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Abstract

We use the method of embedding a subsystem (i.e. its observable
algebra) into a larger quantum system to extract a cosmological sector
from full Loop Quantum Gravity. The application of this method pro-
vides a setting for a systematic study of the interplay between diffeo-
morphism invariance and symmetry reduction. The non-triviality of this
relation is shown by extracting a cosmological system that has configura-
tions variables that are very similar to the ones of a super-selection sector
of standard Loop Quantum Cosmology. The full operator algebra however
turns out to be different from standard Loop Quantum Cosmology. The
homogeneous isotropic sector of pure gravity turns out to be quantum
mechanics on a circle. The dynamics of our system seems pathological at
first sight, and we give both mathematical and physical reasons for this
behavior and we explain a strategy to cure these pathologies.

1 Introduction

Cosmological models are one of the most important areas of application for
General Relativity. This is on the one hand due to the importance of gravity
in the description of the dynamics of the universe as a whole, but also due to
the huge simplifications that occur mathematically, when one considers homoge-
neous models that describe large scale cosmology, which make exact calculations
possible, so one can make strong and unambiguous predictions. The classical
cosmological models are indeed sectors of General Relativity in the sense that
they can be embedded into full General Relativity or conversely that one can
reduce the phase space of General Relativity to the respective mini-super-phase
space.

http://arxiv.org/abs/0711.1098v1


The importance of quantum gravity in the early universe has been stressed
for a long time. It is thought to be responsible for providing initial conditions
and a consistent dynamics of the universe very close to the classical big bang,
particularly it is expected to resolve singularities. A successful theory of quan-
tum gravity is provided by Loop Quantum Gravity (LQG) [13, 15] which has
sparked investigations into Loop Quantum Cosmology (LQC) premiered by Bo-
jowald [3]. LQC is a symmetry reduction of LQG and shares many features
of the full theory of Loop Quantum Gravity, however the full relation between
Bojowalds LQC and full LQG is not completely understood. LQC can be con-
structed using symmetric states on a lattice and then averaging the fundamental
operators over the isometry group [4, 5]. There are however concerns [17] that
this implementation of symmetry does not precisely capture the symmetric sec-
tor of LQG. It is the aim of this paper is to provide a general construction
principle for symmetric sectors in LQG and to construct cosmological sectors
thereof.

Recently we introduced a general concept of reducing a quantum theory of
a system to a subsystem that does not require a classical reduction [6]. This
procedure is based on the analogue of the pull-back under a Poisson-embedding
of observables from a full classical theory to a reduced classical theory. We
will work with an adaption of the Weyl-algebra setting for LQG [9] in this
paper, which allows us to work in the the C∗-algebraic framework. This pro-
vides in principle a precise prescription for the reduction of composite operators,
particularly for those that are elements of the C∗-algebra. A certain class of
C∗-algebras and certain classical embeddings, that we called ”full” in [6] can be
turned into quantum embeddings. These qunatum embeddings can be used to
construct the C∗-algebra of the reduced system directly from the full theory for
which they induce a Hilbert space representation out of a given Hilbert space
representation of the full quantum algebra.

This approach to the construction of a reduced quantum system is applied
to Loop Quantum Gravity in this paper. We start with the classical Bianchi
I sector in Ashtekar variables and construct a corresponding quantum embed-
ding. This needs a gauge fixing of the diffeomorphisms, which we achieve for
a set of extended diffeomorphisms whose physical significance where explained
in [7]. This set of diffeomorphisms acts most naturally as a groupoid as we will
show in the course of this paper. It turns out that the construction of the quan-
tum embedding is not free of ambiguities, although the classical embedding is
unique. We construct a ”simplest” embedding and discuss briefly other possi-
bilities. This quantum embedding is then used to extract a cosmological sector
from the full theory of Loop Quantum Gravity. As a first step, we extract the
locally rotationally symmetric and the isotropic sector of pure gravity on the
base manifold σ = R3. The isotropic sector turns out to be equivalent to usual
quantum mechanics of a particle on a circle and the locally rotationally sym-
metric sector turns out to be quantum mechanics on a 2-torus. Both systems
are represented on a separable Hilbert space. Thereafter we give an example for
the treatment of Loop Quantum Gravity with matter within our approach.

Using the fact that Gravity is a theory with a constrained Hamiltonian we
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give a naive construction of the dynamics for this system as it is induced by the
full theory. This dynamics is however not compatible with the classical system,
because it has too many solutions to the Hamilton constraint, which is due to
the over-representation of states that correspond to degenerate geometries in
the full theory. We explain how the construction of the quantum embedding
can be refined to get rid of this over-representation of degenerate geometries,
which is based on the physical requirement of geometrical homogeneity of the
states used in our construction.

It turns out, as we show in the discussion of the differences of our approach
to Loop Quantum Cosmology, that the flux operators of the reduced sector have
a countable spectrum, which differs from Loop Quantum Cosmology. There is
also no µo parameter in our system. These differences can be attributed to
the different fixing of the diffeomorphisms compared to standard LQC. Once
the dynamics of our system is constructed, one can however hope to fix the µo

ambiguities in the dynamics of Loop Quantum Cosmology, such that the dynam-
ics of our cosmological sector and the dynamics of Loop Quantum Cosmology
coincide.

This paper is organized as follows: We review the necessary preliminaries in
section 2. This includes a brief introduction of Bianchi Cosmology, mainly to
fix the notation of this paper, a review of our methods of reduction of quantum
theories using quantum embeddings, as they where introduced in [6], an a brief
review of a combinatorial approach to Loop Quantum Gravity that turns out
to be useful for this paper. The details about this approach will be published
in a future paper. We construct a quantum embedding map for cosmology in
section 3, which we use in section 4 to extract a cosmological sector from full
Loop Quantum Gravity. Since this sector differs from standard Loop Quantum
Cosmology, we give a discussion of these differences in section 5.

2 Preliminaries

This section contains preliminaries on Bianchi cosmology, quantum embeddings
and a combinatorial approach to LQG to make this paper self-contained and to
fix the notation used throughout this paper.

2.1 Bianchi Cosmology

Bianchi type cosmologies are standard, but since we need the explicit formulae
for Ashtekar variables for these models, we include a small discussion in this
paper. Assuming a 3-dimensional spatial base manifold σ and a group G of
isometries, i.e. a free and transitive action of a group of diffeomorphisms φ on σ
for which we assume φ∗q = q for the spatial metric q on σ. Denoting the Killing
vector-fields that generate G by X , we obtain a Lie-algebra [Xi, Xj ] = Ck

ijXk.
Using triads ea, that commute with the Killing vector fields, we use the unit
normal n to σ and bundle these together to a quadruple eµ, whose integrals
furnish local coordinates. Since the commutation relations [eα, eβ] = γµαβeβ
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are functions independent of the local spatial coordinates, we can expand the
structure constants as γijk = ǫjkln

il + ajδ
i
k + akδ

i
j , where a and n are constants

in the local frame satisfying nijaj = 0. We are interested in Bianchi-type A
cosmologies i.e. ai = 0 (no shift) and there in particular in type I cosmology,
i.e. ni = 0 in the local frame. In this case, we obtain a base manifold that is
σ = R3 with a spatial metric q that is constant in local coordinates.1

We will increase the symmetry of our model further by assuming local ro-
tational symmetry (i.e. rotational symmetry around one fixed axis) or isotropy
(i.e. rotational symmetry around all axes, which can be achieved by the intro-
duction of additional vector fields Xi which take the form Yi = ǫijkxj∂k in the
local frame in which Xi = ∂i.

A G-symmetric connection on a fibre bundle over σ can be decomposed
into a reduced connection on a reduced bundle over a reduced space σ/G
and a G-multiplet of scalars on the reduced space. This stems from the fact
that connections are by definition invariant under vertical bundle morphisms
(i.e. gauge transformations) and the following observations [1]: Consider a
Lie-group G acting as a group of bundle morphisms on a principle fibre bun-
dle P (σ,H, π), such that all G-orbits are isomorphic, σ/G is reductive and
I is the isotropy group of a point, such that σ = (σ/G) × (G × I), i.e. σ
is the orbit bundle over σ/G. Since each point p ∈ P defines a morphism
ρp : I → H : i 7→ αi(p), where the action α commutes with the right action in
the fibre, yielding: ρph = Adh−1ρp. Fixing one particular ρ allows the construc-
tion of the subbundle Psym(σ/G, CH(ρ(I)), π|Psym

) with the reduced structure
group given by the centralizer of the ρ-image of I, which is isomorphic to any
subbundle built from ρ′ = Adh−1ρ in the conjugacy class of ρ, such that the
G-symmetric fibre bundle is completely classified by (Psym, [ρ]conj).

A G-symmetric connection on a principle fibre bundle (Psym, [ρ]conj) defines
(1) a connection ωsym by restriction and (2) a linear map Lp : G → H : V 7→
ωp(V ) at each point p. The L-image of the orthogonal complement I⊥ of I ⊂
G is horizontal but not tangential to σ/G. Invariance under vertical bundle
morphisms implies Lp(AdiV ) = Adρ(i)(Lp(V )), defining the transformation law
for the components Lp|I⊥

, which defines the transformation law for the scalar
multiplet L. Using the Maurer-Cartan form θMC on G and the embedding
i : G/I → G we can write the G-symmetric connections as ω = ωsym+L◦i∗θMC ,
where ωsym is a connection on Psym.

This framework was applied to various symmetric models [2] and in partic-
ular to Bianchi type I cosmologies [3]. The topology of the base manifold is
σ = R3 upon which the symmetry group G = R3, generated by three generators
gi = ∂i in the local frame, acts as translations. The left-invariant one-forms on
G take the form ωi = dxi, which allows us to express θMC = gidx

i. The isotropy
group I is trivial s.t. there is only the identity embedding i : G/I = G → G.
The reduced space σ/G = {xo} consists of one point xo only as does the reduced
principal fibre bundle. The linear map L becomes a matrix over this point, such

1This paper is concerned with Bianchi type I cosmology only.
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that the symmetric connection is:

A = L ◦ θMC = LI
i τIω

i = AI
aτIdx

a, (1)

where τI denotes the ith generator of SU(2). The transformation constraint
under vertical bundle morphisms becomes trivial and is thus satisfied by all
matrices L. Using the left-invariant vector fields ωi(Xj) = δij allows us to write
the Ashtekar variables as:

AI
a = lIi ω

i
a and Ea

I =
√

|g|mI
IX

a
i , (2)

where g is the invariant metric g = δijω
i ∨ ωj.

Imposing additional local rotational symmetry around the 3-axis amounts to
enlarging the isotropy group I. The embeddings of ρn : I = U(1) → H = SU(2) :
exp(aY ) 7→ exp(naτ3) are labeled by integers n which satisfy the transformation
constraint only for n = 1 with matrices of the form:

L =

( a b 0
−b a 0
0 0 c

)

, (3)

for three real numbers a, b, c.
Enlarging the symmetry group further to isotropic connections enlarges the

isotropy group to I = SU(2) which can be embedded by the identity map into
H = SU(2). The solutions to the transformation equations yield the matrices
of the form

L = c I3×3. (4)

We notice that the parameters a, b, c are the degrees of freedom of the LRS-
model, however we are always able to go into a diagonal gauge in which the
parameter b vanishes.

For our discussions of cosmological models it will be important that one can
give a closed formula for the holonomy of a homogeneous connection along a
straight edge2. Given the matrix A containing the elements of Ai

a and given an
edge that can be expressed in this chart as:

e = {ea(0) + lêat : 0 ≤ t ≤ 1} (5)

then we can calculate the holonomy along this edge

he(A) = P

{

exp

(

l

∫ 1

0

dtAi
aê

aτi

)}

(6)

explicitly due to the simplifications arising from (1) the fact that the Ai
a are

constant, making the path ordering trivial and (2) the explicit form of the τ i,
which allows us to calculate the Lie group exponential function as a matrix
exponential function.

2The attribute straight means here a straight line in the local frame in which the connection
components are constant matrices A(x) = Ai

adx
aτi.
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2.2 Reduction of Quantum Theories

We presented a construction in [6] that allows the explicit reduction of certain
quantum systems in a way that is a noncommutative analogue to the pull-back
under a Poisson-embedding in a classical system. This construction can be ap-
plied to quantum systems that are given by the following data: (A(X,G), π,H).
X is a locally compact Hausdorff space that serves as the quantum configu-
ration space, s.t the configuration variables arise as C(X). G is a group of
Weyl-operators (stemming from exponentiated Poisson actions of momenta)
whose action α is ”unitary” on C(X) and acts freely and properly as pull-backs
under homeomorphisms of X → X. A(X,G) denotes the crossed product C∗-
algebra of C(X) and G by α, whose product is given by the convolution product
f1 ∗ f2(x, g) :=

∫

dµH(h)f1(x, h)f2(αh−1 , h−1g). H is a Hilbert-space carrying
a regular representation π of A.

The particular classical Poisson embeddings η : (Xo,Γo) → (X,Γ)3 that we
considered where ”full” in the sense that all momenta that are tangential to
the subspace η(Xo) ⊂ X are supposed to be in Γo. Given a classical system,
whose quantization is given by (A(X,G), π,H) and a full embedding η of a clas-
sical subsystem into the full classical system raises the question: ”What are the
compatible quantizations of this subsystem, in the sense of preserving the alge-
braic structure and the expectation values of the full quantum system?” This
exactly the question for ”providing a quantum subsystem” or mathematically
for ”constructing a noncommutative embedding”.

The basic observation behind this construction is given in terms of spe-
cial pre-Hilbert-C∗-modules, which themselves have a commutative algebraic
structure. For the C∗-algebras A(X,G), there are ”canonical” pre-Hilbert-C∗-
modules given by Cc(X) together with the bilinear form:

〈f1, f2〉A : h 7→ f1(x)

∫

dµH(g)f2(αg−1x)h(αg−1x), (7)

which is dense in A. The observation that full embeddings are determined by
embeddings of the configuration space suggests to consider the restriction η|X
to the embedding of the configuration space. This restriction defines a map P
on C(X) by:

P : C(X) → C(Xo) : f 7→ η|∗
X
f, (8)

which is a linear map form the linear space of configuration observables on X

into equivalence classes of observables that coincide at the embedding η(Xo).
By the axiom of choice, there exists linear inverses i that map each equivalence
class into a representative in this equivalence class such that the entire map i is
again linear. Such a pair (P, i) of linear maps contains all information about a
full embedding η, and we called it a quantum embedding, because using them
we can provide the following construction: We can consider a reduced linear

3The pair (Xi,Γi) denotes a classical phase space Γi, that has a distinct subset Xi that
serves as the classical configuration space.
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space P (Cc(X)), that serves as a module over the induced ”rank-one” operators

〈P (f1), P (f2)〉red : P (h) 7→ P (〈i(P (f1)), i(P (f2))〉Ai(h)), (9)

which turns out to well defined. Moreover, one can use standard techniques to
show that these induced rank one operators span a Weyl-algebra that arises as
the quantization of a fully embedded reduced quantization. In analogy to Rieffel
induction, one can also induce a Hilbert space representation for the embedded
Weyl-algebra out of a given Hilbert space representation of the full system. Any
representation can be written as a direct sum of cyclic representations (Hω, πω)
out of states ω. The states ω on the full theory induce states ωred on the reduced
theory by extending

ωred(〈P (f1), P (f2)〉red) := ω(〈i(P (f1)), i(P (f2))〉A) (10)

by density to the reduced Weyl-algebra. The induced representation is then
given by the direct sum of the GNS-representations out of the induced states
ωred.

A very useful tool for constructing correspondences of operators of the full
theory with operators in the reduced theory is given by an approximate identity
idC,U(e),ǫ(x, g), labeled by increasing compact subsets C ⊂ X, shrinking open
neighborhoods U(e) ⊂ G of the group identity element e and a shrinking real
number ǫ > 0, which has the following properties:

idC,U(e),ǫ = 0 for g outside U(e)
|idC,U(e),ǫ − 1| < ǫ for x ∈ C,

(11)

which can be constructed as a sum of 〈fi, fi〉red with finitely many fi for any
triple (C,U(e), ǫ). Given an operator O of the full theory, one can induce a
corresponding operator Ored in the reduced theory by

Ored := lim idC,U(e),ǫO = lim
∑

i

〈P (fi,C,U(e),ǫ), P (O
∗fi,C,U(e),ǫ)〉red. (12)

2.3 Reducing Constrained Quantum Theories

Let us briefly review the treatment of constraints in the construction of a reduced
quantum theory. Given a self-adjoint anomaly free set C = {Ci}i∈I of constraint
operators Ci, it is the objective of a gauge theory to construct the algebra Dirac
observables, which are given by operators that commute with all constraints.

