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Abstract

It is well known that, in the five-dimensional scenario of braneworld and space-time-mass theories, geodesic

motion in 5D is observed to be non-geodesic in 4D. Usually, the discussion is purely geometric and based on the

dimensional reduction of the geodesic equation in 5D, without any reference to the test particle whatsoever. In

this work we obtain the equation of motion in 4D directly from the principle of least action. So our main thrust

is not the geometry but the particle observed in 4D. A clear physical picture emerges from our work. Specifically,

that the deviation from the geodesic motion in 4D is due to the variation of the rest mass of a particle, which

is induced by the scalar field in the 5D metric and the explicit dependence of the spacetime metric on the extra

coordinate. Thus, the principle of least action not only leads to the correct equations of motion, but also provides

a concrete physical meaning for a number of algebraic quantities appearing in the geometrical reduction of the

geodesic equation.
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1 Introduction

The possibility that our world may be embedded in a (4 + d)-dimensional universe with more than four large
dimensions has attracted the attention of a great number of researchers. There are several motivations for the
introduction of large extra dimensions. Among them to resolve the differences between gravity and quantum field
theory; provide possible solutions to the hierarchy and the cosmological constant problems [1]-[5] and ultimately
unify all forces of nature.

The idea of large extra dimensions is also inspired by the vision that matter in 4D is purely geometric in nature.
In space-time-matter theory (STM) one large extra dimension is needed in order to get a consistent description, at
the macroscopic level, of the properties of the matter as observed in 4D [6]-[10]. The mathematical support of this
theory is given by a theorem of differential geometry due to Campbell and Magaard [11]-[14].

In the Randall & Sundrum braneworld scenario, STM and other higher-dimensional theories, the main attempt
is to reproduce the physics of four-dimensional gravity up to higher-dimensional modifications to general relativity.
From a mathematical viewpoint, this means that the equations in 4D are projections of the 5D equations on 4D-
hypersurfaces orthogonal to some vector field ψA, which is identified with the “extra” dimension. By an appropriate
choice of coordinates one can remove the spacetime part of this vector and put it in the form

ψA = (0, 0, 0, 0,Φ). (1)

In such coordinates the most general line element can be written as1

dS2 = gµν(x
ρ, y)dxµdxν + ǫΦ2(xρ, y)dy2, (2)

where gµν is the metric induced in 4D; xµ denote the coordinates of the spacetime; y represents the extra coordinate,
and the factor ǫ can be −1 or +1 depending on whether the extra dimension is spacelike or timelike, respectively,
viz., ψAψ

A = ǫ.
A possible way of testing for new physics coming from extra dimensions is to examine the dynamics of test

particles. In practice this means to search for deviations from the universal “free fall” in 4D. The question of how an
observer in 4D, who is confined to making physical measurements in our ordinary spacetime, perceives the motion
of test particles governed by the geodesic equation in 5D

d2xA

dS2
+ ΓA

BCU
BUC = 0, UA =

dxA

dS
, (3)

has widely been discussed in the literature [15]-[26]. The discussion is typically based on the dimensional reduction
of geodesics in 5D, which involves subtle technical details as the choice of adequate affine parameters for the motion
in 5D and 4D.

After a long and sophisticated calculation, the dimensional reduction of (3) yields

duµ

ds
+ Γµ

αβu
αuβ =

(

1

2
uµuρ − gµρ

)

uλ
∂gρλ
∂y

(

dy

ds

)

+ ǫΦ [Φ;µ − uµuρΦ;ρ]

(

dy

ds

)2

, (4)

where Γµ
αβ are the Christoffel symbols calculated with the spacetime metric gαβ; ds =

√

gµνdxµdxν , and u
µ is the

usual four-velocity, uµ = dxµ/ds. The equation for the covariant components uµ, looks a little simpler, namely,

duµ
ds

− Γβ
µαu

αuβ =
1

2
uµu

λuρ
∂gλρ
∂y

(

dy

ds

)

+ ǫΦΦ;ρ

[

δρµ − uµu
ρ
]

(

dy

ds

)2

. (5)

The aim of this paper is twofold. First, to derive these equations from the principle of least action. Second, to
give the most general expression for the rest mass of a particle observed in 4D in terms of the metric and momentum
along the extra dimension.

