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ABSTRACT

We consider charged rotating black holes localized on a three-brane in the DGP model.

Assuming a Z2-symmetry across the brane and with a stationary and axisymmetric metric

ansatz on the brane, a particular solution is obtained in the Kerr-Schild form. This so-

lution belongs to the accelerated branch of the DGP model and has the characteristic of

the Kerr-Newman-de Sitter type solution in general relativity. Using a modified version of

Boyer-Lindquist coordinates we examine the structures of the horizon and ergosphere.
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1 Introduction

Recent astronomical observations indicate that our universe is in the phase of accelerated

expansion [1]. There has been much recent interest in the idea that our universe may be

a brane embedded in some higher dimensional space. One of the models along this line

proposed by Dvali, Gabadadze and Porrati (DGP) [2] is known to contain a branch of

solutions exhibiting self accelerated expansion of the universe [3].

The brane world black holes in the Randall-Sundrum(RS) model [4] have been studied by

many authors. Firstly, Chamblin et al. [5] presented evidence that a non-rotating uncharged

black hole on the brane is described by a “black cigar” solution in five dimensions. Then,

Dadhich et al. [6] showed that the Reissner-Nördstrom metric is an exact solution of the

effective Einstein equations on the brane, and Shiromizu et al. [7] derived the effective

gravitational equations on the brane. A solution for charged brane world black holes in the

RS model was obtained in [8] and the charged rotating case was obtained in [9]. In particular,

Aliev et al. [9] found exact solutions of charged rotating black holes in the Kerr-Schild form

[10] using a stationary and axisymmetric metric ansatz on the brane.

In the case of the DGP model, approximate Schwarzschild solutions had been obtained

in [11, 12, 13, 14]. An exact Schwarzschild solution on the brane was obtained in [15]. In the

DGP model, the sources are assumed to be localized on a brane by a certain mechanism not

related to gravity itself. In [16], it was discussed that if the sources were not localized, the

brane with the induced graviton kinetic term has effectively repulsive gravity and it would

push any source off the brane. As a result, ordinary black holes cannot be held on the brane.

However, authors of [15] commented that charged black holes could still be quasilocalized if

the corresponding gauge fields are localized. Recently, motivated by the above suggestion,

an exact solution of charged black holes on the brane in the DGP model was obtained in

[17]. However, up to now no solution of charged rotating black holes on the DGP brane is

obtained.

Here, we intend to improve this situation a bit. We try to obtain an exact solution of

charged rotating black holes on the brane in the DGP model by noting a particular set of

conditions that satisfies the constraint equation. We first obtain the solution in the Kerr-
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Schild form [10]. Then, by using a modified Boyer-Lindquist coordinate transformation we

find the horizon and ergosphere. In doing this, we use a stationary and axisymmetric metric

ansatz on the brane and the solution exhibits the characteristics of self accelerated expansion

of the brane world universe.

This paper is organized as follows. In section 2, we set the action and equations of motion

of the DGP model following the approach of Ref. [18]. In section 3, we get a rotating black

hole solution on the brane in the absence of Maxwell field and examine the properties of the

solution. In section 4, we extend the result of section 3 and find a solution for the charged

rotating case. In section 5, we conclude with discussion. In this last section, we discuss a

possible bulk solution consistent with our on-brane solution.

2 Action and field equations

The DGP gravitational action in the presence of sources takes the form [2]

S = M3
∗

∫

d5x
√−g (5)R +

∫

d4x
√
−h
(

M2
PR + Lmatter

)

