreover, all barriers are strong. Hene, ourrene of in�nitely

many strong barriers in this ase will be shown (Theorem 4.1) to require no

additional assumptions.

Finally, if a node is not strong and v(x1:n) is not unique, an alignment

might exist that does not go through this node. Suh type of pathologies

ause tehnial inonvenienes in de�ning an in�nite Viterbi alignment and

are treated in (Lember and Koloydenko, 2008). Fortunately, unlike in the

general ase, in the ase of two-state HMMs almost every realization has in-

�nitely many strong nodes (Theorem 4.1). This allows for a simple resolution

of the non-uniqueness in the ase of two-state HMMs.

3 Main results

3.1 Three types of the two-state HMM

The following three ases exhaust all the possibilities:

1. paa > pba (⇔ pbb > pab);

2. paa < pba (⇔ pbb < pab);

3. paa = pba (⇔ pbb = pab).

From the de�nition of nodes, it follows that xu is not a node only in one of

the following two ases:

(A)

{

δu(a)paa > δu(b)pba
δu(b)pbb > δu(a)pab

or (B)

{

δu(b)pba > δu(a)paa
δu(a)pab > δu(b)pbb

Case (A) is equivalent to

pbb
pab

>
δu(a)

δu(b)
>
pba
paa

(10)

and ase (B) is equivalent to

pbb
pab

<
δu(a)

δu(b)
<
pba
paa

. (11)

6



Thus, in ase (A), we have δu+1(a) = δu(a)paafa(xu+1) and δu+1(b) =
δu(b)pbbfb(xu+1), so that for any n > u, the Viterbi alignment v(x1:n) must
satisfy v(x1:n)u = v(x1:n)u+1. Similarly, in ase (B) δu+1(a) = δu(b)pbafa(xu+1)
and δu+1(b) = δu(a)pabfb(xu+1), i.e. v(x1:n)u 6= v(x1:n)u+1. Evidently, ase

1 and ase (B) are mutually exlusive, and so are ase 2 and ase (A). There-

fore, if the transition matrix satis�es the onditions of ase 1, then xu is not

a node if and only if onditions (A) are ful�lled. This implies that in ase 1,

nodes are the only possibility for v(x1:n) to hange state. On the other hand,

if the transition matrix satis�es the onditions of ase 2, then xu is not a

node if and only if (B) holds. Hene, in ase 2 nodes are the only possibility

for v(x1:n) to remain in one state. Case 3 orresponds to the mixture model

(see Example 2.1 above). Apparently (4), every observation is a node in this

ase (see also Figure 1 below).

Let us now examine onditions (8) and (9). From equation (1), it follows

that

λ ({x ∈ X : fa(x) > fb(x)}) > 0, λ ({x ∈ X : fa(x) < fb(x)}) > 0 (12)

and, for any α > β > 0,

λ ({x ∈ X : αfa(x) > βfb(x)}) > 0 ⇔ Pa ({x ∈ X : αfa(x) > βfb(x)}) > 0 (13)

λ ({x ∈ X : αfb(x) > βfb(x)}) > 0 ⇔ Pb ({x ∈ X : αfb(y) > βfb(y)}) > 0. (14)

Therefore, we have the following Lemma.

Lemma 3.1 Any two state HMM satis�es at least one of the ondtions (8)

and (9).

Proof. In ase 1, (8) and (9) are equivalent to

Pa ({x ∈ X : fa(x)paa > fb(x)pbb}) = Pa

({

x ∈ X :
fb(x)pbb
fa(x)paa

< 1

})

> 0 (15)

Pb ({x ∈ X : fb(x)pbb > fa(x)paa}) = Pb

({

x ∈ X :
fa(x)paa
fb(x)pbb

< 1

})

> 0, (16)

respetively. If paa = pbb, then (12) implies that both (15) and (16) are

satis�ed, and hene both (8) and (9) hold. If paa > pbb, then (15), and

subsequently (8), follow from (13). If paa < pbb, then (16), and subsequently

(9), follow from (14). Hene, at least one of the assumptions (8), (9) is always

guaranteed to hold.

