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Abstract

The article reviews the statistical theory of signal detection in application to analysis of
deterministic gravitational-wave signals in the noise of a detector. Statistical foundations for
the theory of signal detection and parameter estimation are presented. Several tools needed
for both theoretical evaluation of the optimal data analysis methods and for their practical
implementation are introduced. They include optimal signal-to-noise ratio, Fisher matrix,
false alarm and detection probabilities, F-statistic, template placement, and fitting factor.
These tools apply to the case of signals buried in a stationary and Gaussian noise. Algorithms
to efficiently implement the optimal data analysis techniques are discussed. Formulas are given
for a general gravitational-wave signal that includes as special cases most of the deterministic
signals of interest.



Update (9 March 2012)

Material of the previous version of the review was partially reorganized and updated, 46 new
references were added.

1. Section [2| was rewritten and extended, several new references were added.

2. Some parts of the former Section 4 were moved to the present Section [3] which is now a
brief general introduction to the statistical theory of signal detection and of estimation of signals
parameters. Some new references were added.

3. The present Section [4]is a partially rewritten (using some new, more convenient notation)
and extended version of the former Sections 4.3—4.9. The gravitational-wave signal considered
here was generalized from a 4-amplitude-parameter case to an n-amplitude-parameter case, where
n is arbitrary. New Section about targeted searches was added, and new Section [1.4.1] on
the covering problem was created with references to constructions of various grids of templates for
searches of continuous gravitational waves.

4. The present Section [5]is an expanded version of the former Section 4.10 with addition of
several recent references.

5. The present Section[]is an expanded version of the former Section 4.11 with new discussion
of optimal filtering for non-stationary data and description of a test (Grubbs’ test) to detect outliers
in data.

1 Introduction

In this review we consider the problem of detection of deterministic gravitational-wave signals
in the noise of a detector and the question of estimation of their parameters. The examples
of deterministic signals are gravitational waves from rotating neutron stars, coalescing compact
binaries, and supernova explosions. The case of detection of stochastic gravitational-wave signals
in the noise of a detector is reviewed in [§]. A very powerful method to detect a signal in noise that
is optimal by several criteria consists of correlating the data with the template that is matched to
the expected signal. This matched-filtering technique is a special case of the mazimum likelihood
detection method. In this review we describe the theoretical foundation of the method and we
show how it can be applied to the case of a very general deterministic gravitational-wave signal
buried in a stationary and Gaussian noise.

Early gravitational-wave data analysis was concerned with the detection of bursts originating
from supernova explosions [144]. It involved analysis of the coincidences among the detectors [71].
With the growing interest in laser interferometric gravitational-wave detectors that are broadband
it was realized that sources other than supernovae can also be detectable [I36] and that they can
provide a wealth of astrophysical information [123] [78]. For example, the analytic form of the
gravitational-wave signal produced during the inspiral phase of a compact binary coalescence is
known in terms of a few parameters to a good approximation (see, e.g., [30] and Section 2.4 of [67]).
Consequently one can detect such a signal by correlating the data with the predicted waveform
(often called the template) and maximizing the correlation with respect to the parameters of
the waveform. Using this method one can pick up a weak signal from the noise by building a
large signal-to-noise ratio over a wide bandwidth of the detector [I36]. This observation has led
to rapid development of the theory of gravitational-wave data analysis. It became clear that the
detectability of sources is determined by optimal signal-to-noise ratio, which is the power spectrum
of the signal divided by the power spectrum of the noise integrated over the bandwidth of the
detector.

An important landmark was a workshop entitled Gravitational Wave Data Analysis held in
Dyffryn House and Gardens, St. Nicholas near Cardiff, in July 1987 [124]. The meeting acquainted



physicists interested in analyzing gravitational-wave data with the basics of the statistical theory
of signal detection and its application to detection of gravitational-wave sources. As a result of
subsequent studies, the Fisher information matrix was introduced to the theory of the analysis of
gravitational-wave data [5I], [77]. The diagonal elements of the Fisher matrix give lower bounds
on the variances of the estimators of the parameters of the signal and can be used to assess the
quality of astrophysical information that can be obtained from detections of gravitational-wave
signals [411 [76], 25]. It was also realized that the application of matched-filtering to some sources,
notably to continuous sources originating from neutron stars, will require extraordinary large
computing resources. This gave a further stimulus to the development of optimal and efficient
algorithms and data analysis methods [125].

A very important development was the work by Cutler et al. [43] where it was realized that for
the case of coalescing binaries matched filtering was sensitive to very small post-Newtonian effects
of the waveform. Thus, these effects can be detected. This leads to a much better verification of
Einstein’s theory of relativity and provides a wealth of astrophysical information that would make a
laser interferometric gravitational-wave detector a true astronomical observatory complementary to
those utilizing the electromagnetic spectrum. As further development of the theory, methods were
introduced to calculate the quality of suboptimal filters [I3], to calculate the number of templates
required to do a search using matched-filtering [103], to determine the accuracy of templates
required [33], and to calculate the false alarm probability and thresholds [69]. An important point
is the reduction of the number of parameters that one needs to search for in order to detect a signal.
Namely estimators of a certain type of parameters, called extrinsic parameters, can be found in
a closed analytic form and consequently eliminated from the search. Thus, a computationally-
intensive search need only be performed over a reduced set of intrinsic parameters [77, 69, [79].

Techniques reviewed in this paper have been used in the data analysis of prototypes of gravita-
tional-wave detectors [I01, 100, 12] and in the data analysis of gravitational-wave detectors cur-
rently in operation [134] 23] [ [3, [2].



2 Response of a Detector to a Gravitational Wave

There are two main methods of detecting gravitational waves currently in use. One method is to
measure changes induced by gravitational waves on the distances between freely-moving test masses
using coherent trains of electromagnetic waves. The other method is to measure the deformation
of large masses at their resonance frequencies induced by gravitational waves. The first idea is
realized in laser interferometric detectors (both Earth-based [106] 141, 54] and space-borne [86),
47] antennas) and Doppler tracking experiments [I4], whereas the second idea is implemented in
resonant mass detectors (see, e.g., [22]).

2.1 Doppler shift between freely falling particles

We start by describing the change of a photon’s frequency caused by a passing gravitational wave
and registered by particles (representing different parts of a gravitational-wave detector) freely
falling in the field of the gravitational wave. The detailed derivation of the formulae we show
here can be found in Chapter 5 of [67] (see also [48] 15, 121]). An equivalent derivation of the
response of test masses to gravitational waves in the local Lorentz gauge (without making use of
the long-wavelength approximation) is given in [IT4].