1Lowercase Greek letters go from 0 to 3; x0 is time like, x1, x2, x3 are space like. Capital Latin letters A,B denote indexes in 5D.

2



2 The principle of least action

The principle of least action is defined by the statement that for each system there exist an integral I, called the
action, which has a minimum value for the actual motion, so that its variation δI is zero [27]-[28]. In classical
mechanics, the action for a free material point of mass m is the integral (c = 1)

IMech = −m
∫ b

a

ds, (6)

along the world line of the particle between two particular events represented by a and b, for an initial and final
position, respectively.

Among the possible effects of extra dimensions, is the variation of the rest mass m. Therefore, we will assume
here that the appropriate action is

I = −
∫ b

a

mds, (7)

where the function m is taken at points on the world line of the particle. We now proceed to derive the equations of
motion from this action.

The principle of least action states

δI = −δ
∫ b

a

mds = 0. (8)

Noting that m as well as the metric are allowed to depend on all five coordinates, we have

δm =

(

∂m

∂xµ

)

δxµ +

(

∂m

∂y

)

δy, (9)

and
δ(ds)

ds
=

1

2
uµuν

∂gµν
∂xρ

δxρ + uν
dδxν

ds
+

1

2
uµuν

∂gµν
∂y

δy. (10)

Substituting these expressions into (8) and using that

muµ
dδxµ

ds
=

d

ds
(muµδx

µ)−
(

m
duµ
ds

+ uµ
dm

ds

)

δxµ, (11)

we obtain

δS = −
∫ b

a

{(

1

2
uµuν

∂gµν
∂xρ

− duρ
ds

− uρ
m

dm

ds
+

1

m

∂m

∂xρ

)

δxρ +

(

1

m

∂m

∂y
+

1

2
uµuν

∂gµν
∂y

)

δy

}

mds. (12)

In integrating by parts, we have used the fact that δxµ = 0 at the limits. In view of the arbitrariness of δxµ and δy,
it follows that the integrand is zero, that is

1

2
uµuν

∂gµν
∂xρ

− duρ
ds

− uρ
m

dm

ds
+

1

m

∂m

∂xρ
= 0, (13)

and
1

m

∂m

∂y
+

1

2
uµuν

∂gµν
∂y

= 0. (14)

Rearranging terms in (13) it can be written as

duρ
ds

− Γβ
ραu

αuβ =
1

m

∂m

∂xρ
− uρ
m

dm

ds
. (15)

From which it follows that

duρ
ds

− Γβ
ραu

αuβ = −uρ
m

∂m

∂y

dy

ds
+

1

m

∂m

∂xµ
(

δµρ − uµuρ
)

. (16)
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Now using (14) we obtain

duρ
ds

− Γβ
ραu

αuβ =
1

2
uρu

µuν
∂gµν
∂y

(

dy

ds

)

+
1

m

∂m

∂xµ
(

δµρ − uµuρ
)

. (17)

Except for the second term in the r.h.s, this equation is identical to (5). Notice that so far we have not specified the
function m.

In order to recover (5), the spacetime derivative of m should satisfy the relation2

1

m

∂m

∂xµ
= ǫΦ

∂Φ

∂xµ

(

dy

ds

)2

. (18)

For a particle at rest, with respect to the system of coordinates (dxi = 0), the four-velocity becomes

uµ =
δµ0√
g00

. (19)

Integrating (14) with the above uµ, we get

m =
F (xρ)

√

g00(xρ, y)
, (20)

where F is an arbitrary function of spacetime coordinates. We note that m has to be invariant with respect to the
transformation,

x̄0 = x̄0(x0, x1, x2, x3),

x̄k = x̄k(x1, x2, x3), (21)

which leaves uµ invariant. Therefore, F is not a scalar function, but should transform as F̄ (x̄) = (∂x0/∂x̄)F (x).
This is consistent with what we obtain from the definition of four-momentum pµ = muµ. It implies m = pµu

µ,
which for a particle at rest yields

m =
p0√
g00

. (22)

Thus, the function of integration F is just p0. It should be noted that (14) and (18) link the derivatives ∂gµν/∂y
∂Φ/∂xρ to the variation of mass in the respective directions, while ∂gµν/∂x

ρ are related to the gravitational field.