In ase 2, (8) and (9) are equivalent to

Pa ({x ∈ X : fa(x)pba > fb(x)pab)} = Pa

({

x ∈ X :
fb(x)pab
fa(x)pba

< 1

})

> 0 (17)

Pb ({x ∈ X : fb(x)pab > fa(x)pba)} = Pb

({

x ∈ X :
fa(x)pba
fb(x)pab

< 1

})

> 0, (18)

7



respetively. Again, if paa = pbb, then (17) and (18) both hold without further
assumptions. If paa > pbb, then (17) is automatially satis�ed. Likewise, (18)

holds if paa < pbb. Hene, one of the assumptions (8), (9) is always guaranteed

to hold.

In ase 3, (8) and (9) write

Pa ({x ∈ X : fa(x)πa > fb(x)πb}) > 0, (19)

Pb ({x ∈ X : fb(x)πb > fa(x)πa}) > 0. (20)

Assume πa ≥ πb. Then, (12) implies λ ({x ∈ X : πafa(x) > πbfb(x)}) > 0,
whih in turn implies (19).

Finally, we state and prove the main results for eah of the three ases.

❡ ❡ ❡ ❡

❡

❡ ❡

❡ ❡

❡

❡

❡

❡

❡
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❡

❡

❡

❡

❡ ❡

❡

❡

❡

❡

❡

❡

❡ ❡

❡

❡ ❡
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❡ ❡

❡

❡❦

❦ ❦

❦

❦

❦

❦
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Figure 1: Distint patterns of the Viterbi alignment in the two-state HMM:

Top: Case 1, state an possibly hange only at nodes (larger irles). Middle:

Case 2, states always alternate, exept possibly at nodes. Bottom: Case 3,

every observation is a node.
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3.2 Case 1

First, note that ondition (7) in this ase is equivalent to

λ ({x ∈ X : pbafa(x)pab > pbbfb(x)pbb}) > 0, (21)

As mentioned in �2, ondition (7) need not hold in general. Nonetheless, for

the two-state HMM, we have the following Lemma.

Lemma 3.2 In ase 1, almost every realization of the two-state HMM has

in�nitely many strong barriers.

Proof. Without loss of generality, assume paa ≥ pbb. Then (15) holds

implying that there exists ǫ > 0 suh that

Pa(Xa) > 0, where Xa :=

{

x ∈ X :
fb(x)pbb
fa(x)paa

< 1− ǫ

}

.

Let integer k be su�iently large for (1−ǫ)k < pabpba/(paapbb) to hold. Then
every sequene z1:k ∈ X k

a satis�es

k
∏

j=1

fb(zj)pbb
fa(zj)paa

< (1 − ǫ)k <
pabpba
paapbb

. (22)

Let u > k be arbitrary and let z0:k ∈ X k+1
a be the last k+1 observations in a

generi sequene x1:u ∈ X u−k−1 × X k+1
a . To shorten the notation, we write

dj(zi) for δu−k+i(j) for every i = 0, 1, . . . , k, j = a, b. Next, we show that

xu−k:u ontains at least one strong node, and onsequently, z0:k is a strong

barrier. Indeed, if none of the observations xu−k:u were a strong a-node then
we would have

db(zk) = db(z0)
k
∏

j=1

fb(zj)pbb.

Similarly, if none among the observations xu−k+1:u were a strong b-node, we
would have

δu(a) ≥ δu−k(b)pba(

k
∏

j=1

fa(zj))p
k−1
aa .

Hene,

δu(b)

δu(a)
≤
δu−k(b)pbb(

∏k

j=1 fb(zj))p
k−1
bb

δu−k(b)pba(
∏k

j=1 fa(zj))p
k−1
aa

=

∏k

j=1(fb(zj)pbb)
∏k

j=1(fa(zj)paa)

paa
pba

and by (22)

δu(b)

δu(a)
<
pab
pbb

9



that ontradits (10). Thus, at least one of xu−k:u must be a strong node.

Sine Pa(Xa) > 0, by ergodiity of HMM, almost every realization has in-

�nitely many barriers z0:k ∈ X k+1
a , implying also that every realization has

in�nitely many strong nodes.

The next Theorem re�nes the previous result.