The canonical bilinear form for the Hilbert-C∗-module is built from two con-
figuration variables f1, f2. Let us suppose that we have an approximate identity
id = limi∈I

∑

j〈f
i
j , f

i
j〉A for the algebra of Dirac observables, i.e. this approx-

imate identity becomes a projector into the physical Hilbert space4. Having

4This is of course only possible if the physical Hilbert space is a subspace of the kinematical
Hilbert space.
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such a physical approximate identity, we can associate a Dirac-observable to
each operator O by:

lim
i∈I

idiO = lim
i∈I

∑

j

〈f i
j , f

i
j〉AO = lim

i∈I

∑

j

〈f i
j , o
∗f i

j〉A. (13)

Using the correspondence 〈P (f1), P (f2)〉red : P (h) 7→ P (〈i(P (f1)), i(P (f2))〉Ai(h))
between the bilinear structures of the unreduced theory and the reduced the-
ory, we insert the approximate identity to induce the reduced Dirac observables
using the bilinear structure 〈., .〉ored, defined by

〈P (f1), P (f2)〉
o
red : P (h) 7→ P (lim

i∈I
idi〈i(P (f1)), i(P (f2))〉Ai(h)), (14)

by extending the span of 〈., .〉ored by linearity. Given a state Ω on the algebra of
Dirac observables, we can use the induction

ωo
red(〈P (f), P (g)〉

o
red) := Ω(lim

i∈I
idi〈i(P (f)), i(P (g))〉A) (15)

to construct the induced gauge invariant algebra. These induced states are then
used for a GNS-conatruction to induce a representation.

If the operators 〈., .〉A turn out to be true rank one operators in the full
theory, then one can simplify this construction drastically. The observation
that the operators 〈f, g〉A commute with all constraints, if πω(f)Ωω, πω(g)Ω are
in the physical Hilbert space5 allows us to construct the Dirac observables of
the full theory as a closure of the span of

〈f, g〉A|fΩ,gΩ∈Hphys
. (16)

Having a quantum embedding (P, i), where P is restricted to the configuration
variables f for which fΩω ∈ Hphys and where i takes values in these configura-
tion variables then gives the usual induction for the algebra and representation.
The restriction of the construction yields the reduced Dirac observables and
their induced representation.

2.4 A Combinatorial Quantum Theory

Loop Quantum Gravity is a quantum theory that is built on a configuration
space given by morphisms from the path groupoid in a base manifold to the
gauge group of the Ashtekar connection. The overcountability of the set of
piecewise analytic paths poses certain difficulties on the construction is this
paper. In [7] we developed an idea based on observations in [8] that allows
for loop quantum gravity to be built from a combinatorial theory. The general
framework of this class of quantum theories goes beyond the scope of this paper
and will be published later, here we will only introduce the ingredients necessary
for the construction in this paper.

5Ωω denotes the vacuum state of the cyclic representation Ω for a gauge invariant state ω
and πω the according GNS-representation.
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Combinatorial Groupoid

Let us consider the following groupoid: The unit set G(o) is given by triples of
integers (N1, N1, N3) denoted by n for short. Consider the finite sequences
(n1, n2, ..., nk) of triples of integers, which satisfy the pattern: given ni =
(Ni1, Ni2, Ni3) then ni+1 is either of the form ((Ni1+/−1, Ni2, Ni3)) or (Ni1, Ni2+
/− 1, Ni3) or (Ni1, Ni2, Ni3 + /−m), where m is an integer being either m = 1
or 0 < m < Ni3. let us define an equivalence relation ∼ between these sequences
by

(n1, n2, ..., ni−1, ni, ni, ni+1, ..., nk) ∼ (n1, n2, ..., ni−1, ni+1, ..., nk)
(n1, n2, ..., ni−1, ni, ni+1, ni, ni+2..., nk) ∼ (n1, n2, ..., ni−1, ni+2..., nk)

(17)
The groupoid set is then defined as the equivalence classes of sequences that
satisfy the pattern rules. Clearly, there exists a shortest representative in each
equivalence class, s.t. we can build a representation of the groupoid by denot-
ing each equivalence class by its shortest representative. We will work in this
representation. The source and range maps of the groupoid are given by

s((n1, n2, ..., nk)) = n1

r((n1, n2, ..., nk)) = nk,
(18)

the object inclusion map is given by

e(n) = (n) (19)

and the composition is defined as concatenation and subsequent equivalenceing:

(n1, ..., nk) ◦ (nk, ..., nm) = (n1, ..., nk, ..., nm)/ ∼ . (20)

The inverse can be determined to be:

(n1, ..., nk)
−1 := (nk, nk−1, ..., n1). (21)

We call this groupoid combinatorial groupoid throughout this paper.

Configuration Space

Given a compact Lie-group G, we can consider the morphisms of the combina-
torial groupoid into this group. Since the combinatorial groupoid is generated
by the set G of pairs of triples of integers that are of the form:

((N1, N2, N3), (N1 + 1, N2, N3))
((N1, N2, N3), (N1, N2 + 1, N3))
((N1, N2, N3), (N2, N2, N3 +m)) for m ∈ {1} ∪ {n : 2 ≤ n ≤ N3 − 1},

(22)

we can write a groupoid morphism A ∈ Hom(G,G) as a general map A : G → G.
The morphisms from any finite subset of G can be topologized by the product
topology of mathcalG, which is compact. Since the finite subsets of G are
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partially ordered by the subset relation: γ1 ≤ γ2 iff γ1 ⊂ γ2, we can give
Hom(G,G) the structure of an inductive limit: lim←γ Hom(Gen(γ),G)6. This
allows us to give Hom(G,G) a Tikhonow inductive limit topology, which is
compact and Hausdorff because G is. This space X = Hom(G,G) together with
the Tikhonow topology defines the configuration space.

A set γ of finitely many generators γ = (g1, ..., gn) ⊂ G together with a
continuous complex valued function f : Gn → C defines a cylindrical function
by:

Cyl = f(A(g1), ..., A(gn)), (23)

which are always continuous. Moreover using the the sup-norm for functions
on an arbitrary number m of copies of G we can define a commutative C∗-
algebra Cyl(X) as the norm completion of the cylindrical functions. Using the
techniques of [10] one can verify that the C∗-algebra Cyl(X) coincides with the
algebra C(X) of continuous functions on the configuration space.

Finite Weighted Decomposition Functions

A finite set (g1, ..., gn) of composable groupoid elements is called a decomposition
of g = g1 ◦ g2 ◦ ... ◦ gn. We denote the set of all decompositions on the combi-
natorial groupoid by Dec. A map d form the combinatorial groupoid into the
decomposition set Dec is called a decomposition function, iff g = dg1 ◦ ...dgn
for all elements g of the combinatorial groupoid.

Let us consider the weighted combinatorial groupoid, which is generated
by triples (t1, g, t2), where t1, t2 ∈ R and g is an element of the combinatorial
groupoid; its unit set consists of pairs (t, g) with t ∈ R. The weighted source- and
range maps are: s(t1, g, t2) = (t1, s(g)) and r(t1, g, t2) = (t2, r(g)). The composi-
tion law is given by ((t1, g1, s1), ..., (tn, gn, sn))◦((tn+1, gn+1, sn+1), ..., (tm, gm, sm)) =
((t1, g1, s1), ..., (tn, gn, sn), (tn+1, gn+1, sn+1), ..., (tn, gn, sn))/ ∼, where we em-
ploy an analogous equivalence relation, that takes (..., (t1, g1,−t2), (t2, g2, t3), ...) ∼
(..., (t1, g1 ◦ g2, t3), ...) if g1, g2 are composable.

Given a real function f on the unit set of the combinatorial groupoid f :
G(o) → R and a decomposition function d, we can define a weighted decom-

position df on the weighted combinatorial groupoid by:

df : (t1, g, t2) 7→ ((t1 + f(s(dg1)), dg1,−f(r(dg1))),
(f(s(dg2)), dg2,−f(r(dg2))), ..., (f(s(dgn)), dgn, t2 − f(r(dgn))))/ ∼ .

(24)
The set of all finite weighted decompositions form a group. The morphisms
θ(df) from the decomposition group to Hom(X) of the form

θ(df)A : g 7→ exp((t1+f(s(dg1)ξ1)dg1 exp(−f(r(dg1))ξ2)... exp((t2−f(r(dgn)))ξk),
(25)

where ξi ∈ g defines a finite weighted decomposition function. These finite
weighted decomposition functions form a group of homeomorphisms of X, wich
we denote by Θ. Θ can be viewed as an inductive limit of decompositions that

6Gen(γ) denotes the subgroupoid of G generated by the elements of γ.
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affect only groupoid elements whose expansion in the generators contain at least
one element of a finite subset of the generators of the combinatorial groupoid.
Due to the inductive limit and morphism structure into a compact group, one
is able to give Θ a Tikhonow topology.

Canonical Quantum Algebra

We have a commutative C∗-algebra C(X) of continuous functions on a com-
pact Hausdorff space X and a compact group Θ of homeomorphisms of X. This
allows us to construct a crossed product C∗-algebra. We can construct cylin-
drical functions on X × Θ using the same technique as in the construction of
cylindrical functions on X. These are functions f ∈ C(Gn × Gm) of the form
f(A(g1), ..., A(gn), P1, ..., Pm), where Pi(g) is the elementary decomposition that
splits precisely those elements of the combinatorial groupoid that pass through
s(gi) into a part left digl of s(gi) and a right part digr and inserts a the group el-
ement: PiA(g) = A(digl)gA(digr). Moreover we are able to give these functions
a convolution product by

f1 ∗ f2(A1, ..., An, P1, ..., Pm) :=
∫

dµH(g1)dµH(gm)f1(A1, ..., An, g1, ..., gn)
P1(g1)...Pm(gm)f2(A1, ..., An, P1, ..., Pm).

(26)
Together with the natural involution and the norm defined by the supremum of
the norms of all Hilbert space representations defines a natural noncommutative
C∗-algebra A(X,Θ) associated to the combinatorial groupoid.

A(X,Θ) serves as the Weyl-algebra of the combinatorial system, where C(X)
represents the configuration variables and the group Θ represents the the group
of unitary Weyl transformations.

Unitary action of a Group

There is an interesting group, whose action on A(X,Θ) is ”unitary”. Consider
a subgroup D of automorphisms of the combinatorial groupoid. One can easily
define a unitary action U of automorphisms φ ∈ D on cylindrical functions by:

(U∗(φ)Cylg1,...,gnU(φ)) (A) := Cylφ(g1),...,φ(gn)(A)
U∗(φ) := U(φ−1).

(27)

This action can be extended by density to C(X). There is furthermore a natural
extension of the action of D to Θ by ”translating” the decomposition functions,
i.e. U∗(φ)W (df)U(φ) := W (α(df)), where αφ(df) decomposes a groupoid ele-
ment g into dφ(g) and inserts the weights f(φ(s(dgi))). Since C(X) and Θ are
the building blocks for A(X,Θ), we can build elements of the form f ◦U , where
f ∈ A(X,Θ) and U denotes the unitary action of an element of D. The algebra
spanned by the elements of this form is denoted by A(X,Θ,D).

Another unitary action of a groupoid can be achieved as follows: Consider
an embedding i of the combinatorial groupoid into a ”larger” groupoid P , s.t.
the i-image of the combinatorial grouoid forms a subgroupoid of P . Moreover
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consider a subgroup D′ of the automorphisms of P . Let us define the space
Y := Hom(P ,G) and construct a topology and cylindrical functions to obtain
Cyl(Y) and C(Y), the analogues of Cyl(X) C(X) and let us topologize Y using
the Tikhonow topology of the analogous projective limit. Let us use i to embed
C(X) into C(Y), which defines a unitary representation of Θ on i(C(X)) ⊂ C(Y).
Let D′ define an action on C(Y) analogous to (27). This allows us to construct
the natural extension of Θ to D(i(C(X))) again by translating the action of Θ
to i(C(X)) and then by translating it back using φ′, φ′,−1 ∈ D′. This defines an
algebra A(X, i,Y,Θ,D′), which will be the structure that we use to construct
Loop Quantum Gravity. We call the algebra A(X, i,Y,Θ,D′) spanned by the
embedding i and the action D′ out of the algebra A(X,Θ)

Canonical Representation

The canonical uniform measure µo on X is defined through the positive7 linear
functional on that we define on the space of cylindrical functions as:

ω(Cyl) :=

∫

dµH(h1)...dµH(hn)Cylg1,...,gn(h1, ..., hn), (28)

and which we extend by density to C(X). The Schrödinger type representation
of A(X,Θ) is defined through the following inner product on the pre-Hilbert
space Cyl(X):

〈Cyl1, Cyl2〉 := ω(Cyl1Cyl2), (29)

which allows us to construct a Hilbert-space H = L2(X, µo) as the completion of
Cyl(X) in the inner product norm. The canonical representation πo of A(X,Θ)
on H is then defined through the covariant pair of representations of Cyl(X)
and Θ:

πo(Cyl1)Cyl2 := Cyl1Cyl2
πo(W (df))Cyl := θ∗(df)Cyl,

(30)

where the extension by density of Cyl(X) in C(X) as well as H is used. πo
clearly defines a unitary action of Θ on X.

The canonical representation also denoted by πo of D on H defined through

πo(U(φ))Cylg1,...,gn := Cylφ(g1),...,φ(gn) (31)

is clearly unitary due to the invariance of µo under automorphisms of the com-
binatorial groupoid.

The analogous construction defines a canonical representation of A(X, i,Y,Θ,D′)
on L2(Y, dµY ), where dµ is defined through a functional in complete analogy
to the definition of dµo in (28). Notice that the ground state Cyl = 1 ∈ H is
invariant under D′.

7The functional maps positive elements of Cyl into R
+.

12



2.5 Combinatorial Approach to Loop Quantum Gravity

The similarity between Loop Quantum Gravity and the combinatorial theory
that we described in the previous section is rather obvious. Let us now construct
Loop Quantum Gravity as an algebra of the kind A(X, i,Y,Θ,D′). The gauge
group of Loop Quantum Gravity is SU(2) such that X is specified as the set of
homeomorphisms from the combinatorial groupoid to SU(2).

We construct an explicit embedding of the combinatorial groupoid into the
groupoid of piecewise analytic paths P in section 3.3 for the case that the base
manifold σ = R3. Using this embedding i, we can construct the configuration
space of Loop Quantum Gravity with Y = Hom(P , SU(2)).

Let us now consider the following groupoid: The groupoid set consists of all
finite collections of analytical surfaces (which we assume to be homeomorphic
to a disc) (S1, ..., Sm) that are analytically embedded into σ together with finite
collections of analytical paths (e1, ..., en), which are also analytically embedded
into σ, i.e. collections

G(o) = {(e1, ..., en, S1, ..., Sm) : ei ⊂ σ, Sj ⊂ σ}. (32)

The groupoid then consists of all pairs of these collections ((e1, ..., en, S1, ..., Sm), (e′1, ..., e
′
n, S

′
1, ..., S

′
m))

for which there exists a homeomorphism of σ that maps (e1, ..., en, S1, ..., Sm)
into (e′1, ..., e

′
n, S

′
1, ..., S

′
m). The source- resp. range maps return the first resp.

second collection out of these pairs. The composition law is

((e1, ..., S1, ...), (e2, ..., S2, ...)) ◦ ((e2, ..., S2, ...), (e3, ..., S3, ...)) :=
((e1, ..., S1, ...), (e3, ..., S3, ...)).

(33)

We denote this groupoid by D′. One can span an algebra using an embedding
and a groupoid as well as using a group. Using the embedding i from section
3.3 of the combinatorial theory A(X,Θ), we can use the canonical action of the
groupoid as pairs consisting of an automorphism of the path groupoid together
with an map of Weyl-operators to span the quantum algebra of Loop Quantum
Gravity as A(X, i,Y,Θ,D′).

The canonical representation πo defines the canonical representation of an
algebra underlying Loop Quantum Gravity (for the description of this algebra
see section 3.3.1), whose vacuum vector Cyl = 1 ∈ H is obviously invariant
under D′.

3 Reduction Maps for Cosmology

We will construct general reduction maps for LQG in this section, which we
apply in the next section to extract a cosmological sector.

3.1 Introductionary Considerations

The cosmological sector of General Relativity arises as the sector that is invari-
ant under a group of spatial symmetries. These spatial symmetries however are
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just a subgroup of the diffeomorphism group, which is part of the gauge group8

of General Relativity. Thus it seems at first sight spurious to assume a symme-
try that can be viewed as a subgroup of a gauge group, since we are interested
in a quantum theory, which is built from gauge invariant quantities and these
quantities are already necessarily invariant under the spatial symmetry group.

What we seek to construct is however not a model that is built from the
heuristics about these symmetric states, but we want to preform the quantum
analogue to to the phase space reduction that results classically when the spatial
symmetries are imposed. This can be stated with the catchy phrase: ”We want
to construct the diffeomorphism invariant version of this symmetry reduction.”

These classical symmetry reduced models have a finite dimensional config-
uration space, thus we want to construct a reduced quantum algebra from the
quantum algebra of the full theory of Loop Quantum Gravity that can be viewed
as a quantization of the reduced phase space. We outlined a strategy for this
procedure in [6], which we interpreted physically as a reduction of the sensitivity
of the measurements at our disposal to observables on the reduced phase space.
For the purposes here, we have to change this interpretation, because the so-
lutions to the diffeomorphism constraint are distributional and can as such not
be evaluated at individual points of the phase space, but only over open sets.

The distributionality of the solutions to the diffeomorphism comes about, be-
cause these functions are constructed as sums over all diffeomorphisms acting on
cylindrical functions9. However, we can also proceed differently and (partially)
gauge fix the diffeomorphisms. This is to say, that we assign exactly one repre-
sentative cylindrical function to each gauge orbit of cylindrical functions. Since
the gauge orbits of a cylindrical function are in a one to one correspondence
to the distributions that we obtain by group averaging the diffeomorphisms, we
have to assign to each of the group averaged quantities exactly one cylindrical
function whose group averaging yields precisely this solution.

Most differences of this approach compared with standard LQC are due to
the fixing of the diffeomorphisms. Each fixing of the diffeomorphisms results
in different rule for imposing the symmetry reduction of the noncommutative
phase space. The different symmetry reduction yield in general different results.
All of these are reductions of the phase space, the interpretation which physical
sector this reduction corresponds to has to be determined by measurements.

What does this gauge fixing mean for measurements? An observer has cer-
tain measurements at his disposal and having a gauge theory means that even
after preforming a complete set of measurements with these observables, he can
still not solve unambigously for the degrees of freedom in the underlaying the-
ory. Fixing a gauge means providing a set of relations such that a complete set

8Following the treatment of constraints by Dirac, we call the entire group that is generated
by the Gauss-, diffeomorphism- and scalar constraint gauge group of General Relativity in
Ashtekar variables. Since all of these constraints generate unobservable transformations, it is
legitimate to call all these transformations gauge transformations.

9This statement is imprecise, because to carry the group averaging out one has to decom-
pose the diffeomorphism group into automorphisms of the graph that underlies the particular
cylindrical function and the quotient under these automorphisms. The two factors are then
treated differently under the rules of group averaging.
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of measurements together with these relations can be solved for the theoretical
degrees of freedom, which are then in this particular gauge. This means for our
reduction that we have to provide a gauge in which we prefrom the phase space
reduction. Then, by construction, there will be an observer and a gauge such
that we are resolving exactly the reduced phase space.

In [6] we constructed the quantum reduction map from equivalence classes of
observables on the configuration space, which differ only by their dependence on
the complement of the reduced configuration space. However, the evaluation of
an observable on a homogeneous connection depends obviously on the gauge that
we choose for the diffeomorphisms. Let us illustrate this on a simple example:
Consider a chart in which the ωi = dxi. Let us consider a graph γ around a
unit square in the x1, x2-plane in this chart10:

γ = (e1, ..., e4) =
(((0, 0, 0), (1, 0, 0)), ((1, 0, 0), (1, 1, 0)), ((1, 1, 0), (0, 1, 0)), ((0, 1, 0), (0, 0, 0)))

as well as the graph γ′ = (f1, ..., f4) around the structure shifted by one unit in
x3-direction:

γ′ = (f1, ..., f4) =
(((0, 0, 1), (1, 0, 1)), ((1, 0, 1), (1, 1, 1)), ((1, 1, 1), (0, 1, 1)), ((0, 1, 1), (0, 0, 1))).

Then any cylindrical function Tγ(A) = f(he1(A), ..., he4(A)) on γ will coincide
with the cylindrical function Tγ′(A) = f(hf1(A), ..., hf4 (A)). However, if we
apply a diffeomorphism φ that acts in this chart (U,ϕ) as

φ : ϕ(x1, x2, x3) 7→ ϕ(x1(1 + x23), x2(1 + x23), x3)

that leaves γ invariant but stretches the edges of γ′ by a factor of two, then
αφ(Tγ(A)) and αφ(Tγ′(A)) will not coincide on homogeneous connections for a
general f11, although Tγ(A) and Tγ′(A) do coincide on homogeneous connec-
tions. Obviously, we can also turn this argument around and start with two
cylindrical functions αφ(Tγ(A)) and αφ(Tγ′(A)) that do not coincide on homo-
geneous connections and apply the inverse φ−1 of φ to obtain two cylindrical
functions that coincide on homogeneous connections.

Our proposed solution to this problem stems from the observation that an
observer has only cylindrical functions on knot classes as measurements at his
disposal and not particular graphs. So if an observer is asked about determin-
ing the homogeneous part of a connection, then needs to know about the gauge
fixing of the diffeomorphisms, i.e. he needs to be provided with a particular
embedded representative graph for each knot class. However, given this gauge
he can easily determine whether the system is in a homogeneous state or not,
by simply testing whether the relations among the observables that are implied

10We denote a straight edge in a chart by its initial and final point, i.e. in a chart (U, ϕ)
the expression e = ((i1, i2, i3), (f1, f2, f3)) is a shorthand for e = {ϕ(ia + t(fa − ia)) ∈ U :
0 ≤ t ≤ 1}

11Here αφ denotes the action of a diffeomorphism on a cylindrical function by αφ(Cylγ) :=
Cylφ(γ)
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by homogeneity and the gauge are satisfied in his measurements or not. These
relations for connection observables are however not necessarily relations for
geometrical quantities. This can be seen by the fact that we can choose a gauge
fixing for the diffeomorphisms such that a given region R1 ⊂ U is avoided by
the embedding of graphs in this gauge and another region R2 ⊂ U is densely
populated with edges. Then the expectation value of any area or volume in
R1 will necessarily vanish, while the expectation value of any such area in R2

will be ”large”. Thus the relations for geometrical observables implied by ho-
mogenuity do not hold. We will however demand that our gauge fixing for the
diffeomorphisms is such that the relations implied by homogenuity are satisfied
at least approximately at a certain scale.

The specification of a region or a surface through an embedding is of course
not background independent. Physically a region or surface is specified by
matter residing thereon, e.g. a region may be specified by all the vertices in a
graph, where the field strength of a scalar field takes certain values and a surface
may be specified as the edges that link a vertex inside with a vertex outside,
being the analogue to the boundary of a region specified by the occupied vertices.
Within the framework of this work, it turns out to be much less complicated to
impose a ”superficial homogeneity” defined by an approximate homogeneity of
embeddings. The connection to the physical notion is as follows: The regions in
which a scalar field takes values in a certain range then defines under a certain
coarse graining an embedded region. The ”superficial homogeneity” implies
physical homogeneity for certain gauge fixings of the diffeomorphisms. This
connection between the two notions of homogeneity is the reason why we impose
the simpler one for the construction of the gauge fixing for the diffeomorphisms.

3.2 Strategy

Given a particular gauge fixing for the diffeomorphisms, we can apply the tech-
niques of [6] to construct a cosmological sector of Loop Quantum Gravity. We
just saw that the choice of gauge has consequences for the geometrical observ-
ables, at least at the level of superficial homogeneity, which we will be the notion
that we consider here.

Thus, our first step consists of constructing a gauge fixing of the diffeomor-
phisms such that the geometrical observables become approximately homoge-
neous in a certain region under a particular class of coarse grainings. The idea
is to construct a scaffold of allowed vertices and links among them, such that
any knot class of graphs can be embedded into a finite region. For this purpose
we will start out with a homogeneous chart12 U, φ and construct a regular cubic
lattice therein. This lattice has only six-valent vertices and is thus not able to
accommodate for the embeddings of graphs with higher valent vertices. Thus,
we have to add additional links between the vertices of the regular lattice, such
that for any valence n and any number m of vertices there exists a finite region

12A in the previous section, we call a chart homogeneous, if the one forms ωi, that define
homogeneity, take the special form ωi = dxi.
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such that this region contains at leastm vertices which have at least valence n.13

Once we have this scaffold that allows to embed any graph into a finite region,
we can define a map R(γ) that assigns to each graph a region that it can be
embedded into. Using these two ingredients, we will be able to define a quantum
symmetry reduction P by assigning to each cylindrical function depending on a
graph the average of this cylindrical function under all embeddings of the knot
class of this graph14 into the region R(γ).15 The map i will then be constructed
as a linear map, that assigns each function of the reduced connection that is
in the image if P exactly one representative spin-network function on a graph
that is embedded into the scaffold and whose dependence on the homogeneous
connection is precisely that of the original function.

Let us summarize the steps that we will work through in the next two sub-
sections. These steps are not particularly geared to cosmological models, but
slight modifications can be used for more general extraction procedures of mini-
superspaces from Loop Quantum Gravity:

1. We construct a scaffold, which is an infinite collection of embedded vertices
and links embedded in the base manifold. This scaffold has to be large
enough so there exists a function R(γ) that assigns each graph γ a region
such that the scaffold restricted to this region is larger than γ, i.e. γ
can be embedded into this part of the scaffold. While this procedure is
sufficient for a noncompact base manifold, one has to reverse it in the
compact case in order to avoid accumulation points of edges and vertices
of the scaffold. This can be achieved by defining a size S :graphs→ N of a
graph16 and defining a family of scaffolds such that each graph of size n
can be embedded into the nth scaffold.

2. We construct P by assigning to each cylindrical function Cylγ the restric-
tion of this function to homogeneous connections. This dependence can
in general not be calculated explicitly, because holonomies along arbitrary
curves can not be evaluated even when the connection is homogeneous.
This is the reason, why we have to gauge-fix the diffeomorphisms to a
scaffold such that all holonomies can be computed explicitly for homoge-
neous connections. Thus we define P in this gauge, which means that we
may have to apply a diffeomorphism φ such that φ(γ) lies in the scaffold.

3. The construction of P is obviously linear, since the restriction of a function
to a part of its domain is a linear operation. However, we have to construct
a second linear map i that assigns each restricted function in the image of
P exactly one representative such that P ◦ i = idimg(P ) is satisfied. This

13This does not yet ensure that any graph with m vertices of at most valence n can be
embedded, because we did not yet consider the knotting of the graphs, however we will take
care of this issue in our construction.

14We will refer to graphs as tame if all their edges and vertices are part of the scaffold.
15The choice of R should obviously be such that any finite region in R

3 is covered by some
large enough graph, such that the superficial homogeneity is satisfied.

16Using e.g. a particular procedure to embed a graph into the scaffold results in a minimal
cube in the regular lattice, whose edge length can be taken as such a number S.
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can be achieved by taking a linearly independent set of functions, that
spans the image of P . Then using the axiom of choice, there exists a map
i from this linearly independent to the domain of P such that P ◦ i = id is
satisfied on this set. Then i is defines as the linear extension of this map
to the entire image of P .

This construction yields a quantum reduction map given by a pair (P, i)
that we then use to reduce Loop Quantum Gravity to a cosmological sector
and induce its Hilbert space representation. It is obvious that the homogeneity
assumption is not background-independent and thus different gauge fixings for
the diffeomorphisms will in general yield different cosmological sectors.

3.3 Construction of the Scaffold

We assumed a Bianchi I model, such that the base manifold Σ is R3. Let us
fix a global chart U,ϕ such that U = R3 ∼ Σ and that is homogeneous, i.e.
ϕ∗ωi = dxi for the forms ωi that define homogeneity. We will later assume
that the connection components are homogeneous w.r.t. these ωi, i.e. the
components of the connection are linear combinations of the ωi.

Let us use our shorthand for the notation of straight curves, i.e. we make
the identification:

((i1, i2, i3), (f1, f2, f3)) := {ϕ(ia + t(fa − ia)) ∈ Σ : 0 ≤ t ≤ 1}. (34)

Our first step in the construction of the scaffold is the construction of a regular
lattice of fiducial length lo

17. This consists of the three families of edges:

e1abc := ((loa, lob, loc), (lo(a+ 1), lob, loc))
e2abc := ((loa, lob, loc), (lo, lo(b + 1), loc))
e3abc := ((loa, lob, loc), (loa, lob, lo(c+ 1))),

(35)

where a, b, c ∈ Z as well as the family of vertices

vabc := ϕ(loa, lob, loc), (36)

where again a, b, c ∈ Z.
So far, we have only constructed a regular lattice with six-valent vertices,

but in order to embed the graphs from Loop Quantum Gravity, we need to be
able to embed graphs with vertices of arbitrary valence. This is done by adding
a family of extra links:

labcn

between va,b,c and va+n,b,c where a, b, c, n ∈ Z and n < a, that do neither
intersect with each other nor intersect with the regular lattice. A particular
choice can be constructed as follows:

17We endow U with an unphysical Euklidean metric δijdx
i ∨ dxj .
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1. For each positive integer n consider a ”bridge” of length lon

babcn := e2abc ∪ ((loa, lo(b + 1), loc), (lo(a+ n), lo(b+ 1, loc))) ∪ e
2.

2. Rotate this bridge by an angle αan := π
2

n
a2 around the translation of the

x1-axis into x2 = b, x3 = c. Clearly all αan are distinct, because n < a
by assumption. Thus, the extra links do not intersect. Moreover, since
0 < α < π

2 , the rotated bridges do not intersect with the lattice.

3. The resulting rotated bridges are then defined to be our extra links:

labcn =
((loa, lo(b+ cos(αa,n)), lo(c+ sin(αa,n))), ((loa, lo(b + 1 + cos(αa,n)), lo(c+ sin(αa,n)))))
∪((loa, lo(b + 1), loc), (lo(a+ n), lo(b+ 1, loc)))
∪((lo(a+ n), lo(b + cos(αa,n)), lo(c+ sin(αa,n))), ((lo(a+ n), lo(b+ 1 + cos(αa,n)), lo(c+ sin(αa,n))))).

(37)
Now we have all the ingredients to define our scaffold:

Definition 1 • The scaffold consists of the set of vertices V = {vabc : a, b, c ∈
Z} as well of the set of edges E = {eiabc : i = 1, 2, 3; a, b, c ∈ Z}∪{fabcn : a, b, c ∈
Z;n ∈ N;n < a}

We notice (1) that the scaffold is not a graph, because it contains an infinite
number of edges and (2) that the scaffold, although containing vertices of arbi-
trary valence, does it does not contain an accumulation point of edges.

Let us now verify that any knot class can be embedded into this scaffold.
Given the knot class of a graph, particularly given a projection of a graph γ, let
us consider the following procedure:

1. Label the vertices of γ by natural numbers 1, ..., N , i.e. Vγ = {v1, ..., vN};
label the edges of γ by natural numbers 1, ...,M , i.e. Eγ = {e1, ..., eM}.

2. Let K = N + 2M be the number of vertices plus twice the number of
edges. Then embed the vertices by i : vn 7→ vK+n,0,0.

3. Each edge ea ∈ Eγ is split into three parts ea,i, ea,m, ea,f which are con-
nected by vertices va,i between ea,i and ea,m and va,f between ea,m and
ea,f . This splitting can be chosen such that there are no overpasses of
any pieces over the ea,i and aa,f in the given projection of γ, meaning
conversely that all the overpasses are among the ea,m.

4. Extend i such that the sets va,i and va,i of additional vertices are embedded
into the scaffold-vertices vK+N+1,0,0, ..., v2K,0,0. Furthermore extend i to
the sets ea,i and ea,f by assigning the respective link ldefm that connects
the embedded boundary vertices.
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5. Define the parallel projection P : (x, y, z) 7→ (x, y) that assigns an overpass
of (x1, y1, z2) over (x2, y2, z2) if z1 > z2. Take the image of the objects
for which i is defined so far and project them using P . This generally
results in a nontrivial projection containing a number of overpasses of the
ea,i, ea,f . We notice that the projection does not contain over passings
except trivial ones at the vertices i(v1), .., i(vn) for x1 < lo(K +N +1/2),
we can view the part of the projection for x1 > lo(K+N+1/2) as a braid
B1.

6. Remove the vertices va as well as the edge pieces ea,i and ea,f from the
given projection of γ, but keep the va,i, va,f fixed. This defines a braid
B2.

7. We notice that any braid with fixed boundaries can be embedded into a
regular cubical lattice. Thus, attach such an embedding of the inverse
braid of B1 to the image of i and then attach a the braiding B2 onto
these. This extends the embedding i to the set ea,m of ”middle pieces of
the edges in γ.

Having this procedure at our disposal, we can construct an embedding i
for any given knot class of a graph into the scaffold. However, this procedure
does in general not yield the simplest possible embedding i, however this is not
necessary for our purposes. Notice that the edges in the scaffold are oriented,
i.e. ((i1, i2, i3), (f1, f2, f3)) is oriented from i to f , which is important for the
calculation of holonomies.

3.3.1 Scaffold Observable Algebra

Let us fix the observable algebra on the scaffold, that we want to subject to our
symmetry reduction procedure. The heuristic idea is to consider a holonomy-
flux-Weyl-algebra, where the holonomies are scaffold holonomies and the Weyl-
operators are exponentials of fluxes on umbrella shaped regions: Given a vertex
in the scaffold, we call a piecewise analytic surface ”umbrella shaped” if it
intersects precisely one adjacent edge transversally. The orientation of these
surfaces is choosen such that the Weyl operators act as left SU(2)- translations
on precisely one the holonomy along the transversally intersecting edge.

There are many ways to construct an acceptable C∗-algebra for quantum
field theories, which are generally inequivalent as is known by Haag’s theorem
for background dependent quantum field theories: Using the Schrödinger rep-
resentation of the Weyl-system of a free Klein-Gordon theory one can work in
close analogy to Loop Quantum Gravity:

The fundamental configuration variables are modes φ(f) :=
∫

Σ d
3σf(σ)φ(σ),

where the modes f satisfy certain fall-off conditions. A cylindrical function
Cyl is a functional of the field φ, that has the same dependence on φ as
F (φ(fi1), ..., φ(fin)), where F : Rn → C is continuous (and grows less than expo-
nentially) and n ∈ No. It is often useful to use a narrower definition by restrict-
ing the set of modes to the eigenfunctions of a one-particle Hamiltonian that
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satisfy the fall-off conditions, so there is a countable set of modes {fi}∞i=1, which
is complete and orthonormal in the one-particle inner product (fi, fj) = δKron.

ij .
The finite sets {φ(fi1), ..., φ(fin)} are the analogues of graphs, which are par-
tially ordered due to the subset relation. The elementary Weyl-operators are the
exponentials wi(µ) := exp(iµπ(fi)) of the conjugate momenta π, where π(fi) =
∫

Σ
d3σfi(σ)π(σ), which are supposed to be unitary and to satisfy the Weyl-

commutation relations: wi(µ)F (..., φ(fi), ...)w
∗
i (µ) = F (..., φ(fi)− µ, ...). Using

the ”unitarity” of the Weyl-operators w∗i (µ) = wi(−µ) = wi(µ)
−1, we find that

finite sums of cylindrical functions and Weyl-operators
∑k

i=1 Cyliwi are closed

under multiplication and that F (φ(fi1), ..., φ(fin))
∗ := F (φ(fi1 ), ..., φ(fin)) and

w∗i (µ) = wi(−µ) defines an involution. Given a positive real number ai for each
mode fi, one can define a Gaussian vacuum state:

ω(
∑k

i=1 Cyliwi) :=
∑k

i=1

∫

N(ai1)dxi1e
−

ai1
2 x2

i1 ...N(ai1)dxi1e
−

ai1
2 x2

i1

F (xi1 , ..., xin)e
−

ai1
2 (xi1−µi1 )

2

...e−
ain
2 (xin−µin )2 .

=: 〈Ωω, πω(
∑k

i=1 Cyliwi)Ωω〉

The Hilbert space Hω constructed of the finite sums
∑k

i=1 Cyliwi and this
vacuum state has the GNS representation, which is spanned by cylindrical
functions, i.e. πω(Cyl)Ωω turns out to be dense in Hω. Moreover, using the
rank-one operators |πω(Cyl1)Ωω〉〈πω(Cyl2)Ωω|, we can give the cylindrical func-
tions the structure of a pre-Hilbert-pre-C∗-module in the obvious way by set-
ting 〈Cyl1, Cyl2〉A := |πω(Cyl1)Ωω〉〈πω(Cyl2)Ωω| and using the action of πω
thereon.

This transformation group structure allows us to define Rieffel’s[14] approx-
imate identity idǫ,C,U(1), indexed by a tolerance ǫ > 0, compact sets C of the
locally compact configuration space and open neighborhoods U(1) of the unit
element of the Weyl-group on each graph as idǫ,C,U(1) = sumj=1〈Cyl1, Cyl2〉A.
Note that the configuration space can be approximated by increasing compact
sets, because it is a compact space itself due to the fact that Cyl : φ 7→ 1
is a cylindrical function on every graph. This allows us to construct an ap-
proximate identity idγ,ǫ,Cγ,Uγ(1) by considering Rieffel’s approximate identity
for each graph. This allows us to define the observable C∗-algebra as the op-
erator norm completion of πω(

∑n
i=1 Cyliwi)idγ,ǫ,Cγ ,Uγ(1) in B(Hω). Using the

pre-Hilbert-pre-C∗-module structure on the cylindrical functions one can estab-
lish a strong Morita equivalence with C, which reflects Segals theorem [18] of
the uniqueness of the representations of the infinite-dimensional CCR once a
dynamics that factorizes over the set of modes is chosen, because the domain
of one particle Hamiltonian is encoded in the choice of modes {fi}∞i=1 and its
action is (partially) encoded in the positive real numbers {ai}∞i=1.

This construction can now be generalized to give a precise definition of the
scaffold algebra by replacing the countably infinite set of modes with the count-
ably infinite set of edges in the scaffold and the group R, the range of the mode
observables, by the gauge group SU(2):

The elementary configuration observables on the scaffold are the (matrix
elements of the) holonomies along edges in the scaffold, a graph is a finite set of
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edges {eik}
n
k=1 in the scaffold and a cylindrical function Cyl is a functional of the

scaffold holonomies that has the same dependence on the scaffold holonomies
as F (hei1 , ..., hein ), where F : SU(2)n → C is continuous and n ∈ No. The
fundamental Weyl-operators act as left SU(2)-translations on the holonomies
wi(g)heiwi(g)

∗ = ghei . The elementary observable algebra is
∑n

i=1 Cyliwi,
where the wi furnish a ”unitary ” representation of SU(2), i.e. wi(g)

∗ =
wi(g

−1) = wi(g)
−1, and the involution is F (hei1 , ..., hein )

∗ = F (hei1 , ..., hein ).
The canonical state on this algebra is:

ω(

n
∑

i=1

Cyliwi) :=

n
∑

i=1

∫

dµH(g1)...dµh(gin)Cyli(g1, ..., gin),

where dµH(g) denotes the Haar measure of SU(2). ω leads to the canonical rep-
resentation πo in which the spin networks SNF form a dense orthonormal set of
vectors πo(SNF ) in the scaffold Hilbert spaceHo, whose inner product turns out
to be 〈π(Cyl1)Ωo, π(Cyl2)Ωo〉 =

∫

dµH(g1)...dµH(gn)Cyl1(g1, ..., gn)Cyl2(g1, ..., gn).
This allows the construction of a pre-Hilbert-preC∗-module for the sums

∑n
i=1 Cyliwi

given by the cylindrical functions by setting 〈Cyl1, Cyl2〉A := |πo(Cyl1)Ωo〉〈πo(Cyl2)Ωo|
and using the canonical representation πo thereon. We are thus able to apply
Rieffel’s construction of an approximate identity for each graph γ and hence find
an approximate identity idγ,ǫ,Cγ,Uγ(1) for the entire observable algebra. We are
thus able to define the C∗-algebra for the scaffold as the operator norm comple-
tion of the elements of the form

∑n
i=1 Cyliwiidγ,ǫ,Cγ,Uγ(1) in B(Ho). The strong

Morita equivalence between the scaffold algebra and C that is inferred by the
cylindrical functions provides a uniqueness theorem for the representation of the
scaffold algebra.

Let us now consider the relation between the scaffold algebra defined here
and the observable algebra that underlies loop quantum gravity: The holonomy-
flux-Weyl-algebra is constructed by smearing the electric fields on open piecewise
analytic 2-dimensional surfaces. However, given any open piecewise analytic
curve c there is a Weyl-operator that corresponds to an electric field smeared
on this 1-dimensional quasi-surface: For any c there exists an open piecewise
analytic surface S such that every interior point of c is also an interior point of
S and the boundary points of c are in the boundary of S. The difference S \ c
is then a set of disconnected piecewise analytic surfaces S1, ..., Sn. Then taking
the Weyl-operator Wc := WSW

∗
S1
...W ∗Sn

corresponds to a flux through the 1-
dimensional quasi-surface c. The analogue procedure can be used to construct
Weyl-operators Wx for 0-dimensional quasi-surfaces x. These 0-dimensional
quasi-surfaces are viewed as fundamental in this paper and all other Weyl-
operators are viewed as composites of these fundamental Weyl-operators (a
similar approach is taken in [19]).

The gauge-invariant scaffold algebra arises as a restriction of the algebra
of n-hand operators (as used e.g. in [13]), where all edges are required to
be in the scaffold and the hands are vertices in the scaffold. Particularly, we
consider observables of the form Tr(Wx1(µ1)hγx2

x1
Wx2(µ2)...), where γ

y
x connects

the points x and y in the Cauchy surface. Due to the construction of the scaffold,
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there is at least one representative for each diffeomorphism class of graphs that
consists only of elements of the scaffold.18 Hence there is at least one scaffold
representative for each diffeomorphism class of n-handed operators.

3.4 Pairs of Embedding Maps

The reason why we built the scaffold with ”straight” edges in the previous
subsection was to be able to explicitly calculate the dependence of the holonomy
along these edges on the degrees of freedom of a homogeneous connection. We
saw previously that the degrees of freedom of a homogeneous connection can be
expressed as19:

A = ΛI
adx

aτI .

Given a straight edge e = ((i1, i2, i3), (f1, f2, f3)), we can calculate the holonomy
from ia to fa along this edge for a homogeneous connection:

he(A) = P

{

exp

(

∫

e
A

)}

= exp

(

∫ 1

0
dt(fa − ia)ΛI

adx
aτI

)

= I cos

(

L
2

)

+ 2n̂IτI sin

(

L
2

)

,

(38)

where we used the shorthand

L = ||(fa − ia)Aa|| =
√
∑

I((f
a − ia)AI

a)
2,

n̂I =
(fa−ia)AI

a

L =
êaAI

a

L .

Using this expression, we can calculate the explicit dependence of the holon-
omy along any edge in the scaffold on the homogeneous connection. All edges
have fiducial length nlo and are piecewise straight. Thus, for each straight
piece20, there is a natural number ne and a unit vector ê, such that L =
nlo

√
∑

I(ê
aAI

a)
2 = nlo||eAI ||, such that for the straight pieces in the scaffold

correspond to:
Lei

abc
= lo||Ai||

Lli
abcn

= lo||ê(α(a, n))AI ||

Llm
abcn

= nlo||A1||
Llf

abcn

= lo||ê(α(a, n))AI ||.

We will introduce the shorthand τ(e, A) rather than wasting paper with explic-
itly calculating n̂ for all edges e in the scaffold and all homogeneous connections

18As explained e.g. in [13], one can construct the geometric operators from the n-handed
operators alone.

19This expression is again understood in the global chart, defined and used throughout the
previous section.

20The extra links labcn are decomposed into three straight pieces for these considerations.

We denote these straight liabcn, l
m
abcn and l

f
abcn for the initial, middle and final piece respec-

tively, when the orientation is chosen in positive x1-direction.
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A and observe that for the diagonal gauge21, where the connection takes the
form A = adx1τ1 + bdx2τ2 + cdx3τ3 there is no dependence of τ(e) on A.

Let us now insert a connection ALRS(a, b, c) that is locally rotaionally sym-
metric around the x1-axis as well as an isotropic connection Aiso(c)

22.
The matrix elements of the holonomies hei

abc
(ALRS) are easily calculated to

be linear combinations of the exponentials eilo/2(ma+nc)23, where for i = 1, 2 we
obtain a dependence on eilo/2ma and for i = 3 an dependence on eilo/2nc. Since
the holonomies along the middle pieces of the extra links are concatenations
of holonomies along edges that are parallel to lattice edges in x3-direction, we
obtain that their matrix elements hlm

abcn
(ALRS)ij are also only linear combina-

tions of eilo/2nc. Similarly, we obtain that the matrix elements of the holonomies
hli

abcn
(ALRS) along the initial and final pieces of the extra links are linear com-

binations of eilo/2ma. Using the observation that the isotropic model arises,
when the connection components a = c, we obtain that holonomies along all
concatenations of these curves are of the form:

hscaffold(ALRS) =
∑

nm ξnme
ilo/2(ma+nc)

hscaffold(Aiso) =
∑

n ξne
ilo/2nc.

(39)

We have not included hlf
abcn

(ALRS) and hlf
abcn

(Aiso), because these are due to

homogeneity and the groupoid morphism structure of the connection h−1
lI
abcn

(ALRS)

and h−1
lf
abcn

(Aiso) respectively.

We notice that all matrix elements of holonomies along scaffold edges for
ALRS connections are linear combinations of eilo/2(na+mc) for some n,m ∈ Z.
The isotropic connection arises as the special case, when a = c, i.e. the ma-
trix elements of holonomies simplify to linear combinations eilo/2nc. This sim-
plification will not occur if we consider a diagonal homogeneous connection
Adiag = adx1τ1 + bdx2τ2 + cdx3τ3, because the ”legs” (liabcn and lfabcn) of the
extra legs have can not be expanded in eilo/2(n1a+n2b+n2c), because of the extra
square root appearing in the Ls.

The technical difficulties arising from this fact are the reason, why we post-
pone the general homogeneous case to later work.

Let us now construct the map P for the LRS and isotropic model by defining
it on an arbitrary cylindrical function Fγ(he1 , ..., hen). As we outlined in our
strategy, we will proceed in two steps: First we use diffeomorhpism invariance
of the kinematical states in the full theory to map the graph γ onto the scaffold.
For practical reasons, we will do this by hand for some simple graphs, while
we will refer to the construction outlined in the previous subsection for general
graphs.

21This requires a gauge-transformation and in general a diffeomorphism amounting to a
rotation of our chart.

22The parameters b, b and c denote the degrees of freedom of the reduced connections as
introduced in section 2.1. We will choose a diagonal gauge for these connections, such that the
connections simplify to ALRS = a(dx1τ1 + dx2τ2) + cdx3τ3 and Aiso = cdxiτi respectively.

23All numbers denoted by n,m are integers unless stated otherwise.
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Let us start with the general case: Given a graph γ, we can use the con-
struction of an embedding of this graph into the scaffold, which has ambiguities,
because we did not specify the details of the embedding of the braids B1 and
B2 into the regular lattice. However using the axiom of choice, there exists at
least one embedding of the concatenated braids that fits into a minimal cube
Cn = {ϕ(a, b, c) ∈ Σ : −nlo ≤ a, b, c ≤ nlo;n ∈ N} around the origin of our
chart. Thus, for each graph γ there exists a minimal number N (γ) such that,
by using our construction, γ is embedable into the cube CN (γ). The embedding
of γ into the scaffold restricted to CN (γ) will however in general not be unique,
so there exists a set I(γ) of embeddings of gamma into the scaffold region CN (γ).

We have not yet considered the orientation of the edges in γ. Given an
edges e out of a graph γ, our procedure may embed the edge by an extended
diffeomorphism φ oriented or with reverse orientation into the scaffold. If the
edge e is reversed, then we will make use of the fact that a quantum connection
is a groupoid morphism form the path groupoid into the gauge group and alter
the cylindrical function F (he1 , ..., hen) to:

F̃ (he1 , ..., hen) := F (hsgn(φ(e1))e1 , ..., hsgn(φ(en))
en ), (40)

where the sign of φ(e) is positive if φ maps e into an edge with the same orien-
tation and negative if e is mapped into opposite orientation.

This lets us define a map Po, that assigns to each cylindrical function Fγ the
average over the embeddings into the cube CN (γ):

Po : Fγ 7→
1

|I(γ)|

∑

φ∈I(γ)

F̃φ(γ). (41)

Notice that we just needed to employ covariance under extended diffeomor-
phisms for this construction, since for any cylindrical function this procedure
amounts to average over the action of a set of diffeomorphisms on it. This does
change the cylindrical function, however since we are interested in constructing
a diffeomorphism invariant theory, this is an entirely allowed step, because it
amounts to gauge fixing the diffeomorphisms.

Using Po, we define the quantum reduction map P by restricting the image
of Po to symmetric connections. This means for a cylindrical function Fγ :

P : Fγ 7→ (PoF̃γ)

∣

∣

∣

∣

Asym

(42)

For technical reasons that become obvious in the construction of i it turns out
that it is more convenient to gauge fix the diffeomorphisms for some simple
graphs ”by hand” (using a map Ps for a set S of ”simple” knot classes of

graphs), thus modifying the definition of P to P : Fγ 7→ (PsF̃γ)

∣

∣

∣

∣

Asym

∀γ ∈ S and

P : Fγ 7→ (PoF̃γ)

∣

∣

∣

∣

Asym

for γ otherwise. We will denote the corresponding maps
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for Asym consisting of LRS-connections by PLRS and the case of an isotropic
connection by Piso.

Let us now calculate the image of an arbitrary Spin network function Tγ un-
der Piso. Tγ has the structure Tγ(A) = Πe∈E(γ)ρ

ie(he(A))neme
, where ρi(g)mn

denotes the matrix element n,m of the ith representation of g. Let us use
the unitarity of the matrix representations, i.e. ρi(h−1e )nm = ρi(he)mn, which
means that T̃γ is of the same form as Tγ except for possible complex conjuga-
tions. However we have already observed that matrix-elements of the holonomies
along edges in the scaffold reduce to linear combinations of einlo/2c for isotropic
connections. Moreover, using the representation theory of SU(2), which states
that ρi(g)mn can be constructed by symmetrizing i products of matrix elements
of the fundamental representation of g, we obtain that each spin-network func-
tion Tγ is reduced to a linear combination of eilo/2nc:

Piso(T ) =
∑

n∈D⊂Z

ξne
ilo/2nc, (43)

where D is a finite set. Since P is a linear operation and the spin-network func-
tions are dense in the cylindrical functions, we see that the cylindrical functions
lie in the completion:

Piso(Cylo) =
∑

n∈Z

ξne
ilo/2nc (44)

with possibly infinitely many summands and the usual restrictions on the ξn
for Fourier coefficients of continuous functions on 0, ..., 2π. Obviously the same
arguments holds for PLRS with only a little more notational effort. Thus, for
any cylindrical function Cyl we have:

PLRS(Cylo) =
∑

n,m∈Z

ξn,me
ilo/2(ma+nc). (45)

Using the fact that the set {eilo/2(ma+nc) : n,m ∈ Z} is dense in the image of
PLRS , we can use the Fourrier transform to extract the coefficients ξnm:

ξnm(Cylo) =

∫ π
lo

0

dc

2π

∫ π
lo

0

da

2π
PLRS(Cylo) exp(−ilo/2(am+ cn)). (46)

With these coefficients it is convenient to write P (Cylo) =
∑

nm ξnme
ilo/2(am+cn).

With the observation that the eilo/2(am+cn) span the image of PLRS , we can
easily construct a map linear map i from the image of PLRS into the cylindri-
cal functions such that P ◦ i(eilo/2(am+cn)) = eilo/2(am+cn). Let us start with
the isotropic case. Using the standard τ3 = i/2diag(1,−1), we can write the
holonomy along e30,0,0 as:

he30,0,0 =

(

eilo/2c 0

0 e−ilo/2c

)

, (47)
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which tells us that eilo/2cn can be written as:

eilo/2cn =
((

he30,0,0(A)
)

11

)n
∣

∣

∣

∣

Aiso(c)

(48)

Let us now define the set Siso of simple knot classes for isotropic graphs as the
set of graphs that consist only of one edge. For these we define Ps,iso to be the
map:

PS,iso : F (he) 7→ F (he30,0,0). (49)

With these preparations, we have a pair Piso, iiso that constitutes a quantum
embedding, if iiso is defined as:

iiso : eilo/2cn 7→
((

he30,0,0

)

11

)n

. (50)

The map iiso is the extension by linearity to the span of eilo/2nc, meaning that

iiso :
∑

n

ξne
ilo/2nc 7→

∑

n

ξn

((

he30,0,0

)

11

)n

.

The construction for the LRS-reduction is completely analogous: All that
we have to change is that we have to extend our definitions to account for the
a-dependence of eilo/2(ma+nc). Let us consider the holonomy along e11,0,0, which
depends on the LRS-connection as:

he11,0,0 = I cos(
lo
2
a) + 2τ1 sin(

lo
2
a) =

(

cos( lo2 a) i sin( lo2 a)

i sin( lo2 a) cos( lo2 a)

)

, (51)

from which we deduce that

eilo/2ma =
(

(he11,0,0 )11 + (he11,0,0)12

)m
∣

∣

∣

∣

ALRS(a,c)

. (52)

Extending the set Siso by including not only graphs depending on only one
edge but also graphs that depend on three unconnected edges we obtain the set
SLRS . For these two knot classes of graphs, we extend the map PS,iso to graphs
with two unconnected edges and define PS,LRS as:

PS,LRS :

{

F (he) 7→ F (he30,0,0 )

F (he1 , he2 , he3) 7→ F (he30,0,0 , he11,0,0 , he32,0,0 )
. (53)

This defines PLRS , however the definition of iLRS needs the construction eilo/2a

through a cylindrical function, which can be done as follows:

eilo/2a =

(

(he30,0,0 )11(he32,0,0)22

(

(he11,0,0 )11 + (he11,0,0 )12

)

)∣

∣

∣

∣

ALRS(a,c)

. (54)
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This lets us define iLRS as the extension by linearity of:

iLRS : eilo/2(ma+nc) 7→
(

(he30,0,0 )11(he32,0,0 )22

(

(he11,0,0 )11 + (he11,0,0 )12

)

)m
((

he30,0,0

)

11

)n

.
(55)

Although these two maps iLRS and iiso satisfy PLRS ◦ iLRS = IdImg(PLRS) and
Piso◦iiso = IdImg(Piso), it will later turn out to be useful to formulate these maps
in terms of spin-network functions. Using (h((−2m,0,0),(−m,0,0))11(ALRS(a, c) =

eilo/2am and (h((0,0,−2n),(0,0,−n))11(ALRS(a, c) = eilo/2cn we alter the maps to:

iLRS : eilo/2(ma+nc) 7→ (h((−2m,m,0),(−m,m,0))11(h((n,n,−2n),(n,n,−n))11 := Tn,m
iiso : eilo/2nc 7→ (h((n,n,−2n),(n,n,−n)))11 := Tn

(56)
These edges where chosen in such a way that they do not intersect each other
for different n,m.

These two quantum embedding maps (Piso, iiso) and (PLRS , iLRS) will be
used in the next section to extract cosmological sectors form Loop Quantum
Gravity. We will call them microscopic embedding, because they are con-
structed to preserve the microscopic structure of the graphs.

3.5 Comments about the Embedding Maps

Several remarks are in order:
• The construction of the scaffold defines an embedding of the combinatorial
groupoid into the path groupoid of σ = R3 in the obvious way. We saw on
the other hand that the restriction to the scaffold allows us to define cylindri-
cal functions that are diffeomorphism fixed, when we apply an averaging over
the allowed embeddings into the scaffold. This displays the relation that the
combinatorial theory and the diffeomorphism fixed theory play: The averaging
over the allowed embeddings into the scaffold simply amounts to gauge fixing
the action of a subgroup of the automorphism group of the scaffold, which is
precisely the subgroup that is generated by the action of homeomorphisms of
the base manifold σ.

• At the beginning of this work, we considered not only the microscopic
embedding that we showed here, but also embeddings in which the image of i
takes a certain form. We thought e.g. that an embedding in which i maps into
complexifier coherent states (see [11]) would result in a different ”semiclassical
embedding”. However, it turned out that the reduced algebra as well as the
induced representation was not different from the one constructed with the
microscopic embedding map as long as the cylindrical functions in the image of
i had been built on the same graphs. The significant dependence of the reduced
system on the details of the graph will have significant (e.g. different dynamics)
consequences as we will discuss in section 4.5.

• We have already argued for geometrical homogeneity. The construction
of such states is however, again due to the graph dependence of this statement,
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very difficult. This difficulty was the main reason for proceeding in analogy to
[12]. After the completion of this piece of research and before its publication
we discovered that there are indeed states on the algebra that underlies LQG,
that satisfy an exact geometric homogeneity [20]. These states do however not
arise through a quantum symmetry reduction.

• One can argue that we would have obtained a completely different pair
of embedding maps, if we used a different scaffold, particularly one that is not
based on a regular lattice, but e.g. one that is constructed on a lattice that has
fundamental length lo in x1 and x2 direction and an irrational multiple l1 in
x3 direction. The corresponding locally rotational symmetric embedding would
not differ much, because the image of P would contain linear combinations of
ei/2(loma+l1nc), which is isomorphic to the image of PLRS in our construction.
The isotropic model would however differ significantly, because the image of P
would contain ei/2(lomc+l1nc), which is different form the image of Piso. The
resulting isotropic model would be similar to [21], which has the Bohr compact-
ification of R as its quantum configuration space.

A even more significantly different embedding can be constructed in the
following way: consider a scaffold that is constructed as in this section, but
based on a lattice that has an infinite number of mutually irrational length
li. Such a lattice can be constructed from the regular lattice by applying the
diffeomorphism that has the following form in the lattice chart:

φ : (x1, x2, x3) 7→ (x1, x2, sinh(x3)). (57)

The the image of the map P that is built on a scaffold based on such a lattice
will contain linear combinations of ei/2lo(mc+

P

k nk sinh(k)c) and thus a basis will
be labeled by an infinite number of integers m,nk. The induced Hilbert space
representation of the reduced theory is however in general not unitarily equiv-
alent to he standard representation of LQC on L2(R̄Bohr). We will not discuss
the physical implications of these more complicated quantum embeddings, and
rather focus on the simplest case in the next section.

4 Embedable Loop Quantum Cosmology

Having the reduction maps at our disposal, we will apply them to extract a
cosmological sector from LQG.

4.1 Preparatory Considerations

The method of embedding an algebra using a quantum embedding (P, i), as
we presented it in [6], requires the existence of a Hilbert-C∗-module for the
algebra of the full system. However, such a construction is unfeasible for the
holonomy-flux-Weyl-algebra, because any Weyl-operator that corresponds to a
flux through a finite 2-dimensional quasi-surface will affect an over-countable
number holonomies (holonomies along all edges that intersect transversely with
the surface) and thus affect an over-countable number of cylindrical functions,
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which can not be taken care of by relations between countably many cylindrical
functions, as they arise from Hilbert-C∗-modules. This shortcoming can be
cured by considering a theory in which the diffeomorphisms are gauge fixed.
We have already considered a gauge fixing of the diffeomorphisms for cylindrical
functions. A general bounded elementary operator of Loop Quantum Gravity
will however be constructed from cylindrical functions and Weyl-operators, i.e.
it is of the form:

O =
∑

i

Cyliγi
WSi

1
(λi1)...WSi

n
(λin), (58)

where WS,f(λ) denotes the Weyl-operator exp(iλE(S, f)) associated to the flux
Ei(S) through the surface S and where Cyl is a cylindrical function. Since any
operator product of these elementary operators O will again be of this form, we
conclude in analogy to the gauge fixing of the diffeomorphisms on cylindrical
functions that we have to gauge fix the diffeomorphisms by assigning exactly one
representative (γ, S1, ..., Sn) for each class of topological relations that the edges
e ∈ γ can have with each other (i.e. the knot class of the graph) and with the
surfaces S1, ..., Sn (i.e. the transversal intersections of the edges in γ have to be
left invariant under the gauge fixing of the diffeomorphisms). Due to the over-
countability issue, we will at the end view Weyl-operatorsWx on 0-dimensional
quasi-surfaces x as elementary operators. This seems a very weak restriction
as we explained before. In order to explain the additional difficulties that arise
from the nontrivial topological relations arising from 1- and 2-dimensional quasi-
surfaces, we will consider a construction that fixes their diffeomorphism class:

Given a set (γ, S1, ..., Sn), one can find such a construction as follows24:

1. For each intersection of a surface with an edge in γ we split this edge and
add a bi-valent vertex. The resulting graph is denoted γ̃. Intersections of
surfaces with γ at vertices are left untouched.

2. We use the construction described in the previous section for γ̃ to embed
it into the scaffold. We have to fix the choice of embedding the braids B1

and B2 for each individual graph γ̃ to make the embedding unique.

3. Since γ̃ intersects with the surfaces only at vertices, there is a piecewise
analytical ”small surface” that has the same topological relations with
the edges of the graph as a small neighborhood of the intersection of the
surface with graph does. This means in particular that it intersects the
graph only at this vertex. We denote these ”small surfaces” by Si,v, where
i denotes the index of the surface and v the vertex in γ̃.

4. The surfaces Si,v can now be connected using surfaces that do not inter-
sect with γ̃, because the scaffold has no accumulation point of edges.25

Moreover, we can choose these connecting pieces to be piecewise analytic.

24We will assume that all Si are homeomorphic to a disc. These are sufficiently many
surfaces to construct all operators that are necessary to discuss Loop Quantum Gravity.

25If we label the vertices that intersect Si by an index j, then there are ”small bands” Bj

that connect the vertex j with j + 1. Then the concatenation of Siv1 , B1, Siv2 , ..., SivN has
the desired topological relations and is homeomorphic to a disc.
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The embedding of γ, S1, .., Sn is still dependent on the labeling of the edges,
vertices and graphs. To get rid of this dependence in the gauge fixing of our
operators O, we have to average over all possible embeddings of γ, S1, ..., Sn into
the diffeomorphism fixed set γ̃, S̃1, ..., S̃n:

Õ =
1

|I|

∑

i∈I

i∗(O), (59)

where I denotes the set of all possible embeddings and i∗(O) denotes the pull-
back of the expression for O under these embeddings. We conclude that for
each elementary operator O depending on (γ, S1, ..., Sn), we can associate a
diffeomorphism fixed operator Õ using the above construction. The relation of
the diffeomorphism fixed theory to Loop Quantum Gravity is as follows:

1. Loop Quantum Gravity can be though of as the quantum field theory
that is generated by the bounded elementary operators of the form O =
∑

iCyl
i
γi
WSi

1
(λi1)...WSi

n
(λin) and its Hilbert-space representation arises as

the GNS-representation using the Schrödinger functional:

ωS(O) =

∫

dµAL(A)
∑

i

Cyliγi
(A). (60)

Notice that this functional is invariant under the choice of gauge fixing of
the diffeomorphisms.

2. Consider the diffeomorphism gauge fixed theory that can be define as fol-
lows: Given a set of diffeomorphism fixed operators Õ1, ..., Õm, there is
a graph γ (the union of all occurring edges and vertices in the individ-
ual graphs) and a smallest set {S1, ..., Sk} of surfaces (also the union of
all occurring surfaces). This means we can define the operator product
Õ1...Õm on this set26. Now use the fact that the Schrödinger functional
is invariant under the extended diffeomorphisms, which allows us to use
it to preform a GNS construction on this combinatorial theory.

3. To simplify our discussion, we make the observation that we can take
any vertex v in this graph and any edge e originating in this vertex and
find a small piecewise analytic surface Sv,e such that e is above the sur-
face27 and all other edges are parallel to this surface and exit in parallel
to it. We notice that products of the Weyl-operators WSv,e

(λ), where
e and v range over the entire graph, are able to construct the action of
any Weyl-operator. Thus, we can write the bounded elementary oper-

26To check that this operator product is well defined one needs to check its associativity,
which is obvious from the construction.

27We have not mentioned the orientation of surfaces yet, because it was not necessary in the
construction of the Weyl-operators. This is due to the fact that an inversion of the orientation
can be absorbed in a flip of the sign of the λ-parameter in the Weyl-operator WS(λ).
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ators as O =
∑

i Cyl
i
γi
WSi

v1,e1
(λi1)...WSi

vn,en
(λin)

28. This means that we

can consider the combinatorial theory as a covariant pair consisting of
the commutative algebra of cylindrical functions and the group of ele-
mentary Weyl-operators WSv,e

(λ). These elementary operator can not be
distinguished from the ”elementary” Weyl-operatorsWx on 0-dimensional
quasi-surfaces x and the additional bands to connect these elementary
Weyl-operators have no effect on the scaffold holonomies and can thus be
replaced with unit operators.

4. Notice that the one can put the previous point (2.) on its head and con-
struct any bounded elementary operator O form a gauge-fixed operator Õ
and an extended diffeomorphism. We conclude that Loop Quantum Grav-
ity can be constructed from the combinatorial theory and the extended
diffeomorphisms, since the Schrödinger functional of the combinatorial
theory is invariant under these extended diffeomorphisms. Moreover Loop
Quantum Gravity whose elementary Weyl-operators are on 0-dimensional
quasi-surfaces can be constructed from an embedding of the scaffold alge-
bra.

The combinatorial theory is no longer plagued by the over-countability issue of
the action of the Weyl-operators. Thus, we are able to construct a Hilbert-C∗-
module over this combinatorial theory and then use the quantum embeddings
that we defined in the previous section to extract cosmological sectors from
this combinatorial theory. This sector is then by construction a sector of the
diffeomorphism invariant Loop Quantum Gravity, due to the connection that
we just described.

4.2 Application of the microscopic Embedding

The first step in the construction of a quantum embedding is the construction
of a Hilbert-C∗-module for the combinatorial theory that we constructed in
the previous section. It is particularly simple to construct a Schrödinger-type
Hilbert-C∗-module for a covariant pair that consists of the commutative algebra
of continuous functions on a compact space29 and a group of homeomorphisms
acting freely and properly thereon. Due to the previously explained relation of
the scaffold algebra and the diffeomorphism fixed algebra of LQG with Weyl-
operators on 0-dimensional quasi-surfaces, we will use a Hilbert-C∗-module for

28There is a subtlety which is the precise mathematical reason for restrict-
ing our attention to the Weyl-operators on 0-dimensional surfaces: The operators
P

i Cyl
i
γi
WSi

1,v1,e1
(λi1)...WSi

n,vm,em
(λin) are not symmetric under difeomorphisms mapping

the set γ, S1, ..., Sn onto itself. If we want to achieve this by averaging over all topological
relations, then we need to recover the original surfaces Si. This means that we would have
to introduce additional structure on the Hilbert-C∗-module that would encode these topolog-
ical relations. It is however not obvious how to model this structure mathematically on the
Hilbert-C∗-module.

29The configuration space of the combinatorial theory is compact because it is a closed
subspace of the configuration space of Loop Quantum Gravity, which is a compact space.
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the scaffold algebra. The cylindrical functions on the scaffold furnish a pre-
Hilbert-pre-C∗-module by construction.

It actually suffices to construct a pre-Hilbert-C∗-module, because the com-
pletion of these is unique. Using the fact that the diffeomorphism fixed cylindri-
cal functions are dense in the algebra of continuous functions on the diffeomor-
phism fixed configuration space allows to use diffeomorphism fixed cylindrical
functions to construct a Hilbert-C∗-module for the combinatorial theory. Let
us consider the module set that consists of diffeomorphism fixed cylindrical
functions: Fγ = 1

|I|

∑

φ∈I Cylφ(γ). We use the bilinear structure:

〈F 1
γ , F

2
γ 〉
◦
A := F 1

γ

∫

Πe∈E(γ)dµH(ge)F 2(g−1e1 he1 , ..., g
−1
en hen)

WSe1
(λ(ge1 ))...WSen

(λ(gen)).
(61)

Sei is a shorthand for the 0-dimensional quasi-surface Ss(ei)ei , that has only ei
as an above edge and all other edges at s(ei) are inside, so the Weyl-operator
acts trivially on them. dµH(g) denotes the Haar measure on SU(2) over a copy
whose representatives are denoted by g. λ(g) denotes a function on the group
SU(2) with values in the Lie-algebra, such that exp(λ(g)τ) = g.

This bilinear structure is not yet symmetric under the automorphisms of
γ, S1, ..., Sn, so we have to symmetrize over all embeddings i ∈ I of γ, S1, ..., Sn

into γ̃, S̃1, ..., S̃n that preserve the topological relations30. This yields the final
form of the bilinear structure 〈., .〉A as:

〈F1, F2〉A :=
1

|I|

∑

i∈I

〈F1, F2〉A. (62)

A proof that this bilinear structure is indeed dense in the combinatorial theory
of diffeomorphism fixed LQG is given by applying the analogue of the approxi-
mate identity that we used to construct the scaffold algebra and preforming the
symmetrization over the equivalent topological relations.

Using this Schrödinger-type pre-Hilbert-C∗-module, we can use the quantum
embedding (P, i) for cylindrical functions Fγ immediately, because:

P : F 7→ P (F )
i : h 7→ i(h),

(63)

are well defined. Applying the rules for quantum embeddings, we construct
the reduced module as the space P (Fγ), where Fγ ranges over all cylindrical
functions. Using the action of the operators 〈F1, F2〉AH := 〈F1, F2〉AH , we
define the bilinear structure for all P (F ) as:

〈P (F1), P (F2)〉BP (H) := P (〈i(P (F1)), i(P (F2))〉Ai(P (H))). (64)

Let us now insert the specific quantum embeddings (PLRS , iLRS) and (Piso, iiso)
to obtain the specific quantum embeddings:

30Notice that the Si denote vertices in the scaffold that point at precisely one adjacent edge
and not generic quasi-surfaces.
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We learned in the previous section that the image of PLRS is spanned by the
functions eilo/2(am+cn), where (a, c) denote the degrees of freedom of the LRS-
model in diagonal gauge. Thus, for any pair (F, f), we obtain the corresponding
element of the embedded module:

PLRS(F ) =
∑

n,m

ξn,m exp(ilo/2(am+ cn)). (65)

We will calculate the bilinear structure by the action of pairs eilo/2(am+cn) on
the dense set eilo/2(am+cn) and consider the completion by sesquilinearity in the
arguments and linearity in the representation space:

〈eilo/2(am1+cn1), eilo/2(am2+cn2)〉LRSe
ilo/2(am3+cn3)

= P (〈i(eilo/2(am1+cn1)), i(eilo/2(am2+cn2))〉Ai(eilo/2(am3+cn3)))

= δm2,m3δn2,n3e
ilo/2(m1a+n1c),

(66)

where we used the observation that
∫

dµH(g((−2m,m,0),(−m,m,0)))dµH(g((n,n,−2n),(n,n,−n)))
T ∗n2m2

(g−1((−2m,m,0),(−m,m,0))h((−2m,m,0),(−m,m,0),

g−1((n,n,−2n),(n,n,−n))h((n,n,−2n),(n,n,−n)))

WS((−2m,m,0),(−m,m,0))
(λ(g((−2m,m,0),(−m,m,0))))

WS((n,n,−2n),(n,n,−n))
(λ(g((n,n,−2n),(n,n,−n))))Tn3,m3

reduces to δn2,n3δm2,m3 due to the action of the Weyl-operators as translations
on Tn3,m3 if and only if n2 = n3 and m2 = m3, the translation invariance of the
Haar measure and orthogonality of the spin-network-functions in the translated
inner product w.r.t the Haar measure.

These relations 〈(n1,m1), (n2,m2)〉A(n3,m3) = δn2,n3δm2,m3(n1,m1) can
immediately be identified with the quantum algebra of a particle on a torus,
which we called U(1)2 in [6]. We can indeed identify the completion of ImgPLRS

as functions on the torus and the bilinear structure as the rank-one-operators
on the torus.

Let us now calculate the induced representation for this reduced quantum
algebra: We have the association of ”rank one operators” of the full and reduced
theory:

〈F1, F2〉A ↔ 〈P (F1), P (F2)〉LRS . (67)

The Schrödinger ground state of Loop Quantum gravity yields for the ”rank
one operators” of the full theory:

ω(〈F1, F2〉A) =

∫

dµAL(A)F2(A)F1(A). (68)

This implies for the the reduced rank-one operators:

ωind(〈e
ilo/2(m1a+n1c), eilo/2(m2a+n2c)〉LRS)

= ω(〈i(eilo/2(m1a+n1c)), i(eilo/2(m2a+n2c))〉A)
= δm1,oδm2, oδn1,oδn2,o,

(69)
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due to the orthogonality of the spin network functions i(eilo/2(ma+nc)) for dif-
ferent m,n in the Schrödinger ground state of the full theory.

Let us compare this with the usual Schrödinger ground state on the torus:

ωtorus(f(a, c)W (λ1λ2)) =
1

4π2

∫ 2π

0

da

∫ 2π

0

dcf(a, c), (70)

which yields for the rank one operators 〈., .〉torus on the torus:

ωtorus(〈eilo/2(m1a+n1c), eilo/2(m2a+n2c)〉torus)

= 1
4π2

∫ 2π

0
da

∫ 2π

0
dceilo/2(a(m1−m2)+c(n1−n2)) = δm1,oδm2,oδn1,oδn2,o,

(71)

which coincides with the induced ground state ωind. Since the 〈eilo/2(m1a+n1c), eilo/2(m2a+n2c)〉LRS

are a dense set of the operator algebra, we have demonstrated that (1) the
LRS quantum algebra is the quantum algebra of a particle on the torus and
(2) the induced representation is the canonical representation of this quan-
tum system, which is unitarily equivalent to the Schrödinger representation
on L2(T, 1

4π2 da ∧ dc)
Using the observation that the bilinear structure 〈., .〉iso arises as the spacial

case of the LRS-structure, where all mi = 0, which is due to the special anal-
ogy of our construction of (Piso, iiso) compared to (PLRS , iLRS), we can quote
the result for the isotropic embedding without further calculations: ImgPiso

is the module of functions on the circle and the bilinear structure yields the
rank-one-operators on quantum mechanics on the circle. The induced repre-
sentation is very analogous to the canonical representation of quantum me-
chanics on U(1), which is unitarily equivalent to the Schrödinger representa-
tion on L2(U(1), dµH). The gravitational part of the kinematics of standard
LQC is equivalent to the canonical representation of the CCR-Weyl-algebra on
L2(R̄Bohr) [12], which contains infinitely many super selection sectors that can
be reduced to the canonical representation of quantum mechanics on a circle on
L2(U(1)).

4.3 Imposing Constraints

Gravity is a constrained theory and Loop Quantum Gravity is a theory with
three sets of constraints, the Gauss-constraint that generates ”ordinary gauge
transformations”, the diffeomorphism constraint and the scalar constraint that
generates something that are related to the ”timelike diffeomorphisms”. Since
these transformations are not observable, one has to construct the quantum
theory in a way that leaves these unobservable. This implies that any reduced
theory of a constrained system has to be a reduced system, that is constructed as
a reduction of the constraint surface. We will discuss the treatment of the Gauss-
and the diffeomorphism constraint in this section and discuss the treatment of
the scalar constraint under subsection 4.5.

The solutions to the Gauss-constraint are products of traces of holonomies of
closed loops. Thus, we calculate the holonomies around closed loops in the scaf-
fold. For an LRS-connection, these can all be generated by the three elementary
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loops31 ((0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0)), ((0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1), (0, 0, 0))
and ((0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 0, 0), (0, 0, 0)):

h((000)(100)(110)(010)(000)) =

(

cos(a l) + 1−i
2 sin(a l)

2
2 (i − 1) cos(a l

2 ) sin(a l
2 )

3

2 (1 + i) cos(a l
2 ) sin(a l

2 )
3

cos(a l) + 1+i
2 sin(a l)

2

)

h((000)(010)(011)(001)(000)) =

(

cos(a l
2 )

2
+

sin( a l
2 )

2

ei c l

−((−1+ei c l) sin(a l))
2

(−1+e−i c l) sin(a l)

2 cos(a l
2 )

2
+ ei c l sin(a l

2 )
2

)

h((000)(001)(101)(100)(000)) =

( 1−ei c l (−1+cos(a l))+cos(a l)
2

i
2

(

−1 + ei c l
)

sin(a l)
sin(a l) sin( c l

2 )

e
i
2

c l

1−−1+cos(a l)

ei c l +cos(a l)

2

)

The traces of these holonomies are all even periodic functions in both connection
components a, c with periodicity lo:

Tr(h((000)(100)(110)(010)(000))) = 2 cos(alo) + sin2(alo)
Tr(h((000)(010)(011)(001)(000))) = 2 cos2(alo/2) + 2 cos(clo) sin

2(alo/2)
Tr(h((000)(001)(101)(100)(000))) = 2 cos2(alo/2) + 2 cos(clo) sin

2(alo/2).
(72)

But the ”Wilson loops around these elementary plaquettes” contain all the
gauge invariant information of the homogeneous connection, because there are
no ”smaller plaquettes” in our scaffold. This means that all solutions to the
Gauss constraint are even functions of periodicity lo. It follows that we can solve
the Gauss constraint for the reduced theory by restricting the domain of P to
gauge-invariant diffeomorphism-fixed spin network functions and by construct-
ing i in such a way that it takes values in gauge-invariant diffeomorphism-fixed
functions only.

We have already calculated the image of the restriction of PLRS as the even
functions of periodicity lo. Now, we have to construct i for these functions.
This can be done by assigning to each (2 cos(alo) + sin2(alo))

n(2 cos2(alo/2) +
2 cos(clo) sin

2(alo/2))
m the gauge-invariant and diffeomorphism fixed spin network-

function:

iLRS : (2 cos(alo) + sin2(alo))
n(2 cos2(alo/2) + 2 cos(clo) sin

2(alo/2))
m

7→ (Tr(h((n00)(n+100)(n+110)(n10)(n00))))
n(Tr(h((−mm0)(−mm+10)(−mm+11)(mm1)(−mm0))))

m.
(73)

The linear extension to the entire image of PLRS |gauge.inv. defines the gauge-
invariant iLRS .

Having a gauge-invariant pair (PLRS , iLRS) enables us to calculate the re-
duced quantum algebra: We identify the action of the rank-one operators on the
canonical module (n,m) ∼ (2 cos(alo)+sin2(alo))

n(2 cos2(alo/2)+2 cos(clo) sin
2(alo/2))

m,
i.e. we consider

〈(n1,m1), (n2,m2)〉LRS(n,m) = 〈i(n1,m1), (n2,m2)〉A(n,m) = (n1,m1)δn2,nδm2,m,
(74)

31The loops involving extra links can be expressed as rotations of holonomies in the regular
lattice due to local rotational symmetry of the connection.
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where we reuse the observation that the action of the Weyl-operators reduces
to a shifted integration of i(n2,m2)i(n,m) w.r.t. the Ashtekar-Lewandowski
measure. The orthogonality of the spin-network-functions i(n,m) for different
(n,m) then gives the result. The induced vacuum state ωind is the calculated
by applying (67) to the gauge invariant construction, which yields:

ωind(〈(n1,m1), (n2,m2)〉LRS) := ω(〈i(n1,m1), i(n2,m2)〉A) = δn1,oδn2,oδm1,oδm2,o.
(75)

This lets us define the intertwiner between the module spanned by (n,m) and
the Hilbert-module spanned by ei(ax+by) in L2(T2, 1

4π2 dx ∧ dy), given by:

U : (n,m) 7→ ei(nx+my), (76)

which is evidently unitary. Thus, we again obtain unitary equivalence of the
reduced theory with quantum mechanics on the circle. To construct a unitary
intertwiner is however more complicated than in the gauge-variant case.

Reusing the observation that one can obtain the isotropic model as the spe-
cial case of the LRS model, where restrict ourselves to the states (n,m) for which
e.g. m = 0 and to the operators that mediate between these, we obtain that the
isotropic theory is unitarily equivalent to quantum mechanics on a circle. This
is however a very weak result, because any two separable infinite dimensional
Hilbert-spaces are unitarily equivalent. The physical interpretation of the un-
derlying quantum configuration space is given by the intertwiner. This comes
about as follows: The Hilbert-C∗-modules that we used to construct the quan-
tum embedding where Schrödinger modules, i.e. the elements of the module
have a pointwise multiplication defined among them. The lesson from noncom-
mutative geometry is that the spectrum of the C∗-completion of this algebra is
the desired topological space. However so far we have not been able to calcu-
late this spectrum explicitly and are thus unable to present the gauge-invariant
quantum configuratiion space of the LRS-model32.

Considerations about the diffeomorphism constraint: One can introduce the
diffeomorphism invariance of Loop QuantumGravity through the graph groupoid
G. The unit set of this groupoid consists of all embedded graphs γ on the base
manifold (in the Bianchi I setting R3). The morphisms of the groupoid consist
of all ordered pairs (γ1, γ2) of graphs that are in the same iso-knot class. The
source map s and the range map r are given by:

s(γ1, γ2) = γ1 , r(γ1, γ2) = γ2 (77)

the inversion is (γ1, γ2)
−1 = (γ2, γ1), the composition law is:

(γ1, γ) ◦ (γ, γ2) = (γ1, γ2), (78)

and the object inclusion map is e(γ) = (γ, γ). We can define an action α of this
groupoid on the cylindrical functions Cylγ using the momentum map µ:

µ(Cylγ) = γ
α((γ1, γ2), Cylγ2) = Cylγ1 .

(79)

32We will continue to ask mathematicians until we find a solution.
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Calculating the orbits of this action of the graph groupoid on the cylindrical
functions yields the equivalence classes [Cylγ ]∼ of cylindrical functions taken
w.r.t the equivalence relation: Cyl1γ1

∼ Cyl2γ2
iff Cyl1 = Cyl2 and γ1 is an

isomorphic to γ2 as a knot.
The embedding procedure Po that we used to embed any given cylindrical

function into the cylindrical functions defines equiavlence classes [.]P through:

Cyl1γ1
∼P Cyl2γ2

iff: Po(Cyl
1
γ1
) = Po(Cyl

2
γ2
). (80)

But any two cylindrical functions Cyl1γ1
and Cyl2γ2

are ∼P -equivalent iff Cyl
1 =

Cyl2 and γ1 is an isomorphic to γ2 as a knot, by construction of Po, which
depends only on the isoknot class of the considered graph. This lets us build a
map I, which is defined for any cylindrical function Cylγ as:

I : Po(Cylγ) 7→ [Cylγ ]P , (81)

which is clearly continuous with continuous inverse and turns out to be an iso-
morphism. We conclude that the diffeomorphism orbits of cylindrical functions
are indeed isomorphic to the points in the image of Po. Thus, the isomorphism
I allows us the interpretation of the image of Po as diffeomorphism invariant
states of Loop Quantum Gravity. Since our quantum embedding (P, i) is built
as a pair of maps, where P is the restriction of the functions in the image of Po

to symmetric connections and i is the assignment of a function in the image of
Po, we can use I to interpret i ◦ P as diffeomorphism invariant states and thus
the image of P as symmetry reduced diffeomorhism invariant states.

4.4 Inclusion of Matter

The simplest type of matter that one can include into a Loop Quantum Gravity
model is U(1)-Higgs matter. In this subsection, we follow the treatment of
Higgs-fields from [13] and construct the quantum embedding for homogeneous
configurations. This section is not intended to construct a realistic model, which
would include a U(1)-gauge field and possibly fermions, but it is rather intended
to explain how a model with fields other than gravity can be reduced in our
framework.

The basic observation underlaying the Loop Quantization of Higgs matter
is that the field operator can be exponentiated at each point. Since a zero-
dimensional smearing is diffeomorphism invariant for scalar fields, we obtain
point holonomies U , that correspond to33:

U(x) := exp(φ(x)Y ) ∈ U(1), (82)

where Y denotes the generator of U(1), particularly in the fundamental repre-
sentation it is the 1× 1-matrix (i). The conjugate momenta are volume forms,

33When taking a general scalar field, one can also consider a 0-dimensional smearing, but
the point holonomies Ux(λ) := exp(iλφ(x)) will depend on an additional parameter λ.
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meaning that the three-dimensional smearing of the conjugate momenta P over
a region R is diffeomorphism invariant:

P (R) :=

∫

R

dσ π(σ). (83)

Quantization is the based on these operators and their fundamental Poisson
brackets. The cylindrical functions are functions of finitely many point-holonomies34:

Cyl(A, φ) = ψ(he1 , ..., hem , U(x1), ..., U(xn)). (84)

The Weyl-operators WR(−λ) = W ∗R(λ) that correspond to the exponentiated
Poisson action of the momenta P (R) on configuration variables are a unitary
representation of R for each regionR, satisfying the canonicalWeyl-commutation
relations, i.e. their action on the point holonomies is:

WR(λ)U(x)WR(−λ) =

{

e−iλU(x) x ∈ R
U(x) otherwise

(85)

The simplest and most natural choice is to extend the scaffold that we consid-
ered so far and to allow construct diffeomorphism fixed cylindrical functions that
depend on the point holonomies at vertices of the scaffold. It is not difficult to
verify that each cylindrical function can be embedded into this scaffold: (1) We
already saw that any cylindrical function that depends purely on the gravita-
tional field can be embedded into the scaffold using an extended diffeomorphism.
(2) Those point holonomies that depend on a point in the graph of the gravita-
tional field are then automatically embedded into the scaffold. However, since
we did not consider a U(1)-gauge-field, there may be point-holonomies that do
not reside on any vertex35. But these extra points can be mapped onto any
unoccupied vertices on the scaffold using a piecewise analytic diffeomorphism,
which leaves the graph invariant.

We can again specify a minimal region R(γ, x1, ..., xn) for any (γ, x1, ..., xn)
into which the cylindrical functions can be surely mapped. We can thus use the
same procedure as before to define the map Po by:

Po : Cyl 7→
1

|I(γ, x1, ..., xn)|

∑

φ∈I

(φ∗Cyl), (86)

where I(γ, x1, ..., xn) denotes the set of all possible topology-preserving embed-
dings of (γ, x1, ..., xn) into the restriction of the scaffold to the regionR(γ, x1, ..., xn).
Weyl-operators on 0-dimensional quasi-regions arise from the ones on 3-dimensional

34The Ashtekar-Lewandowski measure is extended to these cylindrical functions by
R

dµAL(A,φ)Cyl(A, φ) =
R

dµAL(A)dµH (g1)...dµH (gn)ψ(A, g1, ..., gn), where dµH (g) de-
notes the Haar measure on U(1) over the variable g. This defines the canonical inner product

〈ψ1, ψ2〉 :=
R

dµAL(A, φ)ψ1(A,φ)ψ2(A,φ).
35In the absence of the U(1)-gauge-field, get rid of these extra point-holonomies, because

we can not invoke gauge-invariance for the cylindrical functions, which forces all the point-
holonomies to reside on a vertex.
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quasi-regions as follows: Given a point x there is an open neighborhood O(x)
and O(x) \ {x} is also open. Then Wx := W ∗O(x)\{x}WO(x) is a Weyl-operator
supported only on x. We will again view these as the elementaryWeyl-operators.

The procedure of defining the quantum embedding (P, i) is now completely
analogous to the case of pure gravity: We define P for a dense set of cylindrical
functions (i.e. the spin-charge-networks) by restricting these functions to their
dependence on the homogeneous connection and the homogeneous Higgs field.
We notice that the charge part of the spin-charge-network is given by the the
assignment of an irreducible representation of U(1) to all vertices and all xi.
Let us denote the collection of these quantum numbers by (n1, ..., nm), such
that any spin-charge-network function SCNF can be written in terms of a spin
network function SNF as:

SCNF (A, φ) = SNF (A)n1,...,nm
Un1
1 ...Unm

n . (87)

If we evaluate this function for a homogeneous Higgs-field strength φ(σ) = φo,
then we obtain the φo-dependence of SNCF as:

SNCF (A, φo) = SNF (A)ei(n1+...+nm)φo . (88)

This allows us to extend the quantum embedding map P to all SNCF :

P : SNCF 7→ P (SNF )eiφo(n1+...+nm). (89)

The quantum embedding map i is extended to the extension of P in a very
similar way:

i : P (SNF )eikφo 7→ i(P (SNF ))U((0, 0, 0))m, (90)

where (0, 0, 0) denotes the vertex at the origin of the scaffold, which is contained
in R(γ, x1, ..., xn) for any nonempty (γ, x1, ..., xn). The extension by linearity
of P to all cylindrical function as well as the linear extension of i defines the
quantum embedding map for a theory with matter. Notice that we did not have
to distinguish between the application of (PLRS , iLRS) and (Piso, iiso), because
the Higgs field transforms as a scalar under diffeomorphisms.

It is not difficult to extend the pre-Hilbert-C∗-module that we used for pure
gravity to the matter theory: We extend the module-set, that is given by F by
allowing for cylindrical functions F that also depend on the point holonomies.
If we denote the Weyl-operator WR(λ), where R is a the 0-dimensional quasi-
region containing exactly one vertex x in the scaffold by Wx(λ), then we are
able to extend the bilinear structure to the theory with matter content by first
defining:

〈F1, F2〉 := F1

∫

Πe∈E(γ)dµH(ge)Πxi
dµH(ui)

F2(g
−1
e1 he1 , ..., g

−1
en hen , u

−1
1 U(x1), ..., u

−1
m U(xm))

WSe1
(λ(ge1 ))...WSen

(λ(gen))Wx1(λ(u1))...Wxm
(λ(um))

(91)

and then again averaging over all embeddings φ ∈ I(γ, x1, ..., xm) of γ, x1, ..., xm
into the region R(γ, x1, ..., xm), which yields:

〈F1, F2〉A :=
1

|I(γ, x1, ..., xm)|

∑

φ∈I

〈F1, F2〉, (92)
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which spans a dense set in the Weyl-algebra of the matter theory.
The module set for the embedded matter theory is spanned by (n,m, k) :=

ei(ma+nc+kφo). The bilinear structure for the embedded module can be calcu-
lated rather easily. For the LRS-matter model it becomes:

〈(n1,m1, k1), (n2,m2, k2)〉LRS(n,m, k) = δn2,nδm2,mδk2,k(n1,m1, k1). (93)

The isotropic structure arises as a special case e.g. by setting all n = 0. This
structure allows us to induce the ground state for the LRS-matter model:

ωLRS(〈(n1,m1, k1), (n2,m2, k2)〉LRS) := ω(〈i((n1,m1, k1)), i((n2,m2, k2))〉A)
= δn1,oδn2, oδm1,oδm2,oδk1,oδk2,o,

(94)
which is calculated using exactly the same arguments as in the matter free case
and by using that U((0, 0, 0))n is normalized and orthogonal to U((0, 0, 0))m

for n 6= m. We immediately see that this model is quantum mechanics of a
particle on the 3-torus T3. The isotropic model arises as the spacial case for
m1 = m2 = 0 and is thus quantum mechanics on T2.

Using the same arguments as in the previous subsection, we can identify
the states in the image of i as diffeomorphism invariant states and we are thus
able to call our reduced model diffeomorphism invariant. The construction of
gauge-invariant matter states is however more involved and we will postpone
it to future work, because we did not introduce the U(1)-gauge-field that the
Higgs-field couples to.

4.5 Dynamics

This section is concerned with the treatment of the Hamilton constraint in
our construction. We will find out that the quantum embedding (P, i) needs
significant improvement before it can be applied to this framework. We will
sketch these improvements, but to carry them out needs significantly more work
and is beyond the scope of this paper. Thus, we are not really defining a
dynamics for the cosmological models in this section.

The idea that we used to construct the gauge invariant quantum embedding
(P, i) system was to restrict the domain of P to gauge invariant states in the
full theory and to construct i such that it takes values in the gauge invariant
states of the full theory. There is no reason to treat the Hamilton constraint
any differently. But this leads to an astonishing result: Consider the LRS-model
and let us restrict PLRS to the solution space of the Hamilton constrints36.

The important observation is that powers of traces of holonomies over closed
loops are sufficient to construct the general dependence of a gauge-invariant
state on the homogeneous connection. But due to homogeneity we can choose
these loops to be completely separated. This means for each gauge-invariant
continuous function (defined through a function with graph in the scaffold)

36The Hamilton constraints are given as a set of constraints, that are labeled by different
lapse functions, but we will simply refer to it as the Hamilton constraint.
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on the reduced connection there is a cylindrical function that depends on a
graph with only bi-valent vertices. These cylindrical functions are annihilated
by all known versions of the Hamilton constraint operator that are discussed in
literature. Thus, the restriction of the gauge-invariant PLRS to solutions of the
Hamilton constraint does not reduce its image. Similarly, we can choose iLRS to
take values in cylindrical functions with only bi-valent vertices. This means that
the Hamilton constraint is satisfied by all gauge invariant LRS-observables.

This is in sharp contrast to the classical theory, where the Hamilton con-
straint acts nontrivially on locally rotationally symmetric homogeneous observ-
ables. This huge solution space poses obvious problems on the classical limit of
the embedded theory and thus on the consistency and physical interpretation of
this approach all together. So, how odes this enlargement of the solution space
come about?

The first guess for an answer would probably rest on the observation that
the states that we use to construct in the image of i correspond to degenerate
geometries with no volume and disconnected area segments. Then one can
assert that a construction that relies solely on these states should be rejected
on physical grounds. So the question is: Is there a mathematical reason that
has a reasonable physical interpretation to reject a construction using these
”pathological” states?

In section 3.1 we discussed the superficial homogeneity of the construction
of P . And this is where the problem lies: It is not at all clear how the gauge
fixing of the diffeomorphisms has to be constructed such that a superficial ho-
mogeneity there implies geometrical homogeneity in a suitable coarse graining
of the geometric observables.

Thus, the solution to the problem posed here is as follows: Instead of using
”superficial homogeneity”, we have to construct geometrical homogeneity. This
means instead of building equivalence classes of functions of the connection and
try to achieve geometrical homogeneity through the construction of a suitable
gauge fixing of the diffeomorphisms, we should build a net of geometrical ob-
servables, that are homogeneous in some direct sense, and build equivalence
classes through the expectation values of these operators. We could proceed as
follows:

1. We reuse the scaffold and the embedding of Cylγ into Rγ on the scaffold.

2. For each cube R, we define a set of geometrical operators that are sufficient
to distinguish between all homogeneous geometries and that are compat-
ible as we move from R1 to a larger cube R2. These could be areas of the
dual lattice to the restriction of the scaffold to Rγ . Homogeneity (or any
other symmetry reduction) then implies relations between these areas and
we call a state geometrically homogeneous, if these implied relations
are satisfied by the expectation values of the respective area operators.

3. We construct P by building equivalence classes w.r.t. this set of operators
and complete the construction of the quantum embedding by assigning a
geometrically homogeneous state i(.) to each equivalence class.
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The reason for first trying to construct this map from area operators rather
than volume operators is the significantly larger complexity to the calculation
of a volume compared to an area37. The explicit construction is even for pure
area operators rather involved and far beyond the scope of this paper. We will
only discuss what we mean by this net of geometrical operators in the context
of Bianchi I cosmology:

Suppose we are given a cube centered around the origin of the scaffold.
Let us first consider the regular lattice in the scaffold. To each edge eiabc in
the regular lattice, we associate a surface Si

abc, that is a unit square and that
intersects eiabc perpendicularly:

Si
abc := {φ(t1e

j + t2e
k + eiabc(1/2)) : −1/2 ≤ ti ≤ 1/2}, (95)

where eiabc(1/2) denotes the center of eiabc i.e. the chart U, φ and êj and êk

are two mutually orthogonal unit vectors that are perpendicular to ėiabc in this
chart. We want to use the area operators on these surfaces to resolve different
geometries. Let us assume that we want to resolve homogeneous isotropic ge-
ometries. homogeneity means for these small surfaces that the area is invariant
under translation by a lattice vector, i.e. inside the cube, we want that for any
pair of surfaces Si

abc, S
i
a+n1,b+n2,c+n3

:

A(Si
abc) = A(Si

a+n1,b+n2,c+n3
) (96)

and isotropy implies that
A(Si

abc) = A(Sj
abc) (97)

for any two directions i and j. This is a geometric constraint that we need to
keep in mind, when we construct the quantum embedding (P, i), i.e. the states
in image of the map i should satisfy such a set of constraints through their
expectation values, e.g.:

〈Cyl, A(Si
abc)Cyl〉 = 〈Cyl, A(Si

a+n1,b+n2,c+n3
)Cyl〉. (98)

This set of constraints leads us naturally to the construction of cylindrical func-
tions that depend on the lattice in an even way, i.e. states of the form:

Cyl(A) = Πi,abc∈R(Tr(hLi
abc

(A)))n, (99)

where Li
abc denotes a right handed loop based on the point (a, b, c) ∈ R that

encloses a surface which is normal to the direction i in the scaffold chart. These
functions satisfy the geometric constraints naturally, but it is not clear how to
construct solutions to the Hamilton constraint from these, which is due to the
fact that all vertices in the respective graphs are six-valent. These difficulties
are the reason, why we have to postpone the discussion of dynamics to future
work.

37As shown in [20], one can construct a volume operator form area operators alone, so the
restriction to a set of areas seems not to loose any geometric information about the state.
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5 Comparison with Standard Loop Quantum Cos-

mology

We have already mentioned differences between our approach outlined in this
paper and Loop Quantum Cosmology as it is presented by [12]. The apparent
difference is the different treatment of the diffeomorphisms, which we treat as
pure gauge in the full theory and we preform the symmetry reduction only
after this gauge freedom is fixed. In this sense, we view the diffeomorphism
invariance of LQG as more fundamental than the classical symmetry reduction,
which forces us to preform the symmetry reduction in this way.

The configuration variables and their Hilbert-space representation of Loop
Quantum Cosmology can be viewed as being constructed using the following
quantum embedding (PLQC , iLQC):

Fix a chart (U, φ) and fix one base-point xo and one direction vi∂i in this
chart. Map any cylindrical functions Cylγ into a function on SU(2), that de-
pends on |E(γ)| copies of SU(2), but only on straight edges {si(γ)}, whose
Euklidean length is the Euklidean length of each edge ei in the chart and which
start at xo and have the tangent vector vi∂i. Then evaluate these functions on
homogeneous, isotropic connections. This defines the map PLQC as

PLQC :
(

A 7→ (Cyl{e1,...,en}(he1(A), ..., hen)
)

7→ (c 7→ Cyls1,...,sn(hs1(A(c)), ..., hsn (A(c)))) ,
(100)

where A(c) denoted the dependence of the isotropic connection on the parameter
c. Choosing a diagonal gauge and the direction ∂3 as well as the standard τ
matrices yields a dependence on the holonomies:

hs =

(

eils/2c 0

0 e−ils/2c

)

, (101)

where ls denotes the Euklidean length of s in the chosen chart. The image of a
spin network function, which is a sum of products of matrix elements of these
elementary holonomies is:

P (SNFγ)(c) =
∑

j,n

ξj,ne
inlsj /2c, (102)

which spans the continuous functions on RBohr. We define the map iLQC di-
rectly on these functions:

i(c 7→
∑

j,n

ξj,ne
inlsj /2c) :=

∑

j,n

ξj,n(hnlsj )11, (103)

where nlsj denotes the edge {(0, 0, t) : 0 ≤ t ≤ nlsj}. Using the Schrödinger
ground state on Loop Quantum Gravity (equation 60), we can induce the ground
ground state of RBohr.

An interesting feature of Loop Quantum Cosmology is the over-countable
number of eigenvalues of the flux operators. Let us now show, that we do
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not obtain this phenomenon, if we follow the quantum embedding procedure
using (PLRS , iLRS). For this purpose, we will consider a flux E(S3) through
a unit square S3 centered at (0, 0, 12 ) that is normal to the 3-axis. This Flux
operator acts on the scaffold as the flux through the a 0-dimensional quasi-
surface x3 = (0, 0, 12 ) with the respective orientation. This vertex has to be
introduced by hand into the scaffold by splitting the respective edge. This flux
arises as the generator of the Weyl-operator Wλ(x3), where λ is constant and
takes values in su(2). Using an approximate identity for the embedded reduced
system id = limi∈I

∑

j〈i(f
i
j), i(f

i
j)〉A, we obtain the action of the induced Weyl-

operator:

Wred(λ, x3) := lim
i∈I

∑

j

〈i(f i
j),W−λ(x3)i(f

i
j)〉A. (104)

However, we see that the action of W−λ(x3) on i(f
i
j) is generated by the action

of E(x3). The action of E(x3) on the holonomies hsi is however:

E(x3)hli(A) = τ3hsi(A), (105)

and we obtain that the spectrum of this flux operator consists of only two points
and is independent of the Euklidean length li and of course 0 for Cyl(A) = 1.
The same argument holds obviously for any other flux operator, too.38

An important difference to our approach is that the map PLQG does not
respect the knot class of a graph. This means that on the one hand PLQG can
map Cylγ1 and Cylγ2 into the same P (Cyl)(c) even if γ1 and γ2 are not in the
same knot class, but on the other hand, it does map Cylγ and Cylφ(γ) into
two different reduced functions P (Cyl)(c), as can be seen by applying a simple
diffeomorphism, that takes the form

φ : (x1, x2, x3) 7→ (ax1, ax2, ax3) (106)

in the cahrt U, φ, whenever a 6= 0, 1. This means that PLQC does not respect
knot classes, which is a consequence of the different treatment of the diffeomor-
phisms in full LQG compared to the construction presented in this paper.

Nonembedability of Loop Quantum Cosmology

Brunnemann and Fleischhack showed in [22] that the kinematical configuration
space of standard LQC is not the restriction of the kinematic configuration
space of LQG, by calculating the dependence of holonomies along spiral curves
on isotropic connections, which means that kinematic LQC is not embedded
into LQG. It is not obvious which enlargement of the configuration space of
LQG is the restriction of kinematic LQG to isotropic connections. By fixing
the diffeomorphisms however, we are able to explicitly calculate the dependence
of diffeomorphism fixed cylindrical functions on the isotropic connection and

38It might be bothersome to the reader to have such an action of the flux operators. One
can construct i to be i : eil/2c 7→ (hl−[l])11ρ

n(h[l])11, where [l] denotes the integral part of l.
The induced flux operator E(S3) then takes an integral eigenvalue spectrum, which is again
independent of the non integral part l− [l] for non integral real numbers l.
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thus avoid the problem of constructing the kinematic restriction of cylindrical
functions.

Using the graph groupoid to represent the action of the diffeomorphisms as
presented in this paper, we removed the super-selection sectors that occur in
the standard representation of LQC at the level of diffeomorphism invariant
states. These ”extra states”that appear in Loop Quantum Cosmology how-
ever can be removed by considering orbits of the one-parameter family Do of
diffeomorphisms of the form 106, i.e.:

Do = {φ : (x1, x2, x3) 7→ (ax1, ax2, ax3); a ∈ R
+} ⊂ D (107)

This has the immediate consequence that this particular quantum embedding
(PLQC , iLQC) can not be embedded into the diffeomorphism invariant theory of
Loop Quantum Gravity. Due to the diffeomorphism invariance of the construc-
tion in this paper, we have a quantum embedding of our reduced theory into
diffeomorphism invariant LQG.

Let us now focus on the differences in the philosophy between our approach
and Loop Quantum Cosmology.

Treatment of Observables and States

We reduced the full theory of Loop Quantum Gravity using a procedure that
is reminiscent of constructing equivalence classes of states and the fixing a rep-
resentative in each equivalence class. This has the immediate consequence that
the states in our reduced model do have an interpretation as states of the full
theory. The states of LQC need a physical interpretation and is not induced
by the relation of Loop Quantum Cosmology and Loop Quantum Gravity it-
self; see [16] for a discussion of the physical interpretation of the states of Loop
Quantum Cosmology.

The correspondence that we constructed through (PLQC , iLQC) is only used
to construct the Hilbert-space representation of the configuration observables,
but not used to construct the reduced algebra in particular not the Weyl-
operators for the reduced theory. Loop Quantum Cosmology induces the quan-
tization of the symmetric fluxes from full Loop Quantum Gravity and thus
needs additional input from LQG for the quantization of composite operators.
Using the Weyl-operators in the approach presented in this paper provides a
prescription for the quantization of composite operators.

We saw by constructing a quantum embedding (PLQC , iLQC), that the sates
of LQC can be constructed in a very similar fashion to the symmetry reduction
used in this paper. It seems therefore likely that the selection of a particular
super-selection sector in LQC may be constructed using a geometrically homo-
geneous quantum embedding and the approach presented in this paper. One
could the identify these super-selection sectors of LQC with symmetric sectors
of diffeomorphism invariant full Loop Quantum Gravity.
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Treatment of Constraints and Operators

Since our construction takes states of the full theory of LQG, we are able to
impose the full set od constraints of the full theory on our construction. Using
this procedure ensures that the gauge-invariant states of our reduced theory
correspond to gauge invariant states in the full theory.

In the construction of standard Loop Quantum Cosmology however, one
imposes a set of constraints that is classically induced on the reduced classical
phase space. Although this procedure is classically equivalent, we see that
the application to the quantum theory yields different reduced theories. For
example: The diffeomorphism constraint for isotropic cosmology is classically
empty and this is how it is implemented in standard Loop Quantum Cosmology.
However, as we saw by explicitly constructing the set of diffeormorphisms Do,
one can not distinguish between graphs consisting of one edge and a graph that
consists again of a single edge but of different Euklidean length.

There is a clear correspondence between the classical cosmological observ-
ables and the operators in Loop Quantum Cosmology. The interpretation of
these operators in terms of the full theory is done by comparing the classical
limits of cosmological operators and full operators. As a consequence, it is not
possible to ensure that a cosmological operator has a spectrum that is a subset
of the spectrum of the corresponding full operator, as we saw explicitly with the
flux operators.

The situation in our approach is the other way around: We do have a direct
correspondence between the operators in the cosmological sector and the one in
the full theory, but we do not have a clear correspondence between the classical
cosmological observables and the operators of our reduced model. The interpre-
tation of the operators of our model is constructed by taking the classical limit
of the corresponding operators in the full theory and considering the cosmolog-
ical sector of this classical limit. The construction of this correspondence is one
of the main open problems of our approach and is not completely resolved until
the classical limit of Loop Quantum Gravity can be constructed without too
many assumptions.

6 Conclusion

The intention of this work is to contribute to the understanding of the relation of
Loop Quantum Gravity and Loop Quantum Cosmology. We have expressed the
view that the construction presented in this paper could be used to interpret
super-selection sectors of standard LQC as cosmological sectors of diffeomor-
phism invariant full LQG. The long term hope is to establish a firm basis for
this speculation and thus provide an embedding of the super-selection sectors
of LQC as cosmological sectors of the diffeomorphism invariant sector of full
theory despite the non-embedability of the kinematic configuration spaces.

We started our investigation by considering classical cosmology as an em-
bedded subsystem of General Relativity and we used this relation to construct a
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quantum embedding of cosmological models into Loop Quantum Gravity. The
construction of the quantum embedding needed a gauge fixing of the diffeomor-
phisms, which we achieved by assigning exactly one representative function to
each knot class of cylindrical functions. This amounted to the construction of
a combinatorial theory, whose cylindrical functions are labeled by equivalence
classes of graphs on a combinatorial groupoid. This allowed us to construct the
quantum embedding on a theory defined on the combinatorial groupoid:

We embedded the combinatorial groupoid into the path groupoid as a sub-
groupoid, which defiens a ”scaffold”. The quantum embedding on cylindrical
functions that depend only on graphs in this ”scaffold” are defined through the
pair of linear maps that (P ) returns the dependence on the degrees of freedom
of the homogeneous connection and (i) assigns functions depending on degrees
of freedom of the homogeneous connection a representative cylindrical function
that depends on a graph whose edges are all elements of the embedded combina-
torial groupoid. The diffeomorphism invariance was used to extend the domain
of P to all cylindrical functions.

Next we used a Schrödinger type Hilbert-C∗-module for the combinatorial
theory to construct the reduced theory. It is possible to use a Hilbert-C∗-module
for the combinatorial theory due to diffeomorphism invariance of observables in
Loop Quantum Gravity, such that a gauge-fixing of the diffeomorphisms maps
cylindrical functions on any graph into cylindrical functions on the scaffold.
This reduced theory turned out to be quantum mechanics on a 2-torus for a
locally rotationally symmetric cosmological model and quantum mechanics on
a circle for an isotropic cosmological model.

The reduced theory is, by our construction, already diffeomrophism invari-
ant, but we still had to impose the Gauss-constraint. This means that both
the domain of the quantum embedding map P and the range of i had to be re-
stricted to gauge-invariant cylindrical functions. The reduced quantum theory
constructed with this embedding is a subsystem of the gauge variant theory,
and is gauge invariant in the sense that it relates the reduced theory only to
gauge invariant operators in the full theory.

We showed how matter can be treated in this framework by demonstrating
it on the example of a U(1)-Higgs field. Since the Higgs field is only supported
on vertices, we where again able to gauge fix the diffeomorphisms and to de-
fine the map P as the extension of the previous map P that also assigns the
dependence on the homogeneous degree of freedom of the Higgs field to each
cylindrical function. The map i is similarly extended by assigning a represen-
tative cylindrical function, that depends on the Higgs degrees of freedom in a
given way. The induced quantum theory for the locally rotationally symmetric
model turns out to be quantum mechanics on a 3-torus, whereas the isotropic
model turns out to be equivalent to quantum mechanics on the 2-torus.

The discussion of the dynamics of the reduced system revealed that the re-
duced system relies heavily on states that correspond to degenerate geometries,
i.e. geometries whose large scale structure is not three-dimensional. These states
that are negligible in the full theory, provide many extra solutions to the Hamil-
ton constraints, which spoil the discussion of dynamics of the reduced models.
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We thus proposed a geometric version of the quantum embedding (P, i), and
explained why the dynamics induced through a geometric model would avoid
these problems.

Besides a deeper comparison of our approach of ”constructing cosmological
sectors in full Loop Quantum Gravity” with the standard Loop Quantum Cos-
mology, there are many loose ends to this work and we want to just outline
some of the many future works that seem interesting from the present work and
we want to mention only three that are already under investigation:

(1) There is of course the problem of the construction of a geometric quantum
embedding as proposed in section (4.5), for which we need to calculate the
reduced quantum algebra and the induced representation, before we are able to
discuss the induced dynamics of cosmological models. A set of states [20] that
are exact geometrically homogeneous states where found in the time between
working on this paper and posting it.

(2) One needs to become able to define ”small perturbations” of the homo-
geneous models, such that one is enabled to define a ”hierarchy of more and
more negligible perturbations”. This needs an extension of our formalism to
an approximate quantum embedding Pλ, iλ, where the powers of a supposedly
small parameter λ denote the order of the perturbations that are considered.
This will enable us to induced a family of quantum algebras and induced rep-
resentations, which will allow for perturbative ansätzae. This may be achieved
using the states of [20], because these states are states on the full observable
algebra, which carry a natural measure for the size of perturbations, due to a
measurable classical background geometry in these states.

Aknowledgements

This work was in part supported by the Deutsche Forschungsgemeinschaft. I
wish to thank Martin Bojowald for a careful reading of the script, useful com-
ments and a clarifying discussion about the current research on the relation
between Loop Quantum Gravity and Loop Quantum Cosmology, particularly
the construction of momentum operators as averaged momentum operators of
the full theory.

References

[1] O. Brodbeck: ”On Symmetric Gauge Fields for arbitrary Gauge
and Symmetry Groups”, Helv. Phys. Acta 69 (1996), 321-324,
[arXiv:gr-qc/9610024]

[2] M. Bojowald, H. Kastrup: ”Quantum Symmetry Reduction for Diffeo-
morphism Invariant Theories of Connections”, Class. Quant. Grav. 17
(2000) 3009-3043, [arXiv:gr-qc/9907042]

[3] M. Bojowald: ”Loop Quantum Cosmology I: Kinematics”, Class. Quant.
Grav. 17 (2000) 1489-1508

49

http://arxiv.org/abs/gr-qc/9610024
http://arxiv.org/abs/gr-qc/9907042


[4] M. Bojowald: ”Loop quantum cosmology and inhomogeneities”,
Gen.Rel.Grav. 38 (2006) 1771-1795, [gr-qc/0609034]

[5] M. Bojowald: ”Loop Quantum Cosmology”, Living Rev.Rel. 8 (2005) 11,
[arXiv:gr-qc/0601085]

[6] T. Koslowski: ”Reduction of a Quantum Teory”, [arXiv:gr-qc/0612138]

[7] T. Koslowski: ”Physical Diffeomrophisms in Loop Quantum Gravity”,
[arXiv:gr-qc/0610017]

[8] W. Fairbairn, C. Rovelli: ”Separable Hilbert space in loop quantum grav-
ity”, J. Math. Phys. 45 No. 7 (2004) 2802-2814, [arXiv:gr-qc/0403047]

[9] C. Fleischhack: ”Representations of the Weyl Algebra in Quantum Grav-
ity”, [arXiv:gr-qc/0407006]

[10] A. Ashtekar, J. Lewandowski: ”Differential Geometry on the Space of
Connections via Graphs and Projective Limits”, J. Geom. Phys. 17 (1995)
191

[11] T. Thiemann: ”Gauge Field Theory Coherent States (GCS): I.
General Proberties”, Class. Quant. Grav. 18 (2001) 2025-2064,
[arXiv:gr-qc/0005233]

[12] A. Ashtekar, M. Bojowald, J. Lewandowski: ”Mathematical structure of
loop qunatum cosmology”, Adv. Theor. Math. Phys. 7 (2003) 233-268,
[arXiv:gr-qc/0304074]

[13] C. Rovelli: ”Quantum Gravity”, Cambriodge University Press, 2004

[14] M. Rieffel: ”Application of Strong Morita Equivalence to Transformation
Group C∗-algebras”, Proc. Symp. Pure Math. 38 (1983), 299-310

[15] T. Thiemann: ”Introduction to Modern Canonical Quantum General Rel-
ativity”, [arXiv:gr-qc/0101054]

[16] J. Engle: ”On the physical interpretation of states in loop quantum cos-
mology”, [arXiv:gr-qc/0701132]

[17] J. Engle: ” Quantum field theory and its symmetry reduction”,
Class.Quant.Grav.23:2861-2894,2006, [arXiv:gr-qc/0511107]

[18] I.E. Segal: ”Mathematical characterization of the physical vacuum for a
linear Bose-Einstein field (Foundations of the dynamics of infinite systems,
III)”, Illinois J. Math. 6 (1962), 500-523.

[19] H. Sahlmann, T. Thiemann: ”On the superselection theory of the
Weyl algebra for diffeomorphism invariant quantum gauge theories”,
[arXiv:gr-qc/0302090]

50

http://arxiv.org/abs/gr-qc/0609034
http://arxiv.org/abs/gr-qc/0601085
http://arxiv.org/abs/gr-qc/0612138
http://arxiv.org/abs/gr-qc/0610017
http://arxiv.org/abs/gr-qc/0403047
http://arxiv.org/abs/gr-qc/0407006
http://arxiv.org/abs/gr-qc/0005233
http://arxiv.org/abs/gr-qc/0304074
http://arxiv.org/abs/gr-qc/0101054
http://arxiv.org/abs/gr-qc/0701132
http://arxiv.org/abs/gr-qc/0511107
http://arxiv.org/abs/gr-qc/0302090


[20] T. Koslowski: ”Dynamical Quantum Geometry (DQG Programme)”,
[arXiv:0709.3465]

[21] J. M. Velhinho: ”Comments on the kinematical structure of loop quantum
cosmology”, Class.Quant.Grav. 21 (2004) L109, [arXiv:gr-qc/0406008]

[22] J. Brunnemann, C. Fleischhack: ”On the Configuration Spaces of Ho-
mogeneous Loop Quantum Cosmology and Loop Quantum Gravity”,
[arXiv:0709.1621]

51

http://arxiv.org/abs/0709.3465
http://arxiv.org/abs/gr-qc/0406008
http://arxiv.org/abs/0709.1621

	Introduction
	Preliminaries
	Bianchi Cosmology
	Reduction of Quantum Theories
	Reducing Constrained Quantum Theories
	A Combinatorial Quantum Theory
	Combinatorial Approach to Loop Quantum Gravity

	Reduction Maps for Cosmology
	Introductionary Considerations
	Strategy
	Construction of the Scaffold
	Scaffold Observable Algebra

	Pairs of Embedding Maps
	Comments about the Embedding Maps

	Embedable Loop Quantum Cosmology
	Preparatory Considerations
	Application of the microscopic Embedding
	Imposing Constraints
	Inclusion of Matter
	Dynamics

	Comparison with Standard Loop Quantum Cosmology
	Conclusion