3 Formulae for the rest mass

In the original Randall & Sundrum scenario, only gravity is allowed to propagate in the bulk, while all matter fields
are confined on the brane. However, the inclusion of matter and gauge fields in the bulk has been extensively treated
in the literature (see [29] and references therein). In particular, in models of Universal Extra Dimensions [30] in
which all of the Standard Model fields are allowed to propagate in the bulk.

Therefore, for generality we do not restrict our discussion to null geodesic motion in 5D. In this section we show
how the observed rest mass in 4D is related to the metric and momentum along the extra dimension. With this aim
we multiply (3) by gAD

gAD

d2xA

dS2
+ gADΓ

A
BCU

BUC = 0, (23)

and consider the equation for D = 0. After some manipulations we get

d

fds

(

gλ0
dxλ

fds

)

=
1

2

∂gBC

∂x0
UBUC , (24)

2To be more precise, since (δµν − uµuν) is the projector onto the tree-space orthogonal to uµ, adding to (18) an additional function
Huµ, with an arbitrary H, is innocuous.
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where we have set

dS = fds, with f ≡

√

1 + ǫΦ2

(

dy

ds

)2

(25)

In order to interpret the term inside the bracket in (24), we introduce a 4D timelike unit vector field τµ, which
is tangential to the time-coordinate x0, viz.,

τµ =
δµ0√
g00

, τµ =
g0µ√
g00

(26)

Also we introduce λµν , the projector onto the 3-space, orthogonal to τµ

λµν ≡ τµτν − gµν . (27)

Since λ0j = λ00 = 0, the line element in 4D becomes

ds2 = gµνdx
µxν = dτ2 − dl2, (28)

where dτ measures the proper time along an infinitesimal displacement dxµ and dl is the corresponding spatial length,
viz.,

dτ = τµdx
µ, dl =

√

λijdxidxj . (29)

Thus,
dτ

ds
=

1√
1− v2

, (30)

where v2 ≡ λijv
ivj represents the square of the spatial three-velocity

vi =
dxi

dτ
. (31)

Thus we find

g0µ
dxµ

ds
=

√
g00√

1− v2
. (32)

Coming back to (24) we obtain
d

fds

( √
g00

f
√
1− v2

)

=
1

2

∂gBC

∂x0
UBUC . (33)

In general relativity, the quantity inside the round bracket (with f = 1) is the energy E per unit mass

E
m

=

√
g00√

1− v2
, (34)

which is constant when the gravitational field is independent of time. These equations suggest that the quantity

m =
M

f
=

M
√

1 + ǫΦ2(dy/ds)2
, (35)

where M is an arbitrary constant with the appropriate units, can be interpreted as the mass of a particle in 4D.
Notice that m =M when the motion is confined to hypersurfaces y = constant.

In order to justify this interpretation, we have to show that our definition of mass satisfies (14) and (18) so we
recover (5). From (35) we find

dm

m
= −df

f
. (36)
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From the definition of f in (25) it follows that

f
df

ds
= ǫΦ

dΦ

ds

(

dy

ds

)2

+ ǫΦ2 dy

ds

(

d2y

ds2

)

. (37)

Now, from (3) with A = 4 we obtain

d2y

ds2
=

1

f

(

df

ds

)

dy

ds
− Γ4

AB

dxA

ds

dxB

ds
. (38)

Substituting into (37) we get

1

f

df

ds
= ǫΦ

(

dy

ds

)2

− ǫΦ2

(

dy

ds

)

Γ4
AB

dxA

ds

dxB

ds
. (39)