We employ here the transverse traceless (TT) coordinate system (more about the T'T gauge can
be found, e.g., in Section 35.4 of [02] or in Section 1.3 of [67]). A spacetime metric describing a plane
gravitational wave traveling in the +z direction of the TT coordinate system (with coordinates
20 =ct, 2! =2, 22 = y, 23 = 2), is described by the line element

ds? = —c2dt? + <1+h+(t _ 'Z>)dx2 + (1 - h+<t— ’Z))dyQ + 2Ry (t— z>dxdy+dz2, (1)

where hy and hy are the two independent polarizations of the wave. We assume that the wave is
weak, i.e., for any instant of time ¢,

e < 1, [hx(0)] < 1. (2)

We will neglect all terms of order h% or higher. The form of the line element implies that the
functions h (t) and hy (t) describe the wave-induced perturbation of the flat Minkowski metric at
the origin of the TT coordinate system (where x =y = 2z = 0). It is convenient to introduce the
three-dimensional matrix of the spatial metric perturbation produced by the gravitational wave
(at the coordinate system’s origin),

hi(t) hx(t) 0
Ht) = [ hy(t) —ha(t)

0 3)
0 0 0

Let two particles freely fall in the field of the gravitational wave, and let their spatial
coordinates remain constant, so the particles’ world lines are described by equations

t(Ta) = Ta, x(Ta) = ZTaq, y(Ta) = Ya, Z(Ta) =24, a=1,2, (4)

where (24, Y, z4) are spatial coordinates of the ath particle and 7, is its proper time. These two
particles measure, in their proper reference frames, the frequency of the same photon traveling
along a null geodesic ©* = (), where A is some affine parameter. The coordinate time, at which
the photon’s frequency is measured by the ath particle, is equal to t, (a = 1,2); we assume that
to > t1. Let us introduce the coordinate time duration ¢1o of the photon’s trip and the Euclidean
coordinate distance Lio between the particles:

tip =ty —t1, Liz:= /(2 —21)2+ (y2 — 11)% + (22 — 21)2. (5)




Let us also introduce the 3-vector n of unit Euclidean length directed along the line connecting the
two particles. We arrange the components of this vector into the column 3 x 1 matrix n (thus, we
distinguish here the 3-vector n from its components being the elements of the matrix n; the same
3-vector can be decomposed into components in different spatial coordinate systems):

cos v
n:= (cosa,cos B,cosv)" = [ cos g |, (6)
cos Y

where the superscript T denotes matrixz transposition. If one neglects the spacetime curvature
caused by the gravitational wave, then «, 3, and - are the angles between the path of the photon
in the 3-space and the coordinate axis x, y, or z, respectively (obviously, «, 3,y € (0;7) and
cos?a + cos? B + cos’y = 1). Let us denote the value of the frequency registered by the ath
particle by v, (a = 1,2) and let us finally define the relative change of the photon’s frequencies,
9]
= ——1. 7
Y12 " (7)
Then, it can be shown (see Chapter 5 of [67] for details) that the frequency ratio y;2 can be written
[making use of the quantities introduced in Eqgs. and (5) - (6)] as follows (the dot means here
matriz multiplication):

Y12 =

() w22 o

It is convenient to introduce the unit 3-vector k directed from the origin of the coordinate
system to the source of the gravitational wave. In the coordinate system adopted by us the wave
is traveling in the +z direction. Therefore, the components of the 3-vector k, arranged into the
column matrix k, are

k=(0,0,—1)". (9)

The positions of the particles with respect to the origin of the coordinate system we describe by
the 3-vectors x, (a = 1,2), the components of which we put into the column matrices x,:

Xa = (Ta:Yasza), a =12 (10)
Making use of Egs. @ - we rewrite the basic formula in the following form

T- T.
nT-(H<t1+k Xl)—H(tl—kg—I—ik X2)>-n
< < < +0(h?). (11)

12 = 2(1 + kT -n)

To obtain the response for all currently working and planned detectors it is enough to consider
a configuration of three particles shown in Figure [II Two particles model a Doppler tracking
experiment, where one particle is the Earth and the other is a distant spacecraft. Three particles
model a ground-based laser interferometer, where the masses are suspended from seismically-
isolated supports or a space-borne interferometer, where the three test masses are shielded in
satellites driven by drag-free control systems. In Figure[I]we have introduced the following notation:
O denotes the origin of the TT coordinate system related to the passing gravitational wave, x,
(a = 1,2,3) are 3-vectors joining O and the particles, n, and L, (a = 1,2,3) are, respectively,
3-vectors of unit Euclidean length along the lines joining the particles and the coordinate Euclidean
distances between the particles, where a is the label of the opposite particle. We still assume that
the spatial coordinates of the particles do not change in time.



o

Figure 1: Schematic configuration of three freely-falling particles as a detector of gravitational
waves. The particles are labelled 1, 2, and 3, their positions with respect to the origin O of the
coordinate system are given by 3-vectors x, (@ = 1,2,3). The Euclidean separations between the
particles are denoted by L,, where the index a corresponds to the opposite particle. The unit
3-vectors n, point between pairs of particles, with the orientation indicated.

Let us denote by vy the frequency of the coherent beam used in the detector (laser light in the
case of an interferometer and radio waves in the case of Doppler tracking). Let the particle 1 emit
the photon with frequency vy at the moment ¢y towards the particle 2, which registers the photon
with frequency v/ at the moment ¢’ = ¢ty + L3/c + O(h). The photon is immediately transponded
(without change of frequency) back to the particle 1, which registers the photon with frequency v
at the moment t =ty + 2L3/c + O(h). We express the relative changes of the photon’s frequency

y12 := (V' — o) /vo and yo1 := (v — V') /v as functions of the instant of time t. Making use of
Eq. (11]) we obtain
1 T 2L3 kT + X1 L3 kT + X9 2
t)y = —————ns - | H{t — — —H(t—— . h*) (12
yiz(t) 2(1—kT-n3)n3 ( ( c * c ) ( c * c > N3+ O(h”)(12a)
1 T L3 kT * X9 kT * X1 2
t)=————n, - [H(t — — —H{(t . O(h*). 12b
i) = st (W= 2 20 (e ) ) o). o

The total frequency shift y121 := (v — 1p) /1 of the photon during its round trip can be computed
from the one-way frequency shifts y1o and y21 given above:

v

1%
Y21=——-1=——-1= (yor + D(y12 + 1) = 1 = y12 + you +O(h2)' (13)
[Z0) 124 1)

2.2 Long-wavelength approximation

Let L be the size of the detector and X := A/(27) be the reduced wavelength of the gravitational
wave impinging on the detector. In the long-wavelength approzximation the condition X > L is
fulfilled. The angular frequency of the wave equals w = ¢/X. Time delays caused by the finite
speed of the wave propagating across the detector are of order At ~ L/c, but

L
WAL ~ 5 <L (14)

so time delays across the detector are much shorter than the period of the gravitational wave and
can be neglected. It means that with a good accuracy the gravitational-wave field can be treated



as being uniform (but time-dependent) in the space region that covers the entire detector. To
detect gravitational waves with some dominant angular frequency w one must collect data over
time intervals longer (sometimes much longer) than the gravitational-wave period. This implies
that in Eq. for the relative frequency shift, the typical value of the quantity ¢ := t; — 21 /c will
be much larger than the retardation time At := Lis/c. Therefore, we can expand this equation
with respect to At and keep terms only linear in At. After doing this one obtains (see Section 5.3
in [67] for more details):