Theorem 3.1 Suppose the (transition matrix of the) two-state HMM meets

the ondition of ase 1. If paa ≥ pbb, then almost every realization has in-

�nitely many strong a-barriers. (If paa ≤ pbb, then almost every realization

has in�nitely many strong b-barriers.)

Proof. Let paa ≥ pbb and use the notation of the proof of Lemma 3.2. First,

we show that none of the observations xk−u+1:u is a b-node. Indeed, sine

db(z1) = max{da(z0)pab, db(z0)pbb}fb(z1),

at least one of the following two inequalities must hold:

pabfb(z1)pba ≥ paafa(z1)paa, pbbfb(z1)pba ≥ pbafa(z1)paa (23)

in order for xu−k+1 to be a b-node. However, (15) implies that pbafa(z1)paa >
pbbfb(z1)pba and, sine pbb > pab, we have pbbfb(z1)pba > pabfb(z1)pba. Hene,
neither of the two inequalities (23) holds. Thus, xu−k+1 annot be a b-
node, and the same argument shows that none of the subsequent observations

xu−k+2, . . . , xu an be a b-node either.
The argument of the proof of Lemma 3.2 then shows that one of the

observations in xu−k:u is a strong a-node and therefore z0:k is a strong a-
barrier. The ergodi argument �nishes the proof. (The same argument with

a and b swapped establishes the seond part of the Theorem.)

Note that the ondition pbb ≥ paa is su�ient but not neessary for (16)

to hold. In fat, for many 2-state HMMs, suh as the one with additive white

Gaussian noise, both (15) and (16) hold for any (positive) values of paa and

pbb. On the other hand, it might happen that one of the onditions (15) and

(16), say (16), fails. This would mean Pb ({x ∈ X : pbbfb(x) > paafa(x)}) = 0
or, equivalently,

λ ({x ∈ X : pbbfb(x) > paafa(x)}) = 0. (24)

Corollary 3.1 In ase 1, equation (24) implies that almost every sequene

of observations has in�nitely many strong a-barriers and no strong b-nodes.
Furthermore, equation (24) in ase 1 implies that for almost every realization,

if a b-node does our, it ours before the �rst a-node.

Proof. From the proof of Theorem 3.1, it follows that no observation x ∈ X
suh that pbbfb(x) ≤ paafa(x) (i.e. from the omplement of the set in (24))
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an be a strong b-node; a loser inspetion of the proof atually shows that

even a weak (i.e. not strong) b-node annot our after an a-node (sine in
ase 1 pbb > pba). Theorem 3.1 then implies that almost every sequene of

observations has in�nitely many strong a-barriers.
Corollary 3.1 in its turn implies that starting with the �rst strong a-

node onward, the Viterbi alignment v(x1:n) stays in state a. As we have

already mentioned, Viterbi alignments need not be unique (see (Lember and

Koloydenko, 2008)), i.e. ties are possible in general, and in this ase, in

partiular, they are possible up until the �rst strong a-node. However, the

impossibility of strong b-nodes in this ase implies that the ties an be broken

in favor of a, resulting in the onstant all a alignment.

Theorem 3.1 is a generalization of Theorem 7 in (Caliebe, 2006), whih

basially states that in ase 1, if (15) and (16) hold then under some additional

assumptions (equal supports of Pa and Pb and further onditions A2), almost

every realization has in�nitely many nodes. Thus, (Caliebe, 2006) stops short

of realizing that in ase 1 onditions (15) and (16) alone ensure the existene

of a− and b-nodes. This results in (Caliebe, 2006) invoking Theorem 2 of

(Caliebe and Rösler, 2002) to prove the existene of nodes, hene super�uous

assumptions A1, A2. Also the proof of Theorem 7 in (Caliebe and Rösler,

2002) ould be simpli�ed and shortened with the help of the notions of nodes

and barriers. Finally, Corollary 3.1 generalizes Theorems 8 and 9 of (Caliebe,

2006).

3.3 Case 2

Reall that we have been proving the existene of barriers without ondition

(7). Note that in ase 2, ondition (7) beomes

λ ({x ∈ X : paafa(x)paa > pabfb(x)pba}) > 0.