After a simple calculation, and using (36) we find,

dm

m
=

[

−1

2

∂gµν
∂y

uµuν
]

dy +

[

ǫΦ
∂Φ

∂xµ

(

dy

ds

)2
]

dxµ. (40)

Consequently,

1

m

∂m

∂y
= −1

2

∂gµν
∂y

uµuν , and
1

m

∂m

∂xµ
= ǫΦ

∂Φ

∂xµ

(

dy

ds

)2

. (41)

Thus, substituting these expressions into (16) we get exactly the equation of motion (5), obtained from the di-
mensional reduction of the geodesic equation in 5D. In addition, we note that (35) is invariant under spacetime
coordinate transformations x̄µ = x̄µ(xρ), which corresponds to the notion that m =

√
pµpµ is a scalar in 4D.

3.1 The rest mass in 4D for null geodesic motion in 5D

In the above discussion it is clear that f 6= 0, i.e., dS 6= 0. The question arises of how the motion along a null
geodesic (dS = 0) is observed in 4D. The discussion is relevant to the original Randall & Sundrum braneworld
scenario and other Kaluza-Klein models which postulate that the motion in 5D is along null geodesics [21]. In this
case the geodesic equation becomes

d2xA

dλ2
+ ΓA

BCU
BUC = 0, with UA =

dxA

dλ
, (42)

where λ is a parameter along the null geodesic in 5D. Again, we can introduce a quantity f̄ such that

dλ = f̄ds. (43)

It should be pointed out that, contrary to quantity f defined in (25), in general we have no formulas relating f̄ with
other quantities in the theory, except in particular cases (see bellow in section 4.2). However, following the same
steps as above we would arrive at (33) with f̄ instead of f . So similarly, we can define

m =
M̄

f̄
, (44)

where M̄ is some constant with the appropriate units.
Since dS =

√

1 + ǫΦ2(dy/ds)2 = 0, it follows that the extra dimension must be spacelike ǫ = −1, and ds = Φdy.
Consequently, dλ = f̄Φdy and

m = M̄Φ
dy

dλ
. (45)

Taking the differential of this quantity with respect to ds and using (42) with A = 4, we easily get

1

m

dm

ds
= −u

µuν

2Φ

∂gµν
∂y

− uµ

Φ

∂Φ

∂xµ
, (46)

which is formally obtained from (40) by setting (dy/ds) = 1/Φ and ǫ = −1. Clearly, this expression is equivalent to
(41). Thus, when the mass defined through (45) is substituted into (16) we obtain the effective equations (5).
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4 Specific expressions for m

In order to get a specific form for m one has to know dy/ds. Setting A = 4 in (3), after some manipulations we get

d

fds

(

ǫΦ2

f

dy

ds

)

=
1

2

∂gBC

∂y
UBUC . (47)

4.1 Metric with no dependence on the extra coordinate

In the case where the r.h.s. is zero, which in particular occurs when the metric is independent of y, we have

Φ2

f

dy

ds
= C, (48)

where C is a constant. This is an important case because in the literature there are a huge number of solutions of
the 5D equations with no dependence on the extra coordinate [9], [31], [32]. Thus,

dy

ds
=

C

Φ
√
Φ2 − ǫC2

. (49)

Using this expression in (35) we find

m =
M

√
Φ2 − ǫC2

Φ
. (50)

Clearly, m =M for dy/ds = 0.

4.2 Null geodesics in 5D

If dS = 0, we should replace f → f̄ in (47). Thus,

Φ2

f̄

dy

ds
= C̄, (51)

where C̄ is a dimensionless constant. Consequently, dy/dλ = C̄/Φ2. For dS = 0, it follows that ds = Φdy (and
ǫ = −1) which gives f̄ = Φ/C̄, and therefore dλ = Φds/C̄. From (44) we find

m =
M̃

Φ
, (52)

where M̃ = M̄C̄. Notice that both (50) and (52) satisfy (18).
When the metric is independent of the extra coordinate and Φ = constant, then m is constant too. As a

consequence, the r.h.s. of (16) is zero, meaning that embedding a 4D spacetime in a 5D manifold as

dS2 = gµν(x
ρ)dxµdxν ± dy2, (53)

produces no effects in 4D.

5 Conclusions

In this paper we have used the principle of least action to obtain the equation of motion for a test particle in a
four-dimensional spacetime embedded in a five-dimensional world with metric (2).
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From our work emerges a clear physical picture. Specifically, that the deviation from the geodesic motion in 4D
is due to the variation of the rest mass of a particle, which is induced by an explicit dependence of the spacetime
metric on the extra coordinate. More explicitly, the rest mass (35) depends on dy/ds which is governed by

d2y

ds2
=
ǫuµuν

2Φ2

∂gµν
∂y

+
dy

ds

[

1

f

df

ds
+

2uµ

Φ

∂Φ

∂xµ
+

1

Φ

∂Φ

∂y

dy

ds

]

, (54)

where (df/fds) is given by (39). This equation indicates that, even if at some initial moment (dy/ds) = 0, the
non-trivial dependence of the metric on the extra variable implies (dy/ds) 6= 0 the next moment, which will be
perceived by an observer in 4D as a variation in the rest mass of a particle.

Notice that the scalar field Φ by itself does not generate momentum along the extra dimension. Indeed, in the case
where the metric is independent of the extra coordinate, if (dy/ds) = 0 at some moment, then d2y/ds2 = 0. Which
means that dy/ds will continue to be zero along the motion. Consequently, the geodesic motion is on a hypersurface
y = constant, which in 4D will be perceived as a particle of constant mass m = M . However, one would expect
that any small perturbation along y would be enhanced by the scalar field, building up momentum along the extra
dimension, which in 4D will be perceived as a variation of the rest mass. Clearly, the same reasoning holds for the
case of null geodesics in 5D where m is given by (44).

The question may arise about the connection between the four momentum and m. In order to see this, let us
construct the five-dimensional quantity

PA =M
dxA

dS
. (55)

The square of this quantity is M2. Namely,

PAP
A = gµνP

µP ν + ǫΦ2 dy

dS
=M2. (56)

Using (25) and rearranging terms we obtain
gµνP

µP ν = m2, (57)

where m is given by (35). This suggests that the spacetime part of PA, which coincides with the projection onto
4D, should be identified with the four-momentum pµ, viz.,

pµ = Pµ =M
dxµ

dS
=

(

M

f

)

uµ = muµ, (58)

in agreement with the usual definition of 4-momentum in relativity.
Some authors postulate that motion in 5D is along null geodesics, similarly to braneworld theory. In this case,

the extra dimension must be spacelike and the motion along null geodesics is observed in 4D as particles with an
effective mass, which is given by (44) and (45). In this case, we introduce the quantity

P̄A = M̄
dxA

dλ
, (59)

where M̄ is a constant introduced for dimensional consistency, and λ is the affine parameter along the null geodesic
introduced in (42). Clearly, in this case P̄AP̄

A = 0. Thus, using (43) we obtain (ǫ = −1)

gµν P̄
µP̄ ν =

M̄Φ2

f̄2

(

dy

ds

)2

. (60)

For null geodesics (dy/ds) = 1/Φ. Thus,

gµν P̄
µP̄ ν = m2, pµ = P̄µ = muµ, with m = M̄Φ

dy

dλ
, (61)

as expected. A particular example is provided by (52).
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For completeness let us emphasize the main differences and similarities between null and non-null geodesic motion
in 5D, as observed in 4D: (i) For null geodesics in 5D, the observed mass in 4D is a consequence of non-zero
momentum along the extra dimension; it is massless if the motion is confined to a hypersurface y =constant; (ii) For
non-null geodesics in 5D, the observed particle in 4D is a massive one, even in the absence of momentum along y;
(iii) If dy/ds = constant 6= 0 (dy/dλ = constant 6= 0), then the variation of rest mass is a consequence of the scalar
field Φ; (iv) If Φ = constant, then the variation of mass is a consequence of the dependence of the 4D metric on the
extra coordinate.
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