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A Hamiltonian formulation is given for the gravitational dynamics of two spinning compact bodies
to next-to-leading order (G/c4 and G2/c4) in the spin-orbit interaction. We use a novel approach
(valid to linear order in the spins), which starts from the second-post-Newtonian metric (in ADM
coordinates) generated by two spinless bodies, and computes the next-to-leading order precession, in
this metric, of suitably redefined “constant-magnitude” 3-dimensional spin vectors S1, S2. We prove
the Poincaré invariance of our Hamiltonian by explicitly constructing ten phase-space generators
realizing the Poincaré algebra. A remarkable feature of our approach is that it allows one to derive
the orbital equations of motion of spinning binaries to next-to-leading order in spin-orbit coupling
without having to solve Einstein’s field equations with a spin-dependent stress tensor. We show
that our Hamiltonian (orbital and spin) dynamics is equivalent to the dynamics recently obtained
by Faye, Blanchet, and Buonanno, by solving Einstein’s equations in harmonic coordinates.

PACS numbers: 04.25.-g, 04.25.Nx

I. INTRODUCTION

In view of the needs of upcoming gravitational-wave observations, it is crucial to be able to describe in detail the
dynamics of spinning compact binaries. We think that this aim will be fullfilled by combining the knowledge acquired
by analytical techniques with that obtained by numerical ones. The present paper is devoted to a new, Hamiltonian
analytical treatment of the general relativistic dynamics of spinning binaries.
The dynamics of spinning bodies in general relativity is a rather complicated problem which has been the subject of

many works over many years (starting from the pioneering contributions of Mathisson [1], Papapetrou [2], Pirani [3],
Tulczyjew [4], and others). This paper focusses on (gravitational) spin-orbit effects, i.e. dynamical effects which are
linear in the spins of a binary system. The spin-orbit interaction can be analytically obtained as a post-Newtonian
(PN) expansion. The leading-order contribution of this expansion is proportional to G/c2, while the next-to-leading
order one contains two sorts of terms: G/c4 and G2/c4 (here G denotes Newton’s gravitational constant and c the
speed of light). The first complete derivation of leading-order (LO) spin-orbit effects in comparable-mass binary
systems is due to Barker and O’Connell [5, 6]. These authors derived the spin-orbit interaction by considering the
quantum scattering amplitude of two spin- 12 particles. This curious fact prompted several authors to give purely
classical derivations of LO spin-orbit effects (see, e.g., Refs. [7, 8, 9]). For a discussion of LO spin-orbit effects in
coalescing binary systems see Refs. [10, 11].
The next-to-leading order (NLO) spin-orbit interaction was analytically tackled only over the last few years. After a

first incomplete attack due to Tagoshi, Ohashi, and Owen [12], complete results were obtained very recently by Faye,
Blanchet, and Buonanno [13] and Blanchet, Buonanno, and Faye [14]. Reference [13] calculated the translational
equations of motion, as well as the rotational equations of motion for compact spinning binaries to NLO (as here,
only terms linear in spin were considered). For their derivation, Blanchet et al., working in harmonic coordinates,
introduced the pole-dipole energy-momentum tensor due to Tulczyjew [4] in the Einstein field equations. They also
used the general-relativistic-covariant spin supplementary condition (SSC) of Tulczyjew [4] or, equivalently in the
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linear-in-spin approximation, of Pirani [3].
The new derivation of NLO spin-orbit interactions in the present paper is based on a novel approach, and is totally

independent from the results of Refs. [13, 14]. At the end, we shall be able to connect our results to those of [13, 14],
thereby giving us confidence in the correctness of both investigations. We do not use Tulczyjew’s pole-dipole energy-
momentum tensor. We do not either make use of the Papapetrou (or, more completely, Mathisson-Papapetrou-Pirani)
translational equations of motion. Our starting point consists of the second post-Newtonian (2PN) metric generated
by spinless point masses in ADM coordinates, say g(2PN)o. The crux of our approach then consists in noting that (to
linear order in the spins) it is enough to compute the NLO spin precession equations in g(2PN)o to derive the spin-

orbit NLO contribution in the Hamiltonian, say HNLO
so (x1,x2,p1,p2,S1,S2). Then, from HNLO

so (x1,x2,p1,p2,S1,S2)
we can derive the NLO spin-dependent terms in the translational equations of motion (simply by using Hamilton’s
canonical evolution equations). Technically, we shall derive the spin precession equations by starting from the 4-
dimensional parallel transport equation for the spin 4-vector (with covariant spin supplementary condition), and then
by rewriting them in terms of a suitably defined 3-dimensional spin vector, having a constant Euclidean magnitude.
(This method is essentially that used in Ref. [7] at the LO.) We shall then check the Poincaré invariance of our
Hamiltonian by explicitly constructing ten phase-space generators realizing the Poincaré algebra (similarly to the
proof of the Poincaré invariance of the 3PN orbital Hamiltonian given in [15]). After our construction, we shall give
the relation with the results obtained in Refs. [13, 14] in the form of explicit transformation formulae.
We leave to a sequent paper a discussion of the physical consequences of our Hamiltonian formulation, and notably

its use for improving the description of spin effects within the effective one-body approach [16].

II. 3-DIMENSIONAL EUCLIDEAN SPIN VECTOR IN CURVED SPACETIME, AND ITS ANGULAR

VELOCITY

When working to linear order in the spin, the translational and rotational equations of motion of a spinning particle
in curved space [1, 2, 3, 4] (see also [17] and [13]) read1

m
Duµ

dτ
=

1

2

ǫαβλρ√−g
S̃αuβuνR

ν
µλρ, (2.1)

DS̃µ

dτ
= 0, (2.2)

where uµ is the normalized 4-velocity of the spinning particle, uµuµ = −1, m its conserved mass, and S̃µ its 4-
dimensional spin vector; in addition, τ denotes the proper time parameter, dxµ/dτ = cuµ, D the 4-dimensional
covariant derivative, Rµ

νλρ the Riemann curvature tensor, and g the determinant of the 4-dimensional metric gµν .
An important feature of our approach is that we shall not need to consider the translational equations of motion