Reall (�2) also that interhanging a with b gives a similar ondition for

strong b-nodes to our in�nitely often in almost every realization.

It follows from (12) that for some ǫ > 0, the sets

Xa := {x ∈ X : fa(x)(1− ǫ) > fb(x)}, Xb := {x ∈ X : fa(x) < fb(x)(1− ǫ)}

both have positive λ-measure. Hene Pa(Xa) > 0 and Pb(Xb) > 0. Then, for
x1:2 ∈ Xa ×Xb, the following holds:

fb(x1)fa(x2)

fa(x1)fb(x2)
< (1− ǫ)2. (25)

Lemma 3.3 In ase 2, almost every realization has in�nitely many strong

barriers.

11



Proof. Let Xa and Xb be as above. Choose k su�iently large for

(1 − ǫ)2k <
paapbb
pbapab

to hold. Next, onsider a sequene z0:2k ∈ X 2k+1
, where z0, z2i ∈ Xa, z2i−1 ∈

Xb, for every i = 1, . . . , k. We show that for every u > 2k, every sequene

of observations x1:u ∈ X u
suh that xu−2k:u = z0:2k, ontains a strong node,

making z0:2k a strong barrier.

The hoie of k and z0:2k implies

∏k

i=1 pbafa(z2i−1)pabfb(z2i)
∏k

i=1 pabfb(z2i−1)pbafa(z2i)
< (1− ǫ)2k <

pbbpaa
pbapab

. (26)

If there is no strong node among xu−2k:u, then

db(z2k) = db(z0)

k
∏

i=1

pbafa(z2i−1)pabfb(z2i)

and

da(z2k) ≥ db(z0)
pbb
pab

k
∏

i=1

pabfb(z2i−1)pbafa(z2i).

Hene, by (26)

db(z2k)

da(z2k)
≤

∏k

i=1 pbafa(z2i−1)pabfb(z2i)
pbb

pab

∏k

i=1 pabfb(z2i−1)pbafa(z2i)
<
paa
pba

whih ontradits (11).

Next, we re�ne this result. Without loss of generality assume pba ≥ pab.
Therefore

pabpaa ≥ pbapbb, (27)

and also, for every x ∈ Xa,

pbafa(x) > pabfb(x). (28)

Hene, (17) holds. We multiply the right side of (28) by pbapbb and the left

side by pabpaa, and use (27) to obtain

fa(x)paa > fb(x)pbb. (29)

Finally, for x ∈ Xb, we have

fa(x) < fb(x). (30)

We will need the following Lemma.
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Lemma 3.4 Assume (in addition to being in ase 2) that pab ≤ pba.

a) In any pair of observations z1:2 ∈ Xa ×Xb, z1 is not a b-node.

b) In any pair of observations z2:3 ∈ Xb ×Xa, if z2 is a b-node, then z3 is a

strong a-node.

Proof. Assume that pab ≤ pba, and onsider a). First note that sine we are
in ase 2, z1 is a b-node if and only if

db(z1)pbb ≥ da(z1)pab. (31)

Suppose �rst that z0 is not a node, in whih ase db(z1) = da(z0)pabfb(z1)
and da(z1) = db(z0)pbafa(z1). Then

da(z1)pab = db(z0)pbafa(z1)pab ≥ da(z0)paafa(z1)pab

> da(z0)pbbfb(z1)pab = da(z0)pabfb(z1)pbb = db(z1)pbb.

The �rst inequality above follows from the reursion property (3) of sores

δ, whereas the seond one follows from (29). Thus, when z0 is not a node,

z1 annot be a b-node. Similarly, supposing that z0 is an a-node, we obtain
that z1 is not a b-node. Suppose �nally that z0 is a b-node. Then db(z1) =
db(z0)pbbfb(z1) and da(z1) = db(z0)pbafa(z1). Applying onseutively pbb <
pab, (28) and pbb < pab again, we obtain: pbbfb(z1)pbb < pabfb(z1)pbb ≤
pbafa(z1)pbb < pbafa(z1)pab. Thus, ontrary to (31)

db(z1)pbb = db(z0)pbbfb(z1)pbb < db(z0)pbafa(z1)pab = da(z1)pab,

that is, z1 is not a b-node in this ase either. Let us now prove b). If z2
is a b-node, then da(z3) = db(z2)pbafa(z3) and db(z3) = db(z2)pbbfb(z3). By
(29), we now have da(z3)paa = db(z2)pbafa(z3)paa > db(z2)pbbfb(z3)pba =
db(z3)pba. Similarly to the argument regarding b-nodes guaranteed by (31)

above, we now have da(z3) > db(z3), implying da(z3)pab > db(z3)pbb. Thus

z3 is a strong a-node.

Theorem 3.2 If pba ≥ pab, then almost every realization has in�nitely many

strong a-nodes. If pba ≤ pab, then almost every realization has in�nitely many

strong b-nodes.

Proof. Assume again that pba ≥ pab. Let z0:2k be as in the proof of Lemma

3.3 and attah one more element z2k+1 ∈ Xb to the end. Thus, z2i ∈ Xa and

z2i+1 ∈ Xb, i = 0, 1, . . . , k.
From (the proof of) Lemma 3.3 we know that z0:2k ontains at least one

strong node. If this is an a-node, then the theorem is proven. Otherwise this

is a b-node, whih, aording to part a) of Lemma (3.4), an only be among

z1, z3, . . . , z2k−1. Applying part b) of Lemma (3.4) shows that there must

also be a strong a-node z2, z4, . . . , z2k. Invoking ergodiity again �nishes

the proof.
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Clearly, swapping a and b in the above disussion following the proof of

Lemma 3.3, establishes the other part of the theorem.

Inequality (27) guarantees (17). Often, the model is suh that in ad-

dition to (17), (18) also holds. However, to apply the previous proof (i.e.

of Theorem 3.2) to guarantee the simultaneous existene of in�nitely many

strong a and b-nodes, we would need the following ounterpart of (29):

Pb({x ∈ X : fb(x)pab > fa(x)pba, fb(x)pbb > fa(x)paa}) > 0, whih is

stronger than (18). However, this previous ondition is indeed often met,

resulting in in�nitely many strong a- and b-nodes (in almost every realiza-

tion x1:∞).

Lemma 3.3 appears without proof as Theorem 10 in (Caliebe, 2006). The

author of (Caliebe, 2006) atually suggests that Theorem 10 and other re-

sults for ase 2 are analogous to the orresponding results for ase 1, mainly

Theorem 7 (of the same work). It is further stated in (Caliebe, 2006) that

the proofs of those results are not given as they �are very similar� to the or-

responding proofs in ase 1. Our present workings atually show that ase

2 is quite dissimilar to ase 1 (due to the �utuating nature of the typial

Viterbi alignment) and in partiular requires a more areful treatment. Note

that, even if Theorem 10 in (Caliebe, 2006) assumed (8) and (9) (as Theorem

7 in (Caliebe, 2006) does) to help one to prove this Theorem by analogy to

Theorem 7, it is still not lear how the two proofs ould be very similar.

3.3.1 Case 3 (the mixture model)

Reall that every observation in this ase is a (not neessarily strong) node.

Furthermore, every observation from {x ∈ X : πafa(x) > πbfb(x)} is a strong
a node. Thus, we have the following ounterpart of Theorems 3.1 and 3.2.

Theorem 3.3 If πa ≥ πb, then almost every realization has in�nitely many

strong a-nodes. If πa ≤ πb, then almost every realization has in�nitely many

strong b-nodes.

4 Conlusion

In summary, we have proved Theorem 4.1 stated below and providing a basis

for the pieewise onstrution and asymptoti analysis of the Viterbi align-

ments of two-state HMMs.

Theorem 4.1 Almost every realization of the two-state HMM has in�nitely

many strong barriers. Furthermore

a) if the transition probabilities satisfy paa ≥ pba then (almost every realiza-

tion of) the hain has in�nitely many strong s-barriers where s is suh

that pss = max{paa, pbb},
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b) otherwise (i.e. if paa < pba) (almost every realization of) the hain has

in�nitely many strong s-barriers where s is suh that pts = max{pab, pba}
(for some t ∈ S).
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