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In this work the junction conditions between the exterior Reissner-Nordstrom-Vaidya space-time
with the interior quasi-spherical Szekeres space-time have been studied for analyzing gravitational
collapse in the presence of a magneto-hydrodynamic fluid undergoing dissipation in the form of heat
flow. We have discussed about the apparent horizon and have evaluated the time difference between
the formation of apparent horizon and central singularity.

PACS numbers: 04.20 -q, 04.40 Dg, 97.10. CV.

I. INTRODUCTION

In Einstein gravity, gravitational collapse is an important problem for astrophysical objects. Usually, the
formation of compact stellar objects such as white dawrf and neutron star are preceded by a period of collapse.
Hence, for astrophysical collapse, it is necessary to describe the appropriate geometry of interior and exterior
regions and to determine proper junction conditions which allow the matching of these regions.

The study of gravitational collapse was started long ago in 1939 by Oppenheimer and Snyder [1] to solve an
idealized problem of gravitational collapse preceded by assuming a spherical symmetric distribution, adiabatic
flow and the equation of state in the form of dust. Misner and Sharp [2] have introduced pressure gradient
terms in the equation of motion. Outgoing radiation of the collapsing body has been considered by Vaidya
[3], Santos [4] and collaborators [5 - 10] and the correspondence to adiabatic distribution of matter has been
considered by Misner [11] and collaborators [12, 13]. Models of radiating collapse with viscous fluid were
presented by Lake [14] and Santos [4]. Ghosh and Deshkar [15] have considered collapse of a radiating star with
a plane symmetric boundary (which has a close resemblance with spherical symmetry [16]) and have concluded
with some general remarks.

Most of the studies has considered a collapsing star whose interior geometry is spherical. But in the real
astrophysical situation, the geometry of the interior of a star may be quasi-spherical in form. Previously we
have discussed [17] junction condition between interior Szekeres model and exterior plane symmetric Vaidya
space-time. Oliveira et al [9] have proposed to study the junction conditions of a collapsing non-adiabatic
charged body producing radiation. The interior space-time V − was modeled by a magneto-hydrodynamic
fluid undergoing dissipation in the form of a radial heat flow and the exterior space-time V + was described by
the Reissner-Nordstrom-Vaidya metric which presents a spherically symmetric electric field and a radial flow
of unpolarized radiation. Now in this paper we will consider the interior space-time V − is quasi-spherical
Szekeres model and the exterior space-time V + is Reissner-Nordstrom-Vaidya metric in the presence of
electro-magnetic field.
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II. JUNCTION CONDITIONS

Let Σ be time-like 3D hypersurface which separates two 4D manifolds V − and V + . The interior
4D manifold V − is given by the quasi-spherical Szekeres space-time with line element

V − : ds2− = −dt2 + e2αdr2 + e2β(dx2 + dy2) (1)

where α and β are functions of all space-time co-ordinate variables.

Now for the transformation

x = cot
θ

2
cosφ, y = cot

θ

2
sinφ,

the metric (1) in V − becomes

ds2− = −dt2 + e2αdr2 +
1

4
e2βcosec

θ

2
(dθ2 + sin2 θ dφ2) (2)

We assume that the source for the Einstein’s field equations in V − is given by

Gµν = Tµν + Eµν (3)

The stress-energy tensor of a non-viscous heat conducting fluid has the expression

Tµν = (ρ+ p) uµ uν + p gµν + qµ uν + qν uµ (4)

where ρ, p, qµ are the fluid density, isotropic pressure and heat flow vector respectively and uµ is
the four velocity. We take the heat flow vector qµ to be orthogonal to the velocity vector uµ i.e.,
qµ uµ = 0. For co-moving co-ordinate system, we choose uµ = (1, 0, 0, 0) and qµ = (0, qr, qx, qy) with
qi = qi(t, r, x, y), i ≡ (r, x, y).

The energy- momentum tensor Eµν of the electro-magnetic field is given by

Eµν =
1

4π

[

F ν
µ Fµν − 1

4
gµνF

νδFνδ

]

(5)

where Fµν is the electro-magnetic field tensor satisfying Maxwell’s equations

Fµν = φν,µ − φµ,ν (6)

and

Fµν
; ν = 4πJµ (7)

where φµ is the four-potential and Jµ is the four-current.

Since the charge is at rest in this system, so there will be no magnetic field in this system. Thus, we may
choose the four-potential and four-current as

φµ = (φ(t, r, x, y), 0, 0, 0) (8)

and

Jµ = σ uµ (9)
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where σ is the charge density. From equation (6) using (8) we have the only non-zero component of the
field tensor as

F01 = −F10 = −∂φ

∂r
(10)

Also from equations (7) and (9) we obtain

∂2φ

∂r2
− α′ ∂φ

∂r
= 4πσe2α (11)

and

∂2φ

∂r∂t
− α̇

∂φ

∂r
= 0 (12)

where ‘ ′ ’ and ‘ . ’ denote partial derivatives with respect to r and t respectively. Integrating (12), we
have

∂φ

∂r
= K(r, x, y) eα (13)

and then from equation (11) one gets

K ′ = 4πσeα (14)

For the interior space-time model (1) with matter field (4) and electromagnetic field (5), the Einstein’s
equation (3) can be explicitly written as the following :

2 α̇ β̇ + β̇2 − e−2β(α2
x + α2

y + αxx + βxx + αyy + βyy) + e−2α(2 α′ β′ − 3 β
′2 − 2β′′) = ρ− 1

8π
K2 (15)

3 β̇2 + 2 β̈ − e−2α β
′2 − (βxx + βyy)e

−2β = −p− 1

8π
K2 (16)

α̇2 + α̈+ α̇β̇ + β̇2 + β̈ + e−2α(α′β′ − β′2 − β′′)− e−2β [α2
x + αxx − αxβx]− e−2βαyβy = −p+

1

8π
K2 (17)

α̇2 + α̈+ α̇β̇ + β̇2 + β̈ + e−2α(α′β′ − β′2 − β′′)− e−2β [α2
y + αyy − αyβy]− e−2βαxβx = −p+

1

8π
K2 (18)

αx(−αy + βy) + βxαy − αxy = 0 (19)

αy(−αx + βx) + βyαx − αxy = 0 (20)

− α̇β′ + β̇β′ + β̇′ =
1

2
qr e2α (21)

(α̇− β̇)αx + α̇x + β̇x = qx e2β (22)

(α̇− β̇)αy + α̇y + β̇y = qy e2β (23)
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αxβ
′ − β′

x = 0 (24)

αyβ
′ − β′

y = 0 (25)

where subscript stands for partial derivatives with respect to corresponding variables.

For quasi-spherical case i.e., for β′ 6= 0 , we have the solutions [17]

eβ = R(t, r) eν(r,x,y) (26)

and

eα =
R′ +R ν ′

D(t, r)
(27)

where R(t, r) and D(t, r) will satisfy the differential equations

2 R R̈+ (Ṙ2 −D2) +

(

p+
K2

8π

)

R2 = f(r) (28)

and

R Ḋ = f(r) e−2α (29)

with f(r) an arbitrary function of r . The function ν can be written in the form

e−ν = A(r) (x2 + y2) +B1(r) x+B2(r) y + C(r) (30)

where A,B1, B2 and C are arbitrary functions of r along with the restriction

(B2
1 +B2

2)− 4 A C = f(r)− 1 (31)

From equations (21), (22) and (23) we have the components of heat flux vector as [17]

qr =
2

R
Ḋ e−α (32)

qx = − Ḋ

D
αx e−β (33)

qy = − Ḋ

D
αy e−β (34)

The exterior manifold V + is described by the Reissner-Nordstrom-Vaidya space-time having metric

V + : ds2+ = −
[

1− 2M(v)

z
+

Q2

z2

]

dv2 − 2dv dz + z2(dθ2 + sin2 θ dφ2) (35)

This space-time represents a spherically symmetric field with an outgoing radial flux of unpolarized radiation
and v is the retarded time.



5

The surface of separation Σ between these two manifolds V ± is characterized by r = rΣ and the intrinsic
metric on it (in the comoving co-ordinates of the interior space-time V −) is given by

ds2Σ = −dτ2 +R2(τ)(dθ2 + sin2 θ dφ2)

Now in the description of Santos, the Israel’s junction conditions are

(i) The continuity of the line-element

(ds2−)Σ = (ds2+)Σ = ds2Σ (36)

where ( )Σ means the value of ( ) on Σ .

(ii) The continuity of the extrinsic curvature over Σ :

[Kij ] = [K+
ij ]− [K−

ij ] = 0, (37)

where the expressions of extrinsic curvature in terms of the unit space-like normal vector to Σ , n±
α are

given by [18],

K±
ij = −n±

σ

∂2χσ
±

∂ξi∂ξj
− n±

σ Γ
σ
µν

∂χµ
±

∂ξi
∂ξν±
∂ξj

(38)

Here ξi refer to the intrinsic co-ordinates (τ, x, y) on Σ and χµ
± , µ = 0, 1, 2, 3 stand for the co-ordinates

in V ± .

The boundary Σ in terms of the co-ordinates of the interior space-time V − is given by

F(r, t) = r − rΣ = 0 (rΣ , a constant) (39)

So one can write the normal vector n−
µ as

n−
µ = (0, eα, 0, 0).

Now comparing the metric ansatz for Σ and V − for dr = 0 , the continuity of the line element gives

dt

dτ
= 1, R(τ) = eβ on r = rΣ (40)

Further, the components of the extrinsic curvature for the interior space-time are

K−
ττ = 0, K−

θθ = cosec2θ K−
φφ =

[

1
4β

′2 e2β−α cosec4( θ2 )
]

Σ

and K−
ij = 0, i 6= j











(41)

On the other hand, in terms of the co-ordinates of the Reissner-Nordstrom-Vaidya space-time the surface
Σ can be characterized by

F(z, v) = z − zΣ(v) = 0 (42)

Hence, as before the unit normal vector to Σ is given by

n+
µ =

(

2
dzΣ
dv

+ 1− 2M(v)

zΣ
+

Q2

z2Σ

)− 1

2
(

−dzΣ
dv

, 1, 0, 0

)

(43)
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and the components of the extrinsic curvature for the exterior space-time are

K+
ττ =

[

v̈
v̇
− v̇

(

M(v)
z2 − Q2

z3

)]

Σ
,

K+
θθ = cosec2 θ K+

φφ =
[

v̇
(

1− 2M(v)
z

+ Q2

z2

)

z + zż
]

Σ
,

K+
ij = 0, i 6= j































(44)

(here ‘ . ’ stands for the differentiation with respect to ‘ τ ’ ).

Now, the continuity of the metric ansatz for Σ and V + over z = zΣ(v) is given by

zΣ(v) = R(τ) ,

[

2 dz
dv

+ 1− 2M(v)
z

+ Q2

z2

]

Σ
=
(

1
v̇2

)

Σ











(45)

Also the continuity of the components of the extrinsic curvature across Σ give

p = qr eα +
f(r) − 1

R2
+

4

R2
sin4(θ/2)e−2ν − Q2

R4
− K2

8π
(46)

and

M(v) =
R

2
+

Q2

2 R
− D2 R

2
+

R Ṙ2

2
(47)

which can be termed as the total energy entrapped inside the surface Σ . We note that on the boundary, the
pressure can not be vanish in general. Thus for quasi-spherical shear-free distribution of a collapsing charged
fluid undergoing dissipation in the form of heat flow, the isotropic pressure on the surface of discontinuity can
not be zero. In particular, if fluid stops dissipation, qr = 0, the pressure can not vanish at the boundary,
but in this case radiation can not exist and the exterior space-time V + is the Reissner-Nordstrom-Vaidya
space-time. But in absence of isotropic pressure there may still be radiation on the boundary and the exterior
space-time V + will still be Reissner-Nordstrom-Vaidya space-time.

The total luminosity for an observer rest at infinity is [7]

L∞ = −
(

dm

dv

)

Σ

(48)

If we now consider an observer on the boundary Σ then the luminosity for that observer is

LΣ = −
[

(

dv

dτ

)2
dm

dv

]

Σ

(49)

Now the boundary redshift of the radiation emitted by a star can be written as

ZΣ =

√

LΣ

L∞
− 1 =

dv

dτ
− 1 =

1

Ṙ+D
− 1 (50)

Hence the luminosity measured by an observer at rest at infinity is reduced by the redshift in comparison to
the luminosity observed on the surface of collapsing body. Also when Ṙ +D = 0 then the boundary redshift
attains unlimited value (i.e., ZΣ → ∞ ).
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III. APPARENT HORIZON AND ITS TIME OF FORMATION

The first integral of equation (28) is given by

Ṙ2 = f(r) +
F (r)

R
− K2R2

24π
+

1

R

∫

(D2 − pR2)dR (51)

As D is regular and p blows up at the singularity [19], so let us assume

D = λ(r)R, p =
f(r)

R2
(52)

The evolution equation (51) satisfies to

Ṙ2 =
F (r)

R
− K2R2

24π
+

λ2

3
R2 (53)

Further, the time of formation of apparent horizon tah(r) is given by

Ṙ2(tah(r), r) = 1 + f(r) (54)

Hence for equation (53) we have a cubic equation in R as

(

λ2

3
− K2

24π

)

R3(tah(r), r) − (1 + f(r))R(tah(r), r) + F (r) = 0 (55)

Thus apparent horizon exists if this cubic equation in R has at least one positive root. We shall show below
different conditions for existence of positive roots.

I. For λ2

3 − K2

24π > 0 and F (r) < 2(1+f)
3

2

(

λ2

3
− K2

24π

) 1

2

, there are two positive roots of equation (55) and hence there

are two apparent horizons, given by

Rc(r) = 2

√

(1 + f)3

(λ
2

3 − K2

24π )
cos

[

1

3
cos−1

(

−1

2
F (r)

√

λ2

3
− K2

24π

)]

(56)

Rb(r) = 2

√

(1 + f)3

(λ
2

3 − K2

24π )
cos

[

4π

3
+

1

3
cos−1

(

−1

2
F (r)

√

λ2

3
− K2

24π

)]

(57)

which are termed as cosmological and black hole horizons.

II. When F (r) = 2(1+f)
3

2

(

λ2

3
− K2

24π

) 1

2

, (λ > K

2
√
2π

) there is only one positive root, which corresponds to a single

apparent horizon

Rbc(r) =

√

(1 + f)3

(λ
2

3 − K2

24π )
(58)

III. For F (r) > 2(1+f)
3

2

(λ2

3
− K2

24π
)
1

2

, (λ > K

2
√
2π

) there are no positive roots and consequently there are no

apparent horizons.

IV. If λ < K

2
√
2π

then also one positive root exists to have a unique apparent horizon. A detailed study of

apparent horizons in quasi-spherical gravitational collapse with a non-zero Λ-term can be found in [20].
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Moreover, solving the dynamical equation (53) we obtain

R
3

2 =
2
√
6πF√

8πλ2 −K2
sinh





√
8πλ2 −K2

4
√

2π
3

(t− ts(r))



 (59)

where ts(r) is the time of formation of singularity of a particular shell at co-ordinate distance ‘r’ (i.e., R = 0
at ts(r) = 0). Hence the time difference between the formation of apparent horizon and the singularity formation
is given by

tah(r) − ts(r) =
4
√

2π
3√

8πλ2 −K2
sinh−1

[√
8πλ2 −K2

2
√
6πF

R
3

2

ah

]

(60)

(One may note that in solving the differential equation (53) it is assumed that λ > K

2
√
2π

. However if

λ < K

2
√
2π

then ‘sinh’ is to be replaced by ‘sin’ in the solution (59)). Thus it is to be observed that heat flow

and electromagnetic field modify the formation of horizon and also the time difference between the formation
of apparent horizon and singularity.

Further, from equation (47) we note that there is dissipation of total energy entrapped inside the surface
Σ due to the heat flow while the electromagnetic field favours entrapped energy within the surface Σ . Finally,
the contribution to the isotropic pressure due to the heat flow and electromagnetic field is in reverse order (or
in the same order) provided D is positive (or negative). Hence for increasing the electromagnetic field tries
to diminish the pressure on the boundary which may be balanced by the heat flux term, while for decreasing
D both of them try to reduce the pressure. So we conclude that electromagnetic field favours formation of
naked singularity while heat flux may or may not be favourable for formation of black hole.
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