L .
y12:_£nT'H(t1_Z*1) -n+0(h2,At2)7 (15)
2c c
where overdot denotes differentiation with respect to time.
For the configuration of particles shown in Figure [1] the relative frequency shifts y1o and y2;
given by Egs. can be written, by virtue of the formula , in the form

T ¢ kT - x 2 A2
nd-H(t+ p n3 + O(h?, At?), (16)

y12(t) = yo1(t) = —72

so that they are equal to each other up to terms O(hQ,Atz). The photon’s total round-trip
frequency shift 191 [cf. Eq. (13)] is thus equal to

Ly 1 k' x1 2 A42
ylgl(t):—?ng'H t+ c n3+(9(h,At ) (17)

There are important cases where the long-wavelength approximation is not valid. These include
satellite Doppler tracking measurements and the space-borne LISA detector for gravitational-wave
frequencies larger than a few mHz.

2.3 Solar-system-based detectors

Real gravitational-wave detectors do not stay at rest with respect to the TT coordinate system
related to the passing gravitational wave, because they also move in the gravitational field of
the solar system bodies, as in the case of the LISA spacecraft, or are fixed to the surface of the
Earth, as in the case of Earth-based laser interferometers or resonant bar detectors. Let us choose
the origin O of the TT coordinate system employed in Section [2:I] to coincide with the solar
system barycenter (SSB). The motion of the detector with respect to the SSB will modulate the
gravitational-wave signal registered by the detector. One can show that as far as the velocities of
the particles (modeling the detector’s parts) with respect to the SSB are non-relativistic, which is
the case for all existing or planned detectors, Egs. can still be used, provided the 3-vectors x,
and n, (a = 1,2,3) will be interpreted as made of the time-dependent components describing the
motion of the particles with respect to the SSB.

It is often convenient to introduce the proper reference frame of the detector with coordinates
(2*). Because the motion of this frame with respect to the SSB is non-relativistic, we can as-
sume that the transformation between the SSB-related coordinates (x®) and the detector’s proper
reference frame coordinates (Z) has the form

t=t,  &(t,a") = 25(t) + O(t) 2/, (18)

where the functions ﬁ’é(t) describe the motion of the origin O of the proper reference frame with
respect to the SSB, and the functions Oj(¢) account for the different orientations of the spatial
axes of the two reference frames. One can compute some of the quantities entering Egs. in
the detector’s coordinates rather than in the T'T coordinates. For instance, the matrix H of the



wave-induced spatial metric perturbation in the detector’s coordinates is related to the matrix H
of the spatial metric perturbation produced by the wave in the TT coordinate system through
equation

H(t) = (0(t) )" - H() - O(1) ", (19)

where the matrix O has elements Of. If the transformation matrix O is orthogonal, then O~! = OT,
and Eq. simplifies to
H(t) = O(t)-H(t) - O(t)". (20)

See [311, 55, [69] [79] for more details.

For a ground-based laser-interferometric detector, the long-wavelength approximation can be
employed (however, see [27, [116] [115] for a discussion of importance of high-frequency corrections,
which modify the interferometer response function computed within the long-wavelength approx-
imation). In the case of an interferometer in a standard Michelson and equal-arm configuration
(such configurations can be represented by Figure with the particle 1 corresponding to the corner
station of the interferometer and with Ly = L3 = L), the observed relative frequency shift Av(t) /vy
is equal to the difference of the round-trip frequency shifts in the two detector’s arms [137]:

Av(t)
Vo

= y131(t) — y121(2). (21)

Let (z4,yd,24) be the components (with respect to the TT coordinate system) of the 3-vector rq
connecting the origin of the TT coordinate system with the corner station of the interferometer.
Then x; = (z4,Ya,24)", k' -x1 = —z4, and, making use of Eq. , the relative frequency shift
can be written as

A0 L (0r A= ) - ng— ] At 20 ). (22)

The difference A¢(t) of the phase fluctuations measured, say, by a photo detector, is related to the
corresponding relative frequency fluctuations Av(t) by

Av(t) 1 dA¢(t)

= 23
140 27'(1/0 dt ( )
One can integrate Eq. to write the phase change A¢(t) as
A¢(t) = 4L h(t), (24)
where the dimensionless function h,
1 z2d Zd
h(t)::§<n;H<t—?>~n2—n§'H(t—?)'n3), (25)

is the response function of the interferometric detector to a plane gravitational wave in the long-
wavelength approximation. To get Egs. - directly from Egs. - one should assume
that the quantities ny, n3, and zq [entering Eq. } do not depend on time ¢. But the formu-
lae f can also be used in the case when those quantities are time dependent, provided
the velocities x, of the detector’s parts with respect to the SSB are non-relativistic. The error we
make in such cases is on the order of O(hv), where v is a typical value of the velocities X,. Thus,
the response function of the Earth-based interferometric detector equals

ht) = & (ng(t)T : H(t _ ZL@) na(t) — ng ()T - H(t - %@) : ng(t)> , (26)

2 c



where all quantities here are computed in the SSB-related TT coordinate system. The same
response function can be written in terms of a detector’s proper-reference-frame quantities as

follows
h(t)l(ﬁ;I:I(tch(t))oﬁQﬁ;I:I(tzdca))oﬁ3>, (27)

where the matrices H and H are related to each other by means of formula . In Eq. the
proper-reference-frame components fis and n3 of the unit vectors directed along the interferometer
arms can be treated as constant (i.e., time independent) quantities.

From Egs. (26]) and it follows that the response function h is a linear combination of the
two wave polarizations hy and hy, so it can be written as

ht) = Fy(t) b (2 - ZdT(t)) + P (t) hc (£ = ZdT(t)) (28)
The functions F and Fy are the interferometric beam-pattern functions. They depend on the
location of the detector on Earth, the position of the gravitational-wave source in the sky, and the
polarization angle of the wave (this angle describes the orientation, with respect to the detector,
of the axes relative to which the plus and cross polarizations of the wave are defined, see, e.g.,
Figure 9.2 in [136]). Derivation of the explicit formulae for the interferometric beam patterns F
and Fyx can be found, e.g., in Appendix C of [67].

In the long-wavelength approximation, the response function of the interferometric detector
can be derived directly from the equation of geodesic deviation [127]. Then the response is defined
as the relative difference between the wave-induced changes of the proper lengths of the two arms,
ie., h(t) :== (ALy(t) — ALs(t))/Lo, where Lo 4+ ALy(t) and Lo + ALs(t) are the instantaneous
values of the proper lengths of the interferometer’s arms and Ly is the unperturbed proper length
of these arms.