(2.1). It will be enough to consider the rotational ones (2.2). One immediate consequence of (2.2) is that the

4-dimensional length of S̃µ is preserved along the world line

gµν S̃µS̃ν = s2, s2 = const, (2.3)

where gµνgνλ = δµλ . The constant scalar s measures the proper magnitude of the spin. The Eqs. (2.1) and (2.2), to
linear order in spin, are compatible with the covariant SSC

S̃µu
µ = 0. (2.4)

At the same approximation, this (Pirani [3]) SSC is equivalent to the Tulczyjew [4] one Sµνpkinν = 0, where pkinµ =

mcuµ + O(s2) is the kinematical momentum (which differs from the canonical momentum we shall use below), and
where Sµν is the antisymmetric spin tensor (see, e.g., [13]).
More explicitly, Eq. (2.2) reads, when expressed in terms of the coordinate time t ≡ x0/c,

dS̃µ

dt
= cΓν

µρS̃νv
ρ, (2.5)

1 In this paper, Greek indices run over the numbers 0, 1, 2, 3, Latin indices over 1, 2, 3, ǫλραβ is the completely antisymmetric (flat
spacetime) Levi-Civita symbol with ǫ0123 = 1. Note that Ref. [17] uses an opposite sign convention for ǫλραβ, which leads to an
opposite sign on the right-hand-side of (2.1).
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where Γν
µρ are the Christoffel symbols and vµ ≡ c−1dxµ/dt = uµ/u0 = (1, vi). Note that, in this paper, we normalize

the “velocity” vi ≡ c−1dxi/dt so that it is dimensionless.
In addition, we can use Eq. (2.4) to compute the covariant time component of the spin vector in terms of its

(covariant) spatial components:

S̃0 = −S̃iv
i. (2.6)

Substituting this result into Eq. (2.3) one finds that the constancy of the 4-dimensional spin magnitude takes the
3-dimensional form

Gij S̃iS̃j = s2, (2.7)

where Gij is the symmetric matrix:

Gij ≡ gij − g0ivj − g0jvi + g00vivj . (2.8)

Now a technically very useful fact is that a positive-definite symmetric matrix such as the one just defined, Gij , admits
a unique positive-definite symmetric square root, say Hij = Hji, such that

Gij = HikHkj . (2.9)

This uniqueness result (in some given coordinate system) then naturally leads us to defining a constant-in-magnitude
3-dimensional Euclidean spin vector Si ≡ Si as2

Si ≡ HijS̃j , SiSi = s2. (2.10)

Upon further use of the spin supplementary condition (2.6), the spatial covariant component of the rotational
equation of motion (2.5) yields

dS̃i

dt
= Ṽ ij S̃j , (2.11)

where

Ṽ ij ≡ c
(

Γj
i0 + Γj

ikv
k − Γ0

i0v
j − Γ0

ikv
jvk
)

. (2.12)

Making use of Eqs. (2.10) and (2.11) one can now easily derive an evolution equation for the constant-magnitude
3-dimensional spin vector Si (dot means differentiation with respect to the coordinate time t):

Ṡi = V ijSj , V ij ≡ Ḣik(H−1)kj +HikṼ kl(H−1)lj . (2.13)

The constancy of the Euclidean magnitude of Si implies that the matrix V ij determining the “rotational velocity” of
Si = Si is antisymmetric: V ij = −V ji (a result which is easily checked to hold for the explicit expression of V ij given
above). It is then convenient to “dualize” V ij and to replace it by the 3-dimensional Euclidean (pseudo-) vector

Ωi ≡ −1

2
εijkV

jk. (2.14)

With this notation the rotational equation of motion (2.13) reads

Ṡi = + εijkΩjSk. (2.15)

In other words, we get a Newtonian looking spin precession equation Ṡ = Ω× S.
In summary, the angular velocity of rotationΩ of the constant-magnitude spin 3-vector (2.10) is directly computable

from the spacetime metric (and its Christoffel symbols) by using the explicit formulas (2.12), (2.13), and (2.14). (For
the self-gravitating spinning particles we are considering, one will need, as usual, to regularize the self-interaction
terms hidden in the formal results written above. See below.) Note that Ω depends, in general, both on the positions
and the velocities of all the particles in the system. Indeed, from the explicit formulas above, one sees that Ω depends
on the velocity of the considered spinning particle. Moreover, the metric and Christoffel symbols at the location of
some particle will depend on the positions and velocities of the other particles.

2 A slightly more geometrical way of phrasing this definition would consist in saying that, starting from a given coordinate system, we
are constructing a well-defined orthonormal “repère mobile” (or “vierbein”) along the worldline of a spinning particle, with respect to
which the covariant spin 4-vector has components (0, Si). By definition, the spatial components of the metric in this local orthonormal
frame take the standard Euclidean values δij , so that we can trivially raise or lower indices on our spin 3-vector.
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III. DERIVING THE SPIN-ORBIT INTERACTION HAMILTONIAN FROM THE ANGULAR

VELOCITY OF THE EUCLIDEAN SPIN 3-VECTOR

Let us now show how the knowledge of the just discussed spin angular velocity vector Ω allows one to derive the
spin-orbit interaction Hamiltonian Hso, i.e. the part of the Hamiltonian which is linear in the spin variables.
Let us first recall that a basic result in Hamiltonian dynamics is Darboux’s theorem which says that any (non

singular) symplectic form ω on an even-dimensional manifold can always be (locally) rewritten (after a suitable change
of phase-space coordinates) in the canonical form ω =

∑

A dqA ∧ dpA. When considering N (interacting) spinning
particles, the dimension of phase space is N(3 + 3 + 2) = 8N , because the description of each particle requires: 3
spatial coordinates, 3 momenta and 2 spin degrees of freedom, such as two angles θ, φ needed to parametrize the
direction of the (constant-magnitude) spin 3-vector Si. Darboux’s theorem then means, in this case, that it is always
possible to redefine phase-space coordinates such that the symplectic form takes the form

ω =
∑

a

(

∑

i

dqia ∧ dpai + sad(− cos θa) ∧ dφa

)

.

Here a = 1, . . . , N labels the various particles (with N = 2 in our case), while i = 1, 2, 3 labels the spatial dimensions.
We have written ω in the form it is known to take in special relativity [18, 19]. In the latter case (and, say for
simplicity, in the case of free particles), the spin-dependent term in ω was shown to take (globally) the form indicated,
with sa denoting the magnitude of the conserved spin of the ath particle, in the sense of (2.3), and with θa and φa

denoting the polar angles of the flat-space limit of the above-introduced constant-magnitude Euclidean spin vector
Si
a, (2.10). When considering the interacting case (i.e. turning on a non-zero value of G/c2), and when keeping, for

simplicity, only the terms linear in spin (so that one can expand the dynamics in powers of both G and sa), it is
easily checked (by a perturbation analysis3) that it is always possible to construct Darboux-type canonical coordinates
where the spin degrees of freedom are simply the polar angles (in a local orthonormal frame) of the above-introduced
constant-magnitude Euclidean spin vector Si

a.
4

Finally, we can transcribe this result in the language of Poisson brackets (instead of that of a symplectic form), by
stating that there exist phase-space variables x = (xi

a), p = (pai ), and S = (Sa
i ) (with a = 1, . . . , N , and i = 1, 2, 3),

where Sa
i are, say, the constant-magnitude vectors (2.10) such that the usual (Newtonian-like) Poisson brackets

{xi
a, p

b
j} = δbaδ

i
j, {Sa

i , S
b
j} = δabεijkS

a
k , zero otherwise, (3.1)

apply to the case of a general-relativistically interacting sytem of N spinning particles.
Note, however, that this result is essentially kinematical, and has nearly no dynamical content. To describe the

dynamics of interacting spinning particles, we need to know the expression of the Hamiltonian in terms of the canonical
variables: H = H(xa,pa,Sa). As we work linearly in the spins, we look for an Hamiltonian of the general form:

H(xa,pa,Sa) = Ho(xa,pa) +Hso(xa,pa,Sa). (3.2)

Here, Ho denotes the orbital part of H , while Hso contains all the linear-in-spin terms, and can be called the “spin-
orbit part”. The orbital Hamiltonian Ho is explicitly known up to the 3PN order [15, 20]. Our aim here is to compute
the spin-orbit Hamiltonian Hso to NLO. Because Hso is, by definition, linear in the spins we can always write it in
the general form

Hso(xa,pa,Sa) =
∑

a

Ωa(xb,pb) · Sa, (3.3)

where Ωa = (Ωi
a) depends on (all) the orbital degrees of freedom (xb,pb), but does not depend on the spins Sb. The

scalar product in the Eq. (3.3) is the usual Euclidean one.
In Eq. (3.3) Ωa is a priori just a notation for the coefficient of Sa in Hso. But let us now show that it is equal to

the quantity computed in the previous section, i.e. the angular velocity with which the ath spin vector Sa precesses.
Indeed, the general principles of Hamiltonian dynamics, together with the canonical Poisson brackets (3.1) and the
form (3.3), yield

Ṡa = {Sa, Hso(xb,pb,Sb)} = Ωa(xb,pb)× Sa. (3.4)

3 I.e. by considering general coordinate changes of the form q′ = q +O(s), p′ = p+O(s) and working linearly in the spins s.
4 As we shall discuss below, we can still modify Si

a by a rather general local rotation, but the important point is that our definition of
Si
a, (2.10), is a smooth deformation of the correct flat-spacetime limit.
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The only difference between (3.4) and the previous result (2.15) is that, in (3.4), Ωa is expressed in terms of canonical
positions and momenta, while in (2.15)Ω it was computed in terms of (say ADM) coordinates and coordinate velocities.
Because we are working only to linear order in the spin, and because (as was explained above) the canonical phase-
space coordinates appearing in (3.3) and (3.4) differ from the usual ADM-type coordinates used to express the metric
[and thereby to compute the angular velocity Ωa(x

ADM
b ,vADM

b ) by means of (2.12), (2.13), and (2.15)] only by terms
proportional to the spins, it suffices to use the known [15, 20] spinless link between ADM momenta and ADM velocities
to compute Ωa(xb,pb) from Ωa(x

ADM
b ,vADM

b ).
In the previous section we introduced a specific, well-defined “conserved” spin 3-vector Si to parametrize the two

degrees of freedom of a spinning particle. Our choice had the nice features of being universally associated to the
choice of a coordinate system, and of reducing to the choice made in the flat spacetime limit [19]. However, it was by
no means physically unique.
Let us now show that the freedom in the choice of conserved spin vector is simply a “gauge freedom” (local rotation

group) which does not change the physical results one can deduce from the Hamiltonian. Indeed, the condition
SiSi = s2 leaves as ambiguity in the definition of the conserved spin variable Si a local 3-dimensional Euclidean
rotation Si → S′

i, with

S′
i = RijSj , (3.5)

where R is an arbitrary rotation matrix. It is sufficient to consider the case of an infinitesimal rotation, say

Rij = δij − θij , (3.6)

where θij is a small antisymmetric matrix. This leads to an infinitesimal change

δS = θ × S, (3.7)

where we introduced the dual vector θ such that θij = εijkθk.
Let us show that such a change can be considered as being induced by an infinitesimal canonical transformation g

in the full phase space (x,p,S). (Canonical transformations are symmetries of Hamiltonian dynamics. In particular
they preserve the basic Poisson brackets written above.) We recall that such a canonical transformation acts on any
phase-space function f according to

δf = {f, g}. (3.8)

It is then easily checked that a transformation of the form

g(x,p,S) = θ(x,p) · S (3.9)

transforms the spin vector according to

δS = {S, g} = θ × S, (3.10)

which exactly reproduces the effect of an infinitesimal local rotation written above. However, we have learned that
such a local rotation must be accompanied by a corresponding transformation of the orbital degrees of freedom (x,p)
of the form: δx = {x, g}, δp = {p, g}. Then, under the simultaneous changes of x,p,S induced by the canonical
transformation g (and the corresponding change of the spin angular velocity Ω′ ≃ Ω + dθ/dt) one finds that the
numerical value (evaluated at corresponding phase-space points) of the Hamiltonian is invariant.
We have therefore shown that the arbitrariness in the “rotational state” of the conserved spin is simply (as expected)

a “gauge symmetry” (under a local SO(3) group).

IV. DERIVATION OF THE SPIN-ORBIT HAMILTONIAN IN ADM COORDINATES

Let us now sketch the computation of the NLO angular velocity Ωi in ADM coordinates [which will then give us
the NLO spin-orbit Hamiltonian according to Eq. (3.3)].
As usual we split the four-dimensional metric gµν into three-dimensional objects (α, βi, γij), where

α ≡ (−g00)−1/2, βi ≡ g0i, γij ≡ gij . (4.1)

One can show, using the definitions βi = γijβj , γ
ijγjk = δik, that the following exact formulas hold:

Γ0
0i =

1

α

(

α,i +Kijβ
j
)

, (4.2a)
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Γ0
ij =

1

α
Kij , (4.2b)

Γi
j0 =

1

2
γikγkj,0 −

1

α
βiα,j +

1

2
γik(βk,j − βj,k)−

1

α
βiβkKkj , (4.2c)

Γi
jk = 3Γi

jk − 1

α
βiKjk, (4.2d)

where Kij is the extrinsic curvature of the constant time slice. Note that, for convenience, we use the Kij ∼ + ˙γij
sign convention (instead of the − ˙γij convention used e.g. in Ref. [17]). In terms of the field momenta πij it reads,

Kij =
16πG

c3
1√
γ

(

γikγjl −
1

2
γijγkl

)

πkl, (4.3)

where γ = det(γij). The Christoffel symbols related with the 3-metric γij are denoted by 3Γi
jk. Let us also note

that the dimensionless coordinate velocity vi can be expressed in terms of the bare kinematical linear momenta
pbarei = mcui, in full generality, as follows

vi =
αγijpbarej

(m2c2 + γklpbarek pbarel )1/2
− γijβj . (4.4)

Note, however, that the latter result applies to the canonical momentum only modulo corrections proportional to the
spin.
We employ the ADMTT (ADM transverse-traceless) coordinate conditions [21]

γij =

(

1 +
1

8
φ

)4

δij + hTT
ij , πii = 0, (4.5)

and recall that

πij = π̃ij + πij
TT (4.6)

with πij
TT being of the order 1/c5 [22].

Let us now expand all quantities in a post-Newtonian (PN) expansion. Here and below the subscript (n) indicates
the part of a quantity which is of the nth post-Newtonian order, i.e. which is proportional to (1/c2)n. For instance
we decompose:

Ωi = Ω(2)i +Ω(4)i +O(c−6). (4.7)

Here Ω(2)i ∝ G/c2 is the well-known LO contribution [5, 7, 8, 9], while Ω(4)i ∝ G/c4 +G2/c4 is the NLO contribution

that we wish to compute. These contributions are more explicitly given in terms of the “precession velocity” Ṽ ij of
the “coordinate spin vector” S̃i, which entered Eq. (2.11). Inserting in Eq. (2.12) the Christoffel symbols (4.2), and
then inserting the result in Eq. (2.13) [where Hij is computed from Eqs. (2.8), (2.9), (4.1), (4.3), (4.5), and (4.6)], we
obtain the following more explicit formulas for the 3-vectors Ω(2)i and Ω(4)i from Eq. (4.7):

Ω(2)i/c =
1

2
εijk

(

β(3)j,k +
(

α(2),j −
1

2
φ(2),j

)

vk
)

, (4.8a)

Ω(4)i/c =
1

2
εijk

(

β(5)j,k + β(3)kα(2),j −
1

2
φ(2)β(3)j,k +

1

16
φ(2)φ(2),jv

k − 1

2
φ(4),jv

k − hTT
(4)kl,jv

l

+ (α(4),j − α(2)α(2),j)v
k + π̃jl

(3)v
kvl − 1

2
α(2),kv

jvlvl +
1

4

v̇j

c
vkvlvl

)

. (4.8b)

At this point, it only remains to implement three technical steps: (i) to insert the explicit form of the 2PN-accurate
metric describing two spin-less particles in ADMTT coordinates (from [23] and [22]), (ii) to replace the velocities vi by
their 1PN-accurate expression in terms of the canonical momenta pi, and, finally, (iii) to regularize the self-interaction
terms that arise when evaluating Eqs. (4.8).
The explicit expressions for the metric functions entering Eqs. (4.8) can be found e.g. in Appendix A of Ref. [22]

(where the functions φ(2), φ(4), π̃
ij
(3), and hTT

(4)ij can be found) and in Ref. [23] (where the functions α(2), α(4) and

β(3)i, β(5)i are given).
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As for reexpressing the velocities in terms of momenta, it yields a further PN-expansion of the form via = via(1) +

via(3)+O(1/c5), where5 via(1) is the coordinate velocity of the ath particle expressed in terms of the canonical variables

xa and pa at the Newtonian accuracy, i.e., via(1) = pai/(mac), and via(3) is the 1PN correction to pai/(mac). The

latter 1PN correction explicitly reads

vi1(3) =
G(n12 · p2)

2c3r12
ni
12 +

(

− p2
1

2m3
1c

3
− 3Gm2

m1c3r12

)

p1i +
7G

2c3r12
p2i, (4.9)

the expression for vi2(3) can be obtained from the above by exchanging the particles’ labels.

The final step then consists in evaluating (note that the meaning of Ωi
a(2) and Ωi

a(4) is now slightly different because

of the re-expansion of velocities in a PN expansion)

Ωi
a(2)/c ≡

1

2
εijkRega

(

β(3)j,k +
(

α(2),j −
1

2
φ(2),j

)

vka(1)

)

, (4.10a)

Ωi
a(4)/c ≡

1

2
εijkRega

(

β(5)j,k + β(3)kα(2),j −
1

2
φ(2)β(3)j,k +

1

16
φ(2)φ(2),jv

k
a(1) −

1

2
φ(4),jv

k
a(1) − hTT

(4)kl,jv
l
a(1)

+ (α(4),j − α(2)α(2),j)v
k
a(1) + π̃jl

(3)v
k
a(1)v

l
a(1) −

1

2
α(2),kv

j
a(1)v

l
a(1)v

l
a(1) +

1

4

v̇ja(1)
c

vka(1)v
l
a(1)v

l
a(1)

+
(

α(2),j −
1

2
φ(2),j

)

vka(3)

)

, (4.10b)

where Rega
(

f(x)
)

indicates that one must regularize the limit x → xa. At the level at which we are working,
this regularization is not ambiguous and can, for instance, be simply performed by using Hadamard’s “partie finie”
regularization (as explained, e.g., in Appendix B of Ref. [22]). The final results we got read

Ω1(2) =
G

c2r212

(

3m2

2m1
n12 × p1 − 2n12 × p2

)

, (4.11a)

Ω1(4) =
G2

c4r312

(

(

− 11

2
m2 − 5

m2
2

m1

)

n12 × p1 +

(

6m1 +
15

2
m2

)

n12 × p2

)

+
G

c4r212

(

(

− 5m2p
2
1

8m3
1

− 3(p1 · p2)

4m2
1

+
3p2

2

4m1m2
− 3(n12 · p1)(n12 · p2)

4m2
1

− 3(n12 · p2)
2

2m1m2

)

n12 × p1

+

(

(p1 · p2)

m1m2
+

3(n12 · p1)(n12 · p2)

m1m2

)

n12 × p2 +

(

3(n12 · p1)

4m2
1

− 2(n12 · p2)

m1m2

)

p1 × p2

)

. (4.11b)

The expressions for Ω2(2) and Ω2(4) can be obtained from the above formulas by exchanging the particles’ labels.
From these results we can then explicitly write the spin-orbit Hamiltonian to leading and next-to-leading PN orders.

Indeed,

Hso(xa,pa,Sa) =
∑

a

Ωa(xb,pb) · Sa =
∑

a

(

Ωa(2)(xb,pb) +Ωa(4)(xb,pb)
)

· Sa. (4.12)

More explicitly, the separate LO and NLO contributions in the PN expansion of the spin-orbit interaction term,

Hso(xa,pa,Sa) =
1

c2
HLO

so (xa,pa,Sa) +
1

c4
HNLO

so (xa,pa,Sa) +O
(

1

c6

)

, (4.13)

5 Here and below a, b = 1, 2 are the particles’ labels, so ma, xa = (xi
a), and pa = (pai) denote, respectively, the mass parameter, the

position vector, and the linear momentum vector of the ath body; for a 6= b we also define rab ≡ xa − xb, rab ≡ |rab|, nab ≡ rab/rab;
| · | stands here for the Euclidean length of a 3-vector.



8

read,

HLO
so (xa,pa,Sa) = c2

∑

a

Ωa(2)(xb,pb) · Sa, (4.14a)

HNLO
so (xa,pa,Sa) = c4

∑

a

Ωa(4)(xb,pb) · Sa. (4.14b)

Finally, note a remarkable feature of our Hamiltonian approach to spin-orbit effects: the sole computation of the
rotational velocity of the (“conserved”) spin vector (given by parallel transport in the 2PN-accurate metric of N
spinless bodies) determines the NLO spin-dependent terms in the translational equations of motion of N spinning

particles. Indeed, the sole knowledge of Ωa(xb,pb) yields that of the total spin-dependent Hamiltonian (3.2) with
(3.3), so that the general principles of Hamiltonian dynamics (with canonical Poisson brackets) yield

ẋa = +
∂H(xb,pb,Sb)

∂pa
, ṗa = −∂H(xb,pb,Sb)

∂xa
. (4.15)

In view of the availability of algebraic manipulation programmes, there is no need to write down explicitly the trans-
lational equations of motion (4.15), with NLO accuracy in spin-orbit terms (and 3PN accuracy in spin-independent
terms [15, 20]). We shall verify below that the Hamiltonian, ADM-coordinate translational equations of motion (4.15)
are equivalent to the harmonic-coordinate ones recently derived in [13, 14] by a more complex calculation which
involved the explicit consideration of spin-dependent contributions in the metric.

V. POINCARÉ INVARIANCE

The general relativistic dynamics of an isolated N -body system should admit the full Poincaré group as a global

symmetry (because it is a symmetry which preserves asymptotic flatness). On the other hand, this symmetry is
not manifest in the Hamiltonian ADM approach to the N -body dynamics because it splits space and time, and uses
non-Lorentz covariant coordinate conditions. In a previous paper [15], treating non-spinning particles, the authors
showed how to bypass this technical mismatch: the basic idea is that, in the Hamiltonian formalism, the global
Poincaré symmetry is realized in phase-space in a non-linear manner. However, one can efficiently detect the presence
of this symmetry by proving the existence of ten phase-space generators H(xa,pa,Sa), Pi(xa,pa,Sa), Ji(xa,pa,Sa),
Gi(xa,pa,Sa) (depending on all phase-space variables) whose Poisson brackets reproduce the standard Poincaré
algebra. In the case of non-spinning particles, Ref. [15] constructed the ten generators of the Poincaré group at the
3PN level of approximation. We shall show here how to extend this construction to the more involved case of a system
of spinning particles.
Let us first recall the explicit Poisson-bracket form of the Poincaré algebra that should be realized:

{Pi, Pj} = 0, {Pi, H} = 0, {Ji, H} = 0, (5.1a)

{Ji, Pj} = εijk Pk, {Ji, Jj} = εijk Jk, (5.1b)

{Ji, Gj} = εijk Gk, (5.1c)

{Gi, H} = Pi, (5.1d)

{Gi, Pj} =
1

c2
H δij , (5.1e)

{Gi, Gj} = − 1

c2
εijk Jk. (5.1f)

The translation, Pi, and rotation, Ji, generators are simply realized as

Pi(xa,pa,Sa) =
∑

a

pai, (5.2a)

Ji(xa,pa,Sa) =
∑

a

(

εikℓ x
k
a paℓ + Sai

)

. (5.2b)
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Note the very simple, additive, form of these generators, and, in particular, how our Hamiltonian “conserved spin”
variables appear as Newtonian-like (but relativistically correct) contributions.
As for the Hamiltonian H , we already know that (in our linear-in-spin approximation), it is a sum of an orbital

part, Ho, and of the above-determined spin-orbit part, Hso, Eqs. (4.12), (4.13), and (4.14):

H(xa,pa,Sa) = Ho(xa,pa) +Hso(xa,pa,Sa). (5.3)

The orbital Hamiltonian Ho (including the rest-mass contribution) is explicitly known up to the 3PN order [15, 20]:

Ho(xa,pa) =
∑

a

mac
2 +HoN(xa,pa) +

1

c2
Ho1PN(xa,pa) +

1

c4
Ho2PN(xa,pa) +

1

c6
Ho3PN(xa,pa) +O

(

1

c8

)

. (5.4)

The most delicate generator to consider is the boost (or center-of-mass) vector G. It can be represented as a sum
of “orbital” and “spin-orbit” parts

G(xa,pa,Sa) = Go(xa,pa) +Gso(xa,pa,Sa), (5.5)

where, as everywhere in this paper, we call “spin-orbit” the part which is linear in the spin variables. The orbital
part, Go, was explicitly determined up to the the 3PN order in Ref. [15]:

Go(xa,pa) =
∑

a

maxa +
1

c2
Go1PN(xa,pa) +

1

c4
Go2PN(xa,pa) +

1

c6
Go3PN(xa,pa) +O

(

1

c8

)

. (5.6)

The spin-orbit part can be decomposed in leading-order (LO), next-to-leading-order (NLO), and further contributions:

Gso(xa,pa,Sa) =
1

c2
GLO

so (xa,pa,Sa) +
1

c4
GNLO

so (xa,pa,Sa) +O
(

1

c6

)

. (5.7)

The leading-order term in (5.7) is known from the special-relativistic limit (by replacing the special-relativistic energy
in the results of, e.g., Refs. [19, 25], by the rest-mass contribution)

GLO
so (xa,pa,Sa) = −S1 × p1

2m1
+ (1 ↔ 2), (5.8)

where the operation “+(1 ↔ 2)” denotes the addition to each displayed term of another one obtained by exchanging
the particles’ labels.
The real difficulty lies in constructing the NLO contribution to the boost generator (and in proving that it satisfies

the correct Poincaré algebra displayed above). We solved this problem by using (as in our previous work [15])
the method of undetermined coefficients. The most general form of GNLO

so can a priori depend on eight unknown
dimensionless numerical coefficients g1, . . . , g8:

GNLO
so =

p2
1

8m3
1

S1 × p1 +
Gm2

r12

(

g1
S1 × p1

m1
+ g2

S1 × p2

m2
+

(

g3
(n12 · p1)

m1
+ g4

(n12 · p2)

m2

)

n12 × S1

+
(

g5

(

S1, n12, p1
)

m1
+ g6

(

S1, n12, p2
)

m2

)

n12

)

+
Gm2

r212

(

g7

(

S1, n12, p1
)

m1
+ g8

(

S1, n12, p2
)

m2

)

x1 + (1 ↔ 2), (5.9)

where we have introduced the following notation for the Euclidean mixed product of 3-vectors: (V1, V2, V3) ≡ V1 ·(V2×
V3) = εijkV

i
1V

j
2 V

k
3 . Note that the coefficient of the first term on the right-hand-side is determined by considering

the special-relativistic limit [18, 19, 25]. We have also used some structural information coming from a conceivable
field-theory computation of G (say as the space integral of the 0i component of some effective stress-energy tensor).
Indeed, such a computation could be thought of in terms of some Feynman-like diagrams, where the interaction terms
(i.e. those containing a power of G) would all be proportional to some basic “source” term involving either S1 and
m2 (connected by a propagator, and possibly some power of the velocities, v1 ∼ p1/m1 or v2 ∼ p2/m2), or similar
terms involving S2 and m1. The main point being that pure “self-interaction” terms (say proportional to S1 and m1)
cannot appear.
Let us now consider the explicit Poincaré algebra requirements of Eqs. (5.1a)–(5.1f). It is easily verified that the

generators Pi, Ji, H , and Gi, in the forms given above, exactly satisfy the relations (5.1a), (5.1b), and (5.1c). We now
consider whether the center-of-mass vector G with the 2PN spin-orbit part given by Eq. (5.9) can satisfy the three
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relations (5.1d)–(5.1f). This requirement yields many equations that have to be satisfied by the unknown coefficients
g1, . . . , g8. We have first found that there exist unique values of the coefficients g1, . . . , g8 ensuring the fulfillment of
the sole relation (5.1d). These values are

g1 =
5

4
, g2 = −3

2
, g3 = 0, g4 = −1

2
, g5 = −1

4
, g6 = 1, g7 =

3

2
, g8 = −2. (5.10)

Then we have checked that the solution (5.10) also guarantees the fulfillment of the remaining relations (5.1e) and
(5.1f).
In summary, we succeeded in proving the Poincaré invariance of the above-defined NLO spin-orbit interaction

[determined by Eqs. (4.12), (4.13), and (4.14)] by explicitly constructing ten phase-space generators satisfying the
Poincaré algebra brackets of Eqs. (5.1a)–(5.1f).

VI. COMPARISON WITH HARMONIC-COORDINATE-BASED RESULTS

References [13, 14] recently computed, by means of two separate calculations and in harmonic coordinates, both
the NLO spin-dependent contributions in the translational equations of motion of two spinning particles, and the
corresponding NLO terms in the spin precessional equations of motion. In the present Section we shall prove that
our results are physically equivalent to the results of Refs. [13, 14] by finding the explicit form of the transformation
that match the ADM variables used by us with the harmonic variables used in Refs. [13, 14]. Let us start by warning
the reader that in the whole paper [13] and in most of the paper [14] Blanchet et al. chose to express their results
in terms of some “non-conserved” spin variables SBBF

a , i.e. variables whose Euclidean magnitudes are not conserved
in time. It is only in Sec. VII of [14] that redefined spin variables with conserved Euclidean lengths, say Sc BBF

a , are
introduced and used.
Our task here will be to exhibit the explicit transformation between the “ADM variables” (xa,pa,Sa) used in our

work, and the “harmonic variables” (ya,va ≡ ẏa,S
c BBF
a ) used in [13, 14], and to prove that this transformation maps

the two sets of results into each other. (It is more convenient for us to exhibit the link with the “conserved” version
of the harmonic spin variable used by Blanchet et al. The relation between their two spin variables, SBBF

a and Sc BBF
a ,

is given in Eq. (7.4) of [14].)
We write the transformation of variables in the general form6

ya(t) = Ya(xb(t),pb(t),Sb(t)), (6.1a)

Sc BBF
a (t) = Σa(xb(t),pb(t),Sb(t)). (6.1b)

Let us first find the transformation Σa between spin variables. Section VII of Ref. [14] gives (see Eq. (7.6) there)
the explicit result for the angular velocity vector ΩBBF

a of their conserved harmonic spin variable, yielding a spin
precessional equation of motion of the form

dSc BBF
a

dt
= ΩBBF

a × Sc BBF
a , a = 1, 2. (6.2)

They give the NLO expression of ΩBBF
a in terms of the harmonic orbital coordinates (ya,va). We have re-expressed

ΩBBF
a (yb,vb) in terms of ADM coordinates and momenta, to 1PN accuracy (using the well-known link between the

two sets of variables7). We then compared the result with our results (4.11). We have found

ΩBBF
a(2) (yb,vb) = Ωa(2)(xb,pb), (6.3a)

ΩBBF
a(4) (yb,vb) = Ωa(4)(xb,pb) +

dθa

dt
, (6.3b)

where

θ1 =
G

c4r12

(

− (n12 · p2)

4m1
n12 × p1 +

(n12 · p2)

m2
n12 × p2 −

9

4m1
p1 × p2

)

. (6.4)

6 Here, both sides refer to the same numerical value of their respective coordinate times.
7 We recall that harmonic and ADM coordinates coincide at 1PN, but that one must transform velocities into momenta by means of the
1PN transformation Eq. (4.9). See [24] for the 3PN-accurate version of this transformation.
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From the results (6.3)–(6.4) it is easy to deduce that the two sets of spin precession equations of motion are physically
equivalent8, and that the two sets of spin variables are related as in the general transformation links written above
with a spin transformation Σa of the explicit form:

Σa(xb,pb,Sb) = Sa + θa(xb,pb)× Sa. (6.5)

In other words, our conserved spin variable differs from the conserved spin variable defined in Eq. (7.4) of [14] by a
small (time-dependent) rotation of angle θa(xb,pb). Such a difference was a priori to be expected because constant-
magnitude spin vectors are not uniquely defined. We have shown above that to each choice of coordinate system is
canonically associated a particular choice of local orthonormal frame (along the worldline of a spinning particle), and
thereby a particular choice of “conserved” spin 3-vector. We have investigated whether the conserved spin 3-vector
defined by Blanchet et al. does correspond to applying our general definition to the case of harmonic coordinates. The
answer is “no”. We found that if Blanchet et al. had used our general definition (2.10) in their harmonic coordinate
system, the angular velocity Ωa that they would have obtained would differ from our ADM spin vector by a rotation
vector θa differing from the result above by having the factor 9 replaced by 1 in the last term of Eq. (6.4). There
is nothing surprising in such a difference as the spin re-definition used by Blanchet et al. was somewhat arbitrary.
Anyway, as already mentioned above physical results will not depend on such “gauge choices.”
Let us now turn to the determination of the transformation Ya between ADM and harmonic orbital degrees of

freedom. As usual we can decompose Ya into spin-independent, Yo
a, and spin-dependent (and linear-in-spin), Yso

a ,
terms:

Ya(xb,pb,Sb) = xa +Yo
a(xb,pb) +Yso

a (xb,pb,Sb), (6.6)

where the spin-dependent term is of the form

Yso
a (xb,pb,Sb) = Yso

a(2)(xb,pb,Sb) +Yso
a(4)(xb,pb,Sb) +O(c−6). (6.7)

The spin-independent part of the transformation was explicitly given, up to the 3PN order, in Ref. [24]. The leading
order spin-dependent part has been known for many years (see, e.g., Ref. [26]), and equals

Yso
a(2)(xb,pb,Sb) =

Sa × pa

2m2
ac

2
. (6.8)

We have determined the next-to-leading order spin-dependent part, Yso
a(4), by using again the method of undetermined

coefficients. We have considered the most general template for Yso
a(4) which depends (after using the special relativistic

limit to determine the 1/c4 term which remains in the G → 0 limit, and structural information of the same type as
that explained above in the case of Gso)

9 on 12 unknown coefficients. It reads

Yso
1(4)(xa,pa,Sa) = − p2

1

8c4m4
1

S1 × p1 +
Gm2

c4r12

1

m1

(

a1
S1 × p1

m1
+ a2

S1 × p2

m2

+

(

a3
(n12 · p1)

m1
+ a4

(n12 · p2)

m2

)

n12 × S1 +

(

a5

(

S1, n12, p1
)

m1
+ a6

(

S1, n12, p2
)

m2

)

n12

)

+
G

c4r12

(

b1
S2 × p1

m1
+ b2

S2 × p2

m2
+

(

b3
(n12 · p1)

m1
+ b4

(n12 · p2)

m2

)

n12 × S2

+

(

b5

(

S2, n12, p1
)

m1
+ b6

(

S2, n12, p2
)

m2

)

n12

)

. (6.9)

One can now think of two different ways of determining whether there exists a set of coefficients a1, . . . , a6; b1, . . . , b6
such that our translational Hamiltonian equations of motion (with NLO spin-dependent terms), Eq. (4.15), are

8 As a further check, we have also explicitly verified that the Hamiltonian time derivative (computed with our dynamics, namely
{SBBF

a , H}) of the originally defined (non-conserved) spin vector SBBF
a of [13] coincides with the NLO spin precession law given

by Eqs. (6.1)–(6.3) there. To do this calculation we defined the phase-space quantity SBBF
a (xb,pb,Sb) by inserting Eqs. (6.3), (6.4) into

Eq. (7.6) of [14].
9 More specifically we required that, say, m1Y

so

1
be proportional (modulo some velocity-dependent factors involving va ∼ pa/ma) either

to m1S2 or to m2S1.
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physically equivalent to the corresponding translational harmonic equations of motion derived in [13]. (1) A first way
would consist of inserting the putative general transformation Ya(a1, . . . , a6; b1, . . . , b6) directly into the translational
equations of motion derived in [13] (using the fact that we have already determined how their spin variables are linked
to ours), and to compare the result to the explicit form of our translational Hamiltonian equations of motion, Eq.
(4.15). This approach is, however, computationally heavy. (2) Therefore, we have instead used a simpler approach
consisting in comparing the ten conserved quantities derived in harmonic coordinates in Ref. [13], namely the energy
E(ya,va,S

BBF
a ), the total linear momentum P(ya,va,S

BBF
a ), the total angular momentum J(ya,va,S

BBF
a ), and

the center-of-mass vector G(ya,va,S
BBF
a ), with the ten phase-space Poincaré generators constructed above within

our Hamiltonian formalism. To do this comparison explicitly, we first need to perform two replacements: (i) to
replace the non-conserved spin variable SBBF

a used in [13] in terms of the conserved one Sc BBF
a introduced in [14],

thereby obtaining new expressionsE(ya,va,S
c BBF
a ), P(ya,va,S

c BBF
a ), J(ya,va,S

c BBF
a ), G(ya,va,S

c BBF
a ) for the ten

conserved quantities, and then (ii) to replace the harmonic-coordinate velocities va = dya/dt in terms of Hamiltonian
time-derivatives, namely Va = {Ya, H}. Finally, the values of the coefficients a1, . . . , a6 and b1, . . . , b6 must fulfill
the equations

E
(

Ya(xb,pb,Sb),Va(xb,pb,Sb),Σa(xb,pb,Sb)
)

= H(xa,pa,Sa), (6.10a)

P
(

Ya(xb,pb,Sb),Va(xb,pb,Sb),Σa(xb,pb,Sb)
)

=
∑

a

pa, (6.10b)

J
(

Ya(xb,pb,Sb),Va(xb,pb,Sb),Σa(xb,pb,Sb)
)

=
∑

a

(

xa × pa + Sa

)

, (6.10c)

G
(

Ya(xb,pb,Sb),Va(xb,pb,Sb),Σa(xb,pb,Sb)
)

= G(xa,pa,Sa). (6.10d)

By considering the first three of these equations (i.e. by comparing the two expressions for the energy, the total linear
momentum, and the total angular momentum), we obtained a unique set of values for all the unknown coefficients
a1, . . . , a6; b1, . . . , b6. We then verified that these values satisfy also the fourth of Eqs. (6.10) (thereby giving us
confidence in the correctness of our Hamiltonian, and providing many non-trivial checks of the previous results
[13, 14]).
Our unique solution for the spin-dependent transformation of orbital coordinates Yso

a(2) +Yso
a(4) reads:

Yso
1(2)(xa,pa,Sa) +Yso

1(4)(xa,pa,Sa) =
S1 × p1

2c2m2
1

− S1 × p1

c4m2
1

(

p2
1

8m2
1

+
Gm2

r12

)

+
G

2c4m2r12

(

3S2 × p2 + 2(n12 · p2)n12 × S2 +
(

S2, n12, p2
)

n12

)

. (6.11)

Note that the first three terms on the right side of Eq. (6.11) (i.e. the terms proportional to S1) have the same
structure as the exact special relativistic value [18, 19, 25] for the shift Yso

1 between the canonical10 orbital coordinate
x1 and the usual Lorentz-covariant (harmonic) orbital coordinate y1, namely

y1 = x1 +
S1 × p1

m1(m1c2 + E1)
, (6.12)

where E1 =
√

(m1c2)2 + (p1c)2 is the relativistic energy (including the rest-mass contribution). The p1-dependent
terms in the first three terms of Eq. (6.11) correspond to the NLO expansion of the special-relativistic result, while the
additional G-dependent contribution can be roughly understood as a gravitational addition to the special-relativistic
energy E1 (though it does not have the correct coefficient to be really interpreted so simply).
By contrast, the terms proportional to S2 in Eq. (6.11) do not have correspondants in the special-relativistic (i.e.

G → 0) limit. As was to be expected they vanish in the limit where the second body (of mass m2) is heavy and
fixed (p2/m2 → 0). (Indeed, if we consider a non-spinning test particle, m1, S1 = 0, moving in the background of
a fixed, heavy spinning mass, m2, S2, the harmonic-coordinate geodesic action of m1 will already yield a canonical
Hamiltonian action.) We leave to future work a direct derivation of these terms from the perturbative construction
of canonical coordinates (of the type q = y +O(s), p = pbare +O(s)) alluded to above.

10 The classical canonical variables, here denoted xa,pa,Sa, correspond, at the quantum level, to the so-called Pryce-Newton-Wigner
variables.
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Finally, as a further check on the algebra, we have also used the “direct” method (1) mentioned above (the first
method we could have used to determine the values of the coefficients a1, . . . , a6; b1, . . . , b6). More explicitly, we started
from the harmonic-coordinate translational equations of motion with NLO spin-orbit effects given in Eqs. (5.3) of Ref.
[13]. We then replaced in these equations the non-conserved spin vector SBBF

a by its expression (as given in Eq. (7.4)
of [14]) in terms of their conserved spin vector Sc BBF

a . This yields 2PN-accurate translational equations of motion of
the form

dva

dt
= AN

o a(yb,vb) +
1

c2

(

A1PN
o a (yb,vb) +ALO

so a(yb,vb,S
c BBF
b )

)

+
1

c4

(

A2PN
o a (yb,vb) +ANLO

so a (yb,vb,S
c BBF
b )

)

+O(c−6). (6.13)

We then compared the right-hand-side of Eq. (6.13), let us denote it by Aa = Aa(yb,vb,S
c BBF
b ), to its direct

Hamiltonian recomputation by means of our Hamiltonian flow, i.e.

Aa = {Va, H} =
{

{Ya, H}, H
}

, (6.14)

together with the needed transformations (6.1) (determined above) between harmonic and canonical variables. Again,
this verification worked perfectly and (together with the similar direct verification of the NLO spin precession equation
mentioned above) gives us confidence that both sets of results (harmonic and Hamiltonian) are correct.
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