, (1)

where R and (5)R are the 4D and 5D Ricci scalars, respectively and Lmatter is the Lagrangian

of the matter fields trapped on the brane. Here, the (4 + 1) coordinates are xA = (xµ, y(=

x5)), µ = 0, 1, 2, 3, and g is the determinant of the five-dimensional metric gAB, while h is

the determinant of the four-dimensional metric hµν = gµν(x
µ, y = 0). A cross-over scale is

defined by rc = m−1
c = M2

P/2M
3
∗ . There is a boundary(a brane) at y = 0 and Z2 symmetry

across the boundary is assumed. The field equations derived from the action (1) have the

form

(5)GAB =(5) RAB − 1

2
gAB

(5)R = κ2
5

√

h

g
(XAB + TAB) δ(y), (2)

where κ2
4 = M−2

P and κ2
5 = M−3

∗ , while XAB = −δµAδ
ν
BGµν/κ

2
4 and TAB = δµAδ

ν
BTµν is the

energy-momentum tensor in the braneworld.

Now, we consider the metric of the following form [18, 19],

ds2 = gABdx
AdxB = gµν(x, y)dx

µdxν + 2Nµdx
µdy + (N2 + gµνN

µNν)dy2. (3)
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The (µ5), (55) components of the field equations (2) are called as the momentum and

Hamiltonian constraint equations, respectively, and are given by [18, 19]

∇νK
ν
µ −∇µK = 0, (4)

R −K2 +KµνK
µν = 0, (5)

where Kµν is the extrinsic curvature tensor defined by

Kµν =
1

2N
(∂ygµν −∇µNν −∇νNµ), (6)

and ∇µ is the covariant derivative operator associated with the metric gµν .

Integrating both sides of the field equation (2) along the y direction and taking the limit

of y = 0 on the both sides of the brane we arrive at the Israel’s junction condition [20] on

the Z2 symmetric brane in the relation [17]

Gµν = κ2
4Tµν +mc(Kµν − hµνK). (7)

In this paper, we take the electro-magnetic field as the matter source on the brane. Using

(7) in the constraint (4) and (5) we find that the momentum constraint equation is satisfied

identically, while the Hamiltonian constraint equation is written as

RµνR
µν − 1

3
R2 +m2

cR + κ4
4TµνT

µν − 2κ2
4RµνT

µν = 0, (8)

where we used T = T µ
µ = 0.

Finally, combining the Einstein Equations in the bulk(y 6= 0)

(5)GAB =(5) RAB − 1

2
gAB

(5)R = 0 (9)

with (7) we arrive at the gravitational field equations on the brane [17]

Gµν = −Eµν −
κ4
4

m2
c

(T ρ
µTρν −

1

2
hµνTρσT

ρσ)

− 1

m2
c

(Rρ
µRρν −

2

3
RRµν +

1

4
hµνR

2 − 1

2
hµνRρσR

ρσ)

+
κ2
4

m2
c

(Rρ
µTρν + T ρ

µRρν −
2

3
RTµν − hµνRρσT

ρσ), (10)
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where Eµν is the traceless “electric part” of the 5-dimensional Weyl tensor (5)CABCD [7] and

m−1
c = κ2

5/2κ
2
4. In what follows we shall set κ2

4 = 8π.

In general, the field equations on the brane are not closed and one needs to solve the

evolution equations into the bulk. However, by assuming a special ansatz for the induced

metric on the brane, one can make the system of equations on the brane closed.

3 Rotating black hole solution

We start with a stationary and axisymmetric metric describing a rotating black hole localized

on a 3-brane in the DGP model. We write it as the Kerr-Schild form [10] in which the metric

is expressed in a linear approximation around the flat metric:

ds2 = (ds2)flat + f(kµdx
µ)2, (11)

where f is an arbitrary scalar function and kµ is a null, geodesic vector field in both the flat

and full metrics with

kµk
µ = 0, kνDνkµ = 0. (12)

Introducing the Kerr-Schild coordinates xµ = {u, r, θ, ϕ}, we write the metric as [9]

ds2 = hµνdx
µdxν = [−(du+ dr)2 + dr2 + Σdθ2

+(r2 + a2) sin2 θdϕ2 + 2a sin2 θdrdϕ] +H(r, θ)(du− a sin2 θdϕ)2, (13)

where

Σ(r, θ) = r2 + a2 cos2 θ, (14)

and a is the angular momentum per unit mass of the black hole.

For the uncharged case we can set Tµν = 0, and the Hamiltonian constraint equation (8)

is reduced to

RµνR
µν − 1

3
R2 +m2

cR = 0. (15)

Note that the above equation is satisfied with the following two sets of conditions,

R = 0, RµνR
µν = 0, (16)
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and

R = 12m2
c , RµνR

µν = 36m4
c . (17)

The first set (16) is satisfied with the metric function H(r, θ) = 2Mr/Σ in the metric (13),

which is the usual Kerr solution in general relativity. The second set (17) corresponds to a

non-flat(de-Sitter) case, in which the conditions (17) in terms of the metric function H(r, θ)

in (13) are given by the following:

12m2
c =

∂2H

∂r2
+

4r

Σ

∂H

∂r
+

2H

Σ
, (18)

36m4
c =

4H

Σ2

(

r
∂H

∂r
+ a2 cos2 θ

∂2H

∂r2

)

+
4r2

Σ2

(

∂H

∂r

)2

+
2r

Σ

∂H

∂r

∂2H

∂r2

+
1

2

(

∂2H

∂r2

)2

+
2

Σ4
(r4 − 2a2r2 cos2 θ + 5a4 cos4 θ)H2. (19)

The metric function H satisfying the above two equations is given by

H =
2Mr +m2

c(r
4 + 6r2a2 cos2 θ − 3a4 cos4 θ)

Σ
, (20)

where the parameter M is an arbitrary constant of integration. One can easily check that

the metric (13) with (20) satisfies the equation (8) with Tµν = 0. In the limit a → 0, the

metric (13) with (20) is reduced to the Schwarzschild-de Sitter black hole solution with the

cosmological constant Λ = 3m2
c in general relativity. This corresponds to the solution for

the U(r) = −2 case in Ref. [15], and belongs to the accelerated branch of Kerr-de Sitter

type solution [21, 22].

In order to check the physical properties of the metric given by (13) with (20) we want

to transform the Kerr-Schild form to the Boyer-Lindquist coordinates. However, the equa-

tions (18) and (19) are not preserved under the transformation for the usual Boyer-Lindquist

coordinates. Thus in order to preserve the equations (18) and (19) under coordinate trans-

formation, we use the following modified transformation of Boyer-Lindquist type:

du = dt− r2 + a2

∆
dr −Xdθ, dϕ = dφ− a

∆
dr − Y dθ, (21)

where ∆ = r2 + a2 −H(r, θ)Σ(r, θ), X and Y are functions of r and θ only and satisfy the

relation
∂

∂r
X(r, θ) =

∂

∂θ

(

r2 + a2

∆

)

,
∂

∂r
Y (r, θ) =

∂

∂θ

( a

∆

)

. (22)
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The newly added terms X and Y can be analytically integrated from the transformation

(21) for the function H given in (20). In fact, the modified transformation (21) that satisfy

(22) leaves the Hamiltonian constraint (15) invariant.

Under the transformation (21), the metric (13) takes the form

ds2 = −(1−H)dt2 +
Σ

∆
dr2 + 2[X −H(X − Y a sin2 θ)]dtdθ

+[Σ− (1−H)X2 − 2HXY a sin2 θ + Y 2(r2 + a2 +Ha2 sin2 θ)]dθ2

−2[(r2 + a2)Y − aH(X − Y a sin2 θ)] sin2 θdθdφ+ (r2 + a2 +Ha2 sin2 θ) sin2 θdφ2

−2Ha sin2 θdtdφ. (23)

Using “MATHEMATICA” we check that the equations (18) and (19) remain unchanged

with the metric (23) for any metric function H(r, θ). Hence, we can use (20) as a solution

for the metric in (23).

For r ≪ rc, X and Y with (20) can be approximately written as

X ≈ −6m2
ca

2 sin 2θ

[

r − (r21 + a2)(r21 − a2 cos2 θ)

(r − r1)(r1 − r2)2
+

2T1 ln(
r
r1
− 1)

(r1 − r2)3
+ (r1 ↔ r2)

]

+ η1(θ),

Y ≈ 6m2
ca

3 sin 2θ

[

(r21 − a2 cos2 θ)

(r − r1)(r1 − r2)2
+

2T2 ln(
r
r1
− 1)

(r1 − r2)3
+ (r1 ↔ r2)

]

+ η2(θ), (24)

where T1 = r41 − 2r31r2 − r1r2a
2 sin2 θ + a4 cos2 θ, T2 = r1r2 − a2 cos2 θ and r1, r2 are two

roots of the equation r2 − 2Mr+ a2 = 0. When the crossover scale rc is infinite (or mc = 0)

and both η1(θ) and η2(θ) are set to be zero, then the equations (18) and (19) are preserved

with the metric function H = 2Mr
Σ

. This corresponds to the exact Kerr solution in general

relativity once we identify the pararmeter M as the mass of the black hole.

The governing equation for horizon radius is given by

∆ = r2 + a2 − 2Mr −m2
c(r

4 + 6r2a2 cos2 θ − 3a4 cos4 θ) = 0. (25)

The metric (23) with (20) has three horizons located at r± and rCH , provided the total mass

M lies in the range M1e|θ=π/2 ≤ M ≤ M2e|θ=0,π where M1e and M2e are given by

M1e =
1

3
√
6mc

√

α− A3/2, M2e =
1

3
√
6mc

√

α + A3/2 (26)

with

α = 1 + 36m2
ca

2 − 18m2
ca

2 cos2 θ(1 + 12m2
ca

2) + 216m4
ca

4 cos4 θ(1− 4m2
ca

2 cos2 θ) (27)
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and

A = 1− 12m2
ca

2(1 + cos2 θ). (28)

Here rCH , which is smaller than the crossover scale rc, is a cosmological horizon, r+ and r−

are outer and inner horizon, respectively.

The horizons can be expressed explicitly as follows:

r± =
1

2mc

(

D
1/2
− ±

√

D+ − 4MmcD
−1/2
−

)

, rCH =
1

2mc

(

−D
1/2
− +

√

D+ + 4MmcD
−1/2
−

)

,

(29)

where

D± = C ± 1

3

[

C + A

(

2

B +
√
B2 − 4A3

)1/3

+

(

2

B +
√
B2 − 4A3

)−1/3
]

(30)

with C = 1 − 6m2
ca

2 cos2 θ and B = 2C[C2 + 36m2
ca

2(1 + 3m2
ca

2 cos4 θ)] − 108m2
cM

2. Note

that the horizons r± and rCH always have real positive values if the total mass lies between

the masses M1e|θ=π/2 and M2e|θ=0,π.

For r ≪ rc, the outer and inner horizons can be approximated as

r± ≈ M ±
√

M2 − a2(1− 3m2
ca

2 cos2 θ)

1− 6m2
ca

2 cos2 θ
. (31)

In the limit of rc → ∞, we get M1e → a, M2e → ∞, r± → M ±
√
M2 − a2, and rCH → ∞

independent of the angle θ as one can expect from (25).

For the ergosphere we calculate the condition

gtt = r2 + a2 cos2 θ − 2Mr −m2
c(r

4 + 6r2a2 cos2 θ − 3a4 cos4 θ) = 0, (32)

which has three boundaries of the ergosphere known as the “static limit” surfaces located at

r±E and rCH
E .

Setting r±E and rCH
E as

r±E =
1

2mc

(

D̃
1/2
− ±

√

D̃+ − 4MmcD̃
−1/2
−

)

, rCH
E =

1

2mc

(

−D̃
1/2
− +

√

D̃+ + 4MmcD̃
−1/2
−

)

,

(33)

where

D̃± = C ± 1

3



C + Ã

(

2

B̃ +
√

B̃2 − 4Ã3

)1/3

+

(

2

B̃ +
√

B̃2 − 4Ã3

)−1/3


 (34)
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with Ã = 1− 24m2
ca

2 cos2 θ and B̃ = 2C[C2 + 36m2
ca

2 cos2 θ(1 + 3m2
ca

2 cos2 θ)]− 108m2
cM

2,

we obtain

r−E ≤ r− < r+ ≤ r+E < rCH
E ≤ rCH , (35)

with the equalities holding at θ = 0, π.

Comparing this with the event horizons (29), we see that the ergosphere lies in the region

r+ < r < r+E and rCH
E < r < rCH , which coincide with the horizon at θ = 0, π.

4 Charged rotating black hole solution

In this section, we consider the case in which the brane contains a Maxwell field with an

electric charge. Outside the black hole, the Maxwell field can be described by a source-free

Maxwell equations. Thus, we have to solve simultaneously the constraint equation (8) and

the Maxwell equations:

gµνDµFνσ = 0, (36)

D[µFνσ] = 0, (37)

where Dµ is the covariant derivative operator associated with the brane metric hµν . However,

we only need to solve Eqs. (8) and (36), since Eq. (37) is satisfied identically.

Hinted from the characteristic of the Kerr-Newman solution in general relativity which

yields RµνR
µν = 4Q4/Σ4, RµνT

µν = Q4/2πΣ4, TµνT
µν = Q4/16π2Σ4, we note that the Hamil-

tonian constraint (8) on the brane is satisfied with the following two set of conditions:

R = 0, RµνR
µν =

4Q4

Σ4
, RµνT

µν =
Q4

2πΣ4
, TµνT

µν =
Q4

16π2Σ4
(38)

and

R = 12m2
c , RµνR

µν = 36m4
c +

4Q4

Σ4
, RµνT

µν =
Q4

2πΣ4
, TµνT

µν =
Q4

16π2Σ4
. (39)

The first set (38) is satisfied with the conventional Kerr-Newman solution which is given by

the following potential one-form Aµ and the metric function H :

Aµdx
µ = −Qr

Σ
(du− a sin2 θdϕ), (40)
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H =
2Mr −Q2

Σ
, (41)

where the parameter Q is the electric charge of the black hole. The second set (39) is satisfied

with the following solution:

Aµdx
µ = −Qr

Σ
(du− a sin2 θdϕ), (42)

H =
2Mr −Q2 +m2

c(r
4 + 6r2a2 cos2 θ − 3a4 cos4 θ)

Σ
. (43)

In the non-rotating limit, a → 0, the second solution, (42) and (43), reduces to the conven-

tional charged de Sitter solution with the cosmological constant Λ = 3m2
c [25]. This case

corresponds to the U(r) = −2 case of Ref. [17], in which it was shown to belong to the

accelerated branch.

In order to check the physical properties of the solution, we again make a transforma-

tion of the Boyer-Lindquist type (21). Since the Maxwell equation (36) should transform

covariantly under (21), the potential one-form (42) should also transform covariantly:

Aµdx
µ = −Qr

Σ

[

dt− a sin2 θdφ− (X − Y a sin2 θ)dθ
]

+
Qr

∆
dr. (44)

The nonvanishing components of the electromagnetic field tensor Fµν are given by

Frθ = −Q(r2 − a2 cos2 θ)(X − Y a sin2 θ)

Σ2
, Frt =

Q(r2 − a2 cos2 θ)

Σ2
,

Ftθ =
Qra sin 2θ

Σ2
, Fφr =

Qa(r2 − a2 cos2 θ) sin2 θ

Σ2
, Fθφ =

Qar(r2 + a2) sin 2θ

Σ2
. (45)

Since the Hamiltonian constraint (8) is invariant under (21) with the transformed potential

one-form (44), we only need to check the Maxwell equation (36). Indeed, the above potential

one-form (44) satisfies the Maxwell equation (36) with the metric (23) and (43).

Now, we would like to examine the gravitational effect on the brane due to the extra

dimension. To do that we will calculate the projected Weyl tensor Eµν in (10) using our

potential one-form (44) and the metric (23) with (43). In the charged rotating case the

tensor Eµν is quite complicated to tell anything definite. For instance, Er
r component is

given by

Er
r = − m2

c

Σ2∆
[ 6a2( r4(1− 3 cos2 θ)− 2r2a2 cos2 θ sin2 θ + a4 cos4 θ(21− 19 cos2 θ) )

+ Q2(r4 + 6r2a2 cos2 θ − 3a4 cos4 θ)] +
Q2

Σ2∆
(r2 − 2Mr +Q2). (46)
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In the non-rotating limit (a → 0), with (43) and (44) the gravitational field equation (10)

becomes

κ2
4Tµν = −Eµν , (47)

where Tµν is calculated to be the same energy-momentum tensor as in the conventional four

dimensional charged black hole case. This tells us that there is no gravitational effect on the

brane due to the extra dimension in the non-rotating charged case.

To examine the horizon structure of the metric given by (23) and (43), we write the

governing equation for the radius of horizon

∆ = r2 + a2 +Q2 − 2Mr −m2
c(r

4 + 6r2a2 cos2 θ − 3a4 cos4 θ) = 0. (48)

The solution for the above equation provides three horizons located at r′± and r′CH when the

total mass M lies in the range M ′
1e|θ=π/2 ≤ M ≤ M ′

2e|θ=0,π where M ′
1e and M ′

2e are given by

M ′
1e =

1

3
√
6mc

√

α′ − A′3/2, M ′
2e =

1

3
√
6mc

√

α′ + A′3/2. (49)

Here,

α′ = 1+36m2
c(a

2+Q2)−18m2
ca

2 cos2 θ(1+12m2
ca

2+12m2
cQ

2)+216m4
ca

4 cos4 θ(1−4m2
ca

2 cos2 θ)

(50)

and

A′ = 1− 12m2
c(a

2 +Q2 + a2 cos2 θ). (51)

The explicit expressions of the horizons are as follows:

r′± =
1

2mc

(

D
′1/2
− ±

√

D′
+ − 4MmcD

′−1/2
−

)

, r′CH =
1

2mc

(

−D
′1/2
− +

√

D′
+ + 4MmcD

′−1/2
−

)

,

(52)

where

D′
± = C ± 1

3

[

C + A′

(

2

B′ +
√
B′2 − 4A′3

)1/3

+

(

2

B′ +
√
B′2 − 4′A3

)−1/3
]

, (53)

and B′ = 2C3 + 72m2
cC(a2 +Q2 + 3m2

ca
4 cos4 θ)− 108m2

cM
2.

Note that the horizons r′± and r′CH always have a real positive value if the total mass

lies between the masses M ′
1e|θ=π/2 and M ′

2e|θ=0,π. In the limit rc → ∞, we get M ′
1e → a,
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M ′
2e → ∞, r′± → M ±

√

M2 − a2 −Q2, and r′CH → ∞ independent of the angle θ as in the

rotating case.

The defining condition gtt = 0 for the ergosphere in this case is given by

r2 + a2 cos2 θ +Q2 − 2Mr −m2
c(r

4 + 6r2a2 cos2 θ − 3a4 cos4 θ) = 0. (54)

Setting r
′±
E and r

′CH
E as

r
′±
E =

1

2mc

(

D̃′
1/2

− ±
√

D̃′
+ − 4MmcD̃′

−1/2

−

)

, r
′CH
E =

1

2mc

(

−D̃′
1/2

− +

√

D̃′
+ + 4MmcD̃′

−1/2

−

)

,

(55)

where

D̃′
± = C ± 1

3






C + Ã′





2

B̃′ +

√

B̃′
2 − 4Ã′

3





1/3

+





2

B̃′ +

√

B̃′
2 − 4Ã′

3





−1/3





, (56)

with

Ã′ = 1− 12m2
cQ

2 − 24m2
ca

2 cos2 θ,

B̃′ = 2C3 + 72m2
cC(Q2 + a2 cos2 θ + 3m2

ca
4 cos4 θ)− 108m2

cM
2,

we get the same relation as in the non-charged rotating case

r
′−
E ≤ r′− < r′+ ≤ r

′+
E < r

′CH
E ≤ r′CH , (57)

and the ergosphere lies in the region r′+ < r < r
′+
E and r

′CH
E < r < r′CH coinciding with the

horizon at θ = 0, π.

5 Discussion

In this paper we considered charged rotating black holes on a 3-brane in the DGP model.

Assuming a Z2-symmetry across the brane and with a stationary and axisymmetric metric

ansatz on the brane, we solved the constraint equations of (4+1)-dimensional gravity to find

a metric for charged rotating black hole on the brane.

First, we obtain a particular solution of the Kerr-Newman-de Sitter type in the Kerr-

Schild form, which corresponds to the so-called accelerated branch of the DGP model.
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Then, in order to find the event horizon of the black hole, we introduce a modified version

of Boyer-Lindquist coordinates. The Hamiltonian constraint equation is quite complicated to

solve, even compared with the RS model case [9], and not preserved under the conventional

Boyer-Lindquist transformation. Thus in order to use the obtained Kerr-Schild type solution,

we have to introduce a modified transformation which preserves the constraint equation.

In the case of the RS model, the authors of [9] devised a transformation for a given fixed

angle θ, and showed that the equations are preserved under their transformation thereby

the metric function H remains as a solution of the constraint equation. However, with this

type of transformation the coordinates patches for different θ angles belong to differently

transformed coordinates, and it makes hard to view the obtained event horizon in a single

consistent picture. In order to avoid this kind of problem, we use a slightly modified version of

Boyer-Lindquist coordinate transformation which covers the entire θ angle while the solution

obtained in the Kerr-Schild form can still be used. In this solution, the structure of the

horizon is very similar to that of the Kerr-Newman-de Sitter black hole in general relativity

except for the θ-angle dependence. When the crossover scale rc approaches infinity, the

θ-angle dependence of the horizon disappears and the solution reduces to that of the Kerr-

Newman black hole in general relativity.

Finally, we discuss a possible bulk solution consistent with our on-brane solution. For

this, here we limit ourselves to the non-rotating limit to make our discussion tractable.

Rather than following the strategy of extending the on-brane solution to the bulk, we try

directly to find a bulk solution consistent with our on-brane solution. For the most simple

uncharged case, we find that the following 5D metric satisfies the 5D field equations, (2):

ds2 = e−2mc|y|(dy2 + hµνdx
µdxν), (58)

where

hµνdx
µdxν = −

(

1− 2Mr +m2
cr

4

r2

)

dt2 +

(

1− 2Mr +m2
cr

4

r2

)−1

dr2

+r2(dθ2 + sin2 θdφ2). (59)

Namely, the above metric satisfies the 5D Einstein equation in the bulk, (5)GAB = 0, as well

as the on-brane field equation, (10). The projected Weyl tensor Eµν obtained from the 5D
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metric (58) vanishes, and this is consistent with the previously obtained relation (47) since

the energy-momentum tensor vanishes in this case. Therefore, in the uncharged case we can

say that our on-brane solution is consistent with the above given bulk solution.

For the charged case, the electro-magnetic field vanishes off the brane (in the bulk) by

the set-up. So far we could not find a bulk solution which smoothly matches the metric on

the brane with the metric off the brane while reflects the discontinuity of electro-magnetic

field at the boundary which is non-zero on the brane and suddenly vanishes off the brane.

We now leave this challenging problem of finding consistent bulk solutions for the charged

and rotating case as an open project and welcome anyone who is interested in.
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