In the case of an Earth-based resonant-bar detector the long-wavelength approximation is very
accurate and the dimensionless detector’s response function can be defined as h(t) := AI:(t) / Lo,
where Aﬁ(t) is the wave-induced change of the proper length Lo of the bar. The response function
h can be computed in terms of the detector’s proper-reference-frame quantities from the formula
(see, e.g., Section 9.5.2 in [136])

A(t) =aT-H(t- Zd—c(t)) A, (29)
where the column matrix A consists of the components (computed in the proper reference frame
of the detector) of the unit vector n directed along the symmetry axis of the bar. The response
function can be written as a linear combination of the wave polarizations h; and hy, i.e.,
the formula is also valid for the resonant-bar response function but with some bar-pattern
functions Fy and Fy different from the interferometric beam-pattern functions. Derivation of the
explicit form of the bar patterns can be found, e.g., in Appendix C of [67].

2.4 General form of the response function

In many cases of interest the response function of the detector to a plane gravitational wave can
be written as a linear combination of n waveforms hy(¢; &) [which all depend on the same set of

parameters &€ = (&1, ...,&,)] with constant amplitudes a, (kK =1,...,n),
h(t;0) = ap hi(t;€), (30)
k=1



where the vector 0 collects all the signal’s parameters. It is convenient to introduce column matrices

al ha(t;€)
a:=| |, ht§:= (31)
Qp, hn (t§ 5)
Then one can briefly write 8 = (a, £) and the response can be written as
h(t;0) =a' -h(t;€). (32)
The functions hy (k= 1,...,n) are independent of the parameters a. The parameters a are called

extrinsic (or amplitude) parameters whereas the parameters & are called intrinsic.

Eq. with n = 4 is a model of the response of the space-based detector LISA to gravitational
waves from a binary system [(9]. Also for n = 4 the same equation models the response of a ground-
based detector to a continuous source of gravitational waves like a rotating neutron star [69].
For ground-based detectors the long-wavelength approximation can be applied and within this

approximation the functions hy (k =1,...,4) are given by
ha(t; €) = u(t; &) cos p(t; §),
ha(t;€) = v(t; €) cos d(t; &), (33)
hs(t; €) = u(t; &) sin (t; §),
ha(t;€) = v(t; €) sin (t; §),

where ¢(t;€) is the phase modulation of the signal and u(t;€) and v(t; &) are slowly varying
amplitude modulations. The gravitational-wave signal from spinning neutron stars may consist
of several components of the form . For short observation times over which the amplitude
modulation functions are nearly constant, the response of the ground-based detector can further
be approximated by

h(t; Ao, do, &) = Ao g(t; &) cos (¢(t; €) — ¢o) , (34)

where Ay and ¢g are constant amplitude and initial phase, respectively, and g(¢; £) is a slowly
varying function of time. Eq. is a good model for the response of a detector to the gravitational
wave from a coalescing compact binary system [136] 30]. We would like to stress that not all
deterministic gravitational-wave signals may be cast into the general form .
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3 Statistical Theory of Signal Detection

The gravitational-wave signal will be buried in the noise of the detector and the data from the
detector will be a random (or stochastic) process. Consequently, the problem of extracting the
signal from the noise is a statistical one. The basic idea behind signal detection is that the presence
of the signal changes the statistical characteristics of the data x, in particular its probability
distribution. When the signal is absent the data have probability density function (pdf) po(x),
and when the signal is present the pdf is p; ().

A thorough introduction to probability theory and mathematical statistics can be found, e.g.,
in [52] 13T], 132} [102]. A full exposition of statistical theory of signal detection that is only outlined
here can be found in the monographs [147, [75] 143] 139, 88, 59, [108]. A general introduction
to stochastic processes is given in [I45] and advanced treatment of the subject can be found
in [85] [146]. A concise introduction to the statistical theory of signal detection and time series
analysis is contained in Chapters 3 and 4 of [67].

3.1 Hypothesis testing

The problem of detecting the signal in noise can be posed as a statistical hypothesis testing problem.
The null hypothesis Hy is that the signal is absent from the data and the alternative hypothesis Hq
is that the signal is present. A hypothesis test (or decision rule) 0 is a partition of the observation
set into two subsets, R and its complement R’. If data are in R we accept the null hypothesis,
otherwise we reject it. There are two kinds of errors that we can make. A type I error is choosing
hypothesis H; when Hj is true and a type II error is choosing Hy when H; is true. In signal
detection theory the probability of a type I error is called the false alarm probability, whereas the
probability of a type II error is called the false dismissal probability. 1—(false dismissal probability)
is the probability of detection of the signal. In hypothesis testing theory, the probability of a type
T error is called the significance of the test, whereas 1 — (probability of type II error) is called the
power of the test.

The problem is to find a test that is in some way optimal. There are several approaches to
finding such a test. The subject is covered in detail in many books on statistics, for example,
see [73] 52] 811 [84].

3.1.1 Bayesian approach

In the Bayesian approach we assign costs to our decisions; in particular we introduce positive
numbers Cjj, 4, j = 0,1, where Cj; is the cost incurred by choosing hypothesis H; when hypothesis
Hj is true. We define the conditional risk R of a decision rule ¢ for each hypothesis as

RJ(é) = Cojpj(R) + Cljpj(R/), 7=0,1, (35)

where P; is the probability distribution of the data when hypothesis H; is true. Next, we assign
probabilities g and w1 = 1 — 7y to the occurrences of hypotheses Hy and Hy, respectively. These
probabilities are called a priori probabilities or priors. We define the Bayes risk as the overall
average cost incurred by the decision rule §:

7"((5) = 7TOR0((5) + 7T1R1 (5) (36)

Finally we define the Bayes rule as the rule that minimizes the Bayes risk r(4).

3.1.2 Minimax approach

Very often in practice we do not have control over or access to the mechanism generating the state
of nature and we are not able to assign priors to various hypotheses. In such a case one criterion
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is to seek a decision rule that minimizes, over all §, the maximum of the conditional risks, Rg(9)
and R1(6). A decision rule that fulfills that criterion is called a minimaxz rule.

3.1.3 Neyman—Pearson approach

In many problems of practical interest the imposition of a specific cost structure on the decisions
made is not possible or desirable. The Neyman—Pearson approach involves a trade-off between the
two types of errors that one can make in choosing a particular hypothesis. The Neyman—Pearson
design criterion is to maximize the power of the test (probability of detection) subject to a chosen
significance of the test (false alarm probability).

3.1.4 Likelihood ratio test

It is remarkable that all three very different approaches — Bayesian, minimax, and Neyman—Pearson
— lead to the same test called the likelihood ratio test [44]. The likelihood ratio A is the ratio of
the pdf when the signal is present to the pdf when it is absent:

L p1(x)
Az) := (@) (37)

We accept the hypothesis Hy if A > k, where k is the threshold that is calculated from the costs
C}j, priors m;, or the significance of the test depending on which approach is being used.

3.2 The matched filter in Gaussian noise

Let h be the gravitational-wave signal we are looking for and let n be the detector’s noise. For
convenience we assume that the signal h is a continuous function of time ¢ and that the noise n is
a continuous random process. Results for the discrete-in-time data that we have in practice can
then be obtained by a suitable sampling of the continuous-in-time expressions. Assuming that the
noise is additive the data x can be written as

z(t) = n(t) + h(t). (38)
The autocorrelation function of the noise n is defined as
K, (t,t") :=E[n(t)n(t)], (39)

where E denotes the expectation value.

Let us further assume that the detector’s noise n is a zero-mean and Gaussian random pro-
cess. It can then be shown that the logarithm of the likelihood function is given by the following
Cameron—Martin formula

logA[m]:/O Oq(t)x(t)dt—%/o Tt h(t) dt, (40)

where (0; T,) is the time interval over which the data was collected and the function ¢ is the solution
of the integral equation

Ts
ht) = / Ko (6, ¢)q(t) dt. (a1)

For stationary noise, its autocorrelation function depends on times ¢ and ¢’ only through
the difference ¢ —¢’. It implies that there exists then an even function k,, of one variable such that

En(t)n(t')] = kn(t —t'). (42)
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Spectral properties of stationary noise are described by its one-sided spectral density, defined for
non-negative frequencies f > 0 through relation

Su(f) = 2 / T e (Bemiftr, (43)

— 00

For negative frequencies f < 0, by definition, S,,(f) = 0. The spectral density S,, can also be
determined by correlations between the Fourier components of the detector’s noise

BIR(HI*(f)] = gSall NS — ), —o0 < f.f < oo (14

For the case of stationary noise with one-sided spectral density S, it is convenient to define
the scalar product (x|y) between any two waveforms z and y,

ﬂy—m/ g Dy, (45)

where R denotes the real part of a complex expression, the tilde denotes the Fourier transform,
and the asterisk is complex conjugation. Making use of this scalar product, the log likelihood
function can be written as

log Ale] = (al) — 5 (| (46)

From the expression we see immediately that the likelihood ratio test consists of correlating the

data x with the signal h that is present in the noise and comparing the correlation to a threshold.

Such a correlation is called the matched filter. The matched filter is a linear operation on the data.
An important quantity is the optimal signal-to-noise ratio p defined by

p =/ (h|h). (47)
By means of Eq. it can be written as
> [h(f)I?
=4 / | df. 48
P 0 Sn(f) f ( )

We see in the following that p determines the probability of detection of the signal. The higher
the signal-to-noise ratio the higher the probability of detection.

An interesting property of the matched filter is that it maximizes the signal-to-noise ratio over
all linear filters [44]. This property is independent of the probability distribution of the noise.

3.3 Parameter estimation

Very often we know the waveform of the signal that we are searching for in the data in terms of
a finite number of unknown parameters. We would like to find optimal procedures of estimating
these parameters. An estimator of a parameter 6 is a function é(x) that assigns to each data set
the “best” guess of the true value of . Note that because é(a:) depends on the random data it is a
random variable. Ideally we would like our estimator to be (i) unbiased, i.e., its expectation value
to be equal to the true value of the parameter, and (ii) of minimum variance. Such estimators are
rare and in general difficult to find. As in the signal detection there are several approaches to the
parameter estimation problem. The subject is exposed in detail in [82], 83]. See also [I49] for a
concise account.
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3.3.1 Bayesian estimation

We assign a cost function C(6',0) of estimating the true value of 6 as §’. We then associate with
an estimator 6 a conditional risk or cost averaged over all realizations of data x for each value of
the parameter 6:

Rol6) = BolC(0.0)) = [ C(6().6) ple.0) . (49)

where X is the set of observations and p(x,#) is the joint probability distribution of data z and
parameter §. We further assume that there is a certain a priori probability distribution 7(6) of
the parameter . We then define the Bayes estimator as the estimator that minimizes the average
risk defined as

r(6) = B[R ()] = /X /@ C(0(), 0) plx, 0) 7(0) d0 dx, (50)

where E is the expectation value with respect to an a priori distribution 7, and © is the set of
observations of the parameter 6. It is not difficult to show that for a commonly used cost function

c(0,0) = (0 —0)2, (51)

the Bayesian estimator is the conditional mean of the parameter 6 given data z, i.e.,
O(a) = Elols] = | 6p(0]2) . (52)
e
where p(6|z) is the conditional probability density of parameter 6 given the data z.

3.3.2 Maximum a posteriori probability estimation

Suppose that in a given estimation problem we are not able to assign a particular cost function
C(0',0). Then a natural choice is a uniform cost function equal to 0 over a certain interval Iy of
the parameter 6. From Bayes theorem [28] we have

p(z,0)m(0)

(0l =

) (53)

where p(z) is the probability distribution of data x. Then, from Eq. one can deduce that for

each data point = the Bayes estimate is any value of # that maximizes the conditional probability

p(f]z). The density p(f|x) is also called the a posteriori probability density of parameter 6 and

the estimator that maximizes p(6|z) is called the maximum a posteriori (MAP) estimator. It is

denoted by Oyap. We find that the MAP estimators are solutions of the following equation
Ologp(z,0)  Ologm(6)

00 N a0 (54)

which is called the MAP equation.

3.3.3 Maximum likelihood estimation

Often we do not know the a priori probability density of a given parameter and we simply assign to
it a uniform probability. In such a case maximization of the a posteriori probability is equivalent
to maximization of the probability density p(z,0) treated as a function of §. We call the function
1(0,z) := p(x, ) the likelihood function and the value of the parameter § that maximizes [(6, z) the
mazimum likelihood (ML) estimator. Instead of the function ! we can use the function A(6,x) =
1(0,2)/p(x) (assuming that p(z) > 0). A is then equivalent to the likelihood ratio [see Eq. (37)]
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when the parameters of the signal are known. Then the ML estimators are obtained by solving
the equation

Olog A(6, x)

e\ 55

oy 7 (55)

which is called the ML equation.

3.4 Fisher information and Cramer—Rao bound

It is important to know how good our estimators are. We would like our estimator to have as small
a variance as possible. There is a useful lower bound on variances of the parameter estimators
called the Crameér—Rao bound, which is expressed in terms of the Fisher information matriz T'(6).
For the signal h(¢; @), which depends on K parameters collected into the vector 8 = (61,...,0k),
the components of the matrix I'(0) are defined as

dlog Alz; 6] dlog Alz; 6] 02 log A[x; 6] .
I');; .=E =-E|————|, 4j=1,...,K. 56
(©): 00, 09, 00, 09, ") (56)
The Crameér-Rao bound states that for unbiased estimators the covariance matriz C(0) of the
estimators @ fulfills the inequality
Cco) >1(0)". (57)

(The inequality A > B for matrices means that the matrix A — B is nonnegative definite.)

A very important property of the ML estimators is that asymptotically (i.e., for a signal-to-
noise ratio tending to infinity) they are (i) unbiased, and (ii) they have a Gaussian distribution
with covariance matrix equal to the inverse of the Fisher information matrix.

In the case of Gaussian noise the components of the Fisher matrix are given by

(9);; = (8}1;219) ’ (ngja)) Cij=1,... K, (58)

where the scalar product (-|-) is defined in Eq. (4F).
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4 Maximum-likelihood Detection in Gaussian Noise

In this section, we study the detection of a deterministic gravitational-wave signal h(t;0) of the
general form given by Eq. and the estimation of its parameters 6 using the maximum-likelihood
(ML) principle. We assume that the noise n(¢) in the detector is a zero-mean, Gaussian, and
stationary random process. The data = in the detector, in the case when the gravitational-wave
signal h(t; @) is present, is x(t;0) = n(t) + h(t; 0). The parameters 8 = (a, &) of the signal
split into extrinsic (or amplitude) parameters a and intrinsic ones &.

4.1 The F-statistic

For the gravitational-wave signal h(t;a, &) of the form given in Eq. the log likelihood func-
tion can be written as

log Alr:a,€] =" -Nlzs¢] ~ 7™ -M(€) -2, (59)

where the components of the column n x 1 matrix N and the square n x n matrix M are given by

Nilz; €] := (2|h(t:€)),  Mu(§) == (b EIEE)),  kil=1,....n (60)

The ML equations for the extrinsic parameters a, dlog A[x;a, &]/0a = 0, can be solved explicitly
to show that the ML estimators & of the parameters a are given by

alz; €] = M(€)~" - N[z; €. (61)

Replacing the extrinsic parameters a in Eq. by their ML estimators a, we obtain the reduced
log likelihood function,

Flr ] = log A[w: alrs €], €] = 5 Nz €] -M(€) ™ - Nizs ], (62)

that we call the F-statistic. The F-statistic depends nonlinearly on the intrinsic parameters £ of
the signal, it does not depend on the extrinsic parameters a.

The procedure to detect the gravitational-wave signal of the form and estimate its param-
eters consists of two parts. The first part is to find the (local) maxima of the F-statistic in the
intrinsic parameters space. The ML estimators é of the intrinsic parameters £ are those values of
& for which the F-statistic attains a maximum. The second part is to calculate the estimators a of
the extrinsic parameters a from the analytic formula , where the matrix M and the correlations
N are calculated for the parameters £ replaced by their ML estimators E obtained from the first
part of the analysis. We call this procedure the mazimum likelihood detection. See Section for
a discussion of the algorithms to find the (local) maxima of the F-statistic.

4.1.1 Targeted searches

The F-statistic can also be used in the case when the intrinsic parameters are known. An example
of such an analysis called a targeted search is the search for a gravitational-wave signal from a
known pulsar. In this case assuming that gravitational-wave emission follows the radio timing,
the phase of the signal is known from pulsar observations and the only unknown parameters of
the signal are the amplitude (or extrinsic) parameters a [see Eq. ] To detect the signal one
calculates the F-statistic for the known values of the intrinsic parameters and compares it to a
threshold [68]. When a statistically-significant signal is detected, one then estimates the amplitude
parameters from the analytic formulae .
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In [I10] it was shown that the maximum-likelihood F-statistic can be interpreted as a Bayes
factor with a simple, but unphysical, amplitude prior (and an additional unphysical sky-position
weighting). Using a more physical prior based on an isotropic probability distribution for the
unknown spin-axis orientation of emitting systems, a new detection statistic (called the B-statistic)
was obtained. Monte Carlo simulations for signals with random (isotropic) spin-axis orientations
show that the B-statistic is more powerful (in terms of its expected detection probability) than the
F-statistic. A modified version of the F-statistic that can be more powerful than the original one
has been studied in [20].

4.2 Signal-to-noise ratio and the Fisher matrix

The detectability of the signal h(t;0) is determined by the signal-to-noise ratio p. In general it
depends on all the signal’s parameters @ and can be computed from [see Eq. }

p(0) = /(h(t; 0)[n(t; 9)). (63)

The signal-to-noise ratio for the signal can be written as

p(a,;§) =/aT -M(§) - a, (64)

where the components of the matrix M(£) are defined in Eq. (60)).

The accuracy of estimation of the signal’s parameters is determined by Fisher information
matrix I'. The components of I" in the case of the Gaussian noise can be computed from Eq. .
For the signal given in Eq. the signal’s parameters (collected into the vector €) split into
extrinsic and intrinsic parameters: 6 = (a, ), where a = (a1,...,a,) and € = (&1,...,&n). It
is convenient to distinguish between extrinsic and intrinsic parameter indices. Therefore, we use
calligraphic lettering to denote the intrinsic parameter indices: €4, A = 1,...,m. The matrix T’
has dimension (n+m) x (n+m) and it can be written in terms of four block matrices for the two

sets of the parameters a and &,
Faa(é) Fa£<aa€)
T(a, &) = , 65
@8 (Fas(a,ﬁ)T ng(a@)) (%5)

where T',, is an n X n matrix with components (0h/9a;|0h/0a;) (1,5 =1,...,n), T isan n x m
matrix with components (0h/0a;|0h/064) (i =1,...,n, A=1,...,m), and finally T'¢¢ is m x m
matrix with components (Oh/0€4|0h/0EB) (A, B =1,...,m).

We introduce two families of the auxiliary n x n square matrices F(4) and Sup) (A, B =
1,...,m), which depend on the intrinsic parameters & only (the indexes A, B within parentheses
mean that they serve here as the matrix labels). The components of the matrices F(4) and S 4z
are defined as follows:

h.(t:
h;(¢; h;(t; o
S(AB)ij(g) = (8 ag;ﬁ)‘a (gét[)’{)>7 i,j=1,...,n, AB=1,...,m. (67)

Making use of the definitions and f one can write the more explicit form of the
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matrices 'y, I'ag, and Tge,

[aa(8) = M(8), (68)

Paﬁ(a7£) = (F(l)(g) sace F(m)(&) : a) ) (69)
aT-Sap(€)-a - al - Sum(€) -a

Tee(a,€) = [ covvovmone _ (70)

The notation introduced above means that the matrix I';¢ can be thought of as a 1 x m row matrix
made of n X 1 column matrices F(4)-a. Thus, the general formula for the component of the matrix
Fa€ is

(Faﬁ)i.A:(F(A)'a)i:ZF(A)ijaj’ A=1,....m, i=1,...,n. (71)
j=1
The general component of the matrix I'g¢ is given by
(Fﬁs)AB = aT 'S(AB) ca = ZZS(AB)ijaiaj, A,BZ 1,...,m. (72)
i=1j=1

The covariance matriz C, which approximates the expected covariances of the ML estimators
of the parameters 0, is defined as I'~'. Applying the standard formula for the inverse of a block
matrix [91] to Eq. , one gets

o Caa(aag) Cag(a7£)
C(a, &) = (cag(a,g)T ng(a,£)> : (73)

where the matrices C,,, Co¢, and Cge can be expressed in terms of the matrices I';; = M, I'y¢, and
I'¢e as follows:

Caa(a>£) = M(&)_l + M(E)_l . Faﬁ(aa ) -f(a, )_1 . Fa&(a7£)T ’ M(&)_17 (74)
Caﬁ(avs) = _M(g)_l : Fai(aag) 'f(a7£)_17 (75)
Cee(a, &) =T(a,6)7". (76)
In Egs. - we have introduced the m x m matrix:
f(avé) = FﬁE(avg) - FaE(avg)T : M(£)71 ' FaE(avg)' (77)

We call the matrix I' (which is the Schur complement of the matrix M) the projected Fisher matrix
(onto the space of intrinsic parameters). Because the matrix T' is the inverse of the intrinsic-
parameter submatrix Cge of the covariance matrix C, it expresses the information available about
the intrinsic parameters that takes into account the correlations with the extrinsic parameters.
The matrix I is still a function of the putative extrinsic parameters.

We next define the normalized projected Fisher matriz (which is the m x m square matrix)

= _ @9
Fn(a7£) T p(a’£)27

where p is the signal-to-noise ratio. Making use of the definition and Egs. 7 we can
show that the components of this matrix can be written in the form

_ T.A (&) -
(o805 =5 e

(78)

AB=1,...,m, (79)
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where A(4p) is the n x n matrix defined as

Ay (&) = Sup) (&) —Fy(©)T-ME) " -F) (&), AB=1,...,m. (80)

From the Rayleigh principle [91] it follows that the minimum value of the component (I',,(a, &)) a5
is given by the smallest eigenvalue of the matrix M—! A(ap)- Similarly, the maximum value of the
component (T',,(a, €)) 45 is given by the largest eigenvalue of that matrix.

_ Because the trace of a matrix is equal to the sum of its eigenvalues, the m X m square matrix

I' with components

(F(©) 4=+ T (MO Aus(®), AB=1,...m, (81)

expresses the information available about the intrinsic parameters, averaged over the possible values
of the extrinsic parameters. Note that the factor 1/n is specific to the case of n extrinsic parameters.
We shall call I’ the reduced Fisher matriz. This matrix is a function of the intrinsic parameters
alone. We shall see that the reduced Fisher matrix plays a key role in the signal processing theory
that we present here. It is used in the calculation of the threshold for statistically significant
detection and in the formula for the number of templates needed to do a given search.

For the case of the signal

h(t; Ao, ¢o, &) = Ao g(t;€) cos (o(t;€) — ¢o) (82)

the normalized projected Fisher matrix T, is independent of the extrinsic parameters Ag and ¢y,
and it is equal to the reduced matrix I' [I03]. The components of I" are given by

(F0)¢0A(F0)¢OB

(L'o) gogo (83)

s = (To) as —
where Ty is the Fisher matrix for the signal g(¢; &) cos (¢(t; &) — ¢o).

4.3 False alarm and detection probabilities
4.3.1 False alarm and detection probabilities for known intrinsic parameters

We first present the false alarm and detection probabilities when the intrinsic parameters & of
the signal are known. In this case the F-statistic is a quadratic form of the random variables
that are correlations of the data. As we assume that the noise in the data is Gaussian and the
correlations are linear functions of the data, F is a quadratic form of the Gaussian random variables.
Consequently the F-statistic has a distribution related to the x? distribution. One can show (see
Section III B in [66]) that for the signal given by Eq. , 2F has a 2 distribution with n degrees
of freedom when the signal is absent and noncentral x? distribution with n degrees of freedom and
non-centrality parameter equal to the square of the signal-to-noise ratio when the signal is present.

As a result the pdfs pg and p; of the F-statistic, when the intrinsic parameters are known and
when respectively the signal is absent or present in the data, are given by

n/2—1
Po(F) = 7 expl=F), (31)
(n/2-1)/2
pl(pa f) = (2]:2n/2—117l/2—1 (P\/ﬁ) exp <f ;p2) ) (85)
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where 7 is the number of degrees of freedom of x? distribution and I,, /2—1 1s the modified Bessel
function of the first kind and order n/2 — 1. The false alarm probability Pr is the probability that
F exceeds a certain threshold F;y when there is no signal. In our case we have

n/2—1 fok

e (36)

Pp(Fo) == /;Cpo(}—) dF = exp(—Fo)
0 k=0

The probability of detection Pp is the probability that F exceeds the threshold Fy when a signal
is present and the signal-to-noise ratio is equal to p:

o}

Po(p, Fo) = / p1(p, F) dF. (87)

Fo

The integral in the above formula can be expressed in terms of the generalized Marcum Q-
function [1331B9], Pp(p, Fo) = Q(p, v2Fo). We see that when the noise in the detector is Gaussian
and the intrinsic parameters are known, the probability of detection of the signal depends on a
single quantity: the optimal signal-to-noise ratio p.

4.3.2 False alarm probability for unknown intrinsic parameters

Next we return to the case in which the intrinsic parameters £ are not known. Then the statistic
Flz; €] given by Eq. (62) is a certain multiparameter random process called the random field
(see monographs [5, [6] for a comprehensive discussion of random fields). If the vector & has
one component the random field is simply a random process. For random fields we define the
autocovariance function C just in the same way as we define such a function for a random process:

C(&,&) :=Eo|[Fla; ] Fla; £']] — Eo[Fla; €] Eo [Fla; &), (88)

where & and & are two values of the intrinsic parameter set, and Eq is the expectation value when
the signal is absent. One can show that for the signal the autocovariance function C is given
by

cle.€) = 5 Tr(Qle.€) - ME) Qe )T - ME) ™), (59)
where Q is an n X n matrix with components

Obviously Q(&,&) = M(€), therefore C(€,&) = n/2.

One can estimate the false alarm probability in the following way [69]. The autocovariance
function C tends to zero as the displacement A§ = &' —¢& increases (it is maximal for A = 0). Thus
we can divide the parameter space into elementary cells such that in each cell the autocovariance
function C is appreciably different from zero. The realizations of the random field within a cell will
be correlated (dependent), whereas realizations of the random field within each cell and outside of
the cell are almost uncorrelated (independent). Thus, the number of cells covering the parameter
space gives an estimate of the number of independent realizations of the random field.

We choose the elementary cell with its origin at the point & to be a compact region with
boundary defined by the requirement that the autocovariance C(&,€’) between the origin & and
any point & at the cell’s boundary equals half of its maximum value, i.e., C(§,€)/2. Thus, the
elementary cell is defined by the inequality

C(6,€) < 50(6,6) = 7, (91)

N | =
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with € at the cell’s center and &’ on the cell’s boundary.
To estimate the number of cells we perform the Taylor expansion of the autocovariance function
up to the second-order terms:

N o 1 & 0%¢(
ceer=5+ 3 58| ace; > FEH) acse o
A=1 &= A B=1 4085 lg—
As C attains its maximum value when & — & = 0, we have
/
% —0, A=1.....m (93)
Ca o=
Let us introduce the symmetric matrix G with components
1 0%(&.¢)

G =— , AB=1,...,m. 94

Then, the inequality for the elementary cell can approximately be written as

> Gasl(€) Ataés <
AB=1

1
5 (95)
It is interesting to find a relation between the matrix G and the Fisher matrix. One can show
(see [79], Appendix B) that the matrix G is precisely equal to the reduced Fisher matrix I’ given
by Eq. .

If the components of the matrix G are constant (i.e., they are independent of the values of the
intrinsic parameters £ of the signal), the above equation defines a hyperellipsoid in m-dimensional
(m is the number of the intrinsic parameters) Euclidean space R™. The m-dimensional Euclidean
volume Ve of the elementary cell given by Eq. equals

(7.‘./2>m/2
T(m/2+1)VdetG’

where I' denotes the Gamma function. We estimate the number Nces of elementary cells by
dividing the total Euclidean volume V of the m-dimensional intrinsic parameter space by the
volume V.. of one elementary cell, i.e., we have

chell =

(96)

v

Neells = ——- 97

cells ‘/;:ell ( )

The components of the matrix G are constant for the signal h(t; Ag, ¢o, &) = Ag cos (¢(t;€) — o),
provided the phase ¢(t; &) is a linear function of the intrinsic parameters &.

To estimate the number of cells in the case when the components of the matrix G are not

constant, i.e., when they depend on the values of the intrinsic parameters &, one replaces Eq. (@

by
2 1
Neells = ”;/2 7;1_/2 / \V det G dV (98)

This formula can be thought of as interpreting the matrix G as the metric on the parameter space.
This interpretation appeared for the first time in the context of gravitational-wave data analysis
in the work by Owen [103], where an analogous integral formula was proposed for the number of
templates needed to perform a search for gravitational-wave signals from coalescing binaries.
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The concept of number of cells was introduced in [69] and it is a generalization of the idea of
an effective number of samples introduced in [46] for the case of a coalescing binary signal.

We approximate the pdf of the F-statistic in each cell by the pdf po(F) of the F-statistic when
the parameters are known [it is given by Eq. ] The values of the F-statistic in each cell can be
considered as independent random variables. The probability that F does not exceed the threshold
Fo in a given cell is 1 — Pp(Fp), where Pr(Fp) is given by Eq. . Consequently the probability
that F does not exceed the threshold Fy in all the Neeps cells is [1I — Pp(F)]Neetts. Thus, the
probability PI that F exceeds Fy in one or more cells is given by

Pg (Fo) =1 —[1 — Py (Fo)] Vet (99)

By definition, this is the false alarm probability when the phase parameters are unknown. The
number of false alarms N is given by

Ng = Neans PL (Fo). (100)

A different approach to the calculation of the number of false alarms using the Euler characteristic
of level crossings of a random field is described in [66].

It was shown (see [39]) that for any finite Fy and Neens, Eq. provides an upper bound for
the false alarm probability. Also in [39] a tighter upper bound for the false alarm probability was
derived by modifying a formula obtained by Mohanty [93]. The formula amounts essentially to
introducing a suitable coefficient multiplying the number Nqs of cells.

4.3.3 Detection probability for unknown intrinsic parameters

When the signal is present in the data a precise calculation of the pdf of the F-statistic is very
difficult because the presence of the signal makes the data’s random process non-stationary. As a
first approximation we can estimate the probability of detection of the signal when the intrinsic pa-
rameters are unknown by the probability of detection when these parameters are known [it is given
by Eq. } This approximation assumes that when the signal is present the true values of the
intrinsic parameters fall within the cell where the F-statistic has a maximum. This approximation
will be the better the higher the signal-to-noise ratio p is.

4.4 Number of templates

To search for gravitational-wave signals we evaluate the F-statistic on a grid in parameter space.
The grid has to be sufficiently fine such that the loss of signals is minimized. In order to estimate
the number of points of the grid, or in other words the number of templates that we need to search
for a signal, the natural quantity to study is the expectation value of the F-statistic when the
signal is present.

Thus, we assume that the data x contains the gravitational-wave signal h(t;0) defined in
Eq. (32), so z(t;0) = h(t;0) + n(t). The parameters 6 = (a, &) of the signal consist of extrinsic
parameters a and intrinsic parameters €. The data z will be correlated with the filters h;(t; &)
(i =1,...,n) parameterized by the values & of the intrinsic parameters. The F-statistic can thus
be written in the form [see Eq. (62)]

Fla(t:0,€):€) = 5 Nlr(1:2,€:€17 - M) ™" Nia(t:2,€): €] (101)

where the matrices M and N are defined in Egs. . The expectation value of the F-statistic (101)
is

E[Flz(t;a,€);€]] =5 (n+a" - Q(&,&)-M(&) ™" -Q(&,€)T-a), (102)

DO =
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where the matrix Q is defined in Eq. (90). Let us rewrite the expectation value (102) in the
following form,
1
B[Fla(t2,):€1] = 5 (n+ pla,€)°Cala,£,€) (103)

where p is the signal-to-noise ratio and where we have introduced the normalized correlation func-
tion Cy,
a'-Q(&,¢) -M(E)'-Q.¢)-a

aT-M(€) -3 |
From the Rayleigh principle [01] it follows that the minimum value of the normalized correlation
function is equal to the smallest eigenvalue of the matrix M(€)~1 - Q(&, &) - M(¢)~! - Q(¢,€)T,
whereas the maximum value is given by its largest eigenvalue. We define the reduced correlation
function C as

Cn(a,&, &) = (104)

Cl&.€) 1= 5 Tr (M(E) ™ - QE€) -M(€) ™ Q& €)T). (105)

As the trace of a matrix equals the sum of its eigenvalues, the reduced correlation function C is
equal to the average of the eigenvalues of the normalized correlation function C,. In this sense
we can think of the reduced correlation function as an “average” of the normalized correlation
function. The advantage of the reduced correlation function is that it depends only on the intrinsic
parameters &, and thus is suitable for studying the number of grid points on which the F-statistic
needs to be evaluated. We also note that the normalized correlation function C precisely coincides
with the autocovariance function C of the F-statistic given by Eq. .

As in the calculation of the number of cells in order to estimate the number of templates we
perform a Taylor expansion of C up to second order terms around the true values of the parameters,
and we obtain an equation analogous to Eq. ,

Z Gap AlaAép =1 — Cy, (106)
AB=1

where G is given by Eq. . By arguments identical to those in deriving the formula for the
number of cells we arrive at the following formula for the number of templates:

1 Imj2+)
Ny = (1—Co)ym/2 am/2 /V V/det G(€) V. (107)

When Cy = 1/2 the above formula coincides with the formula for the number N5 of cells,
Eq. . Here we would like to place the templates sufficiently closely so that the loss of signals is
minimized. Thus 1 — Cj needs to be chosen sufficiently small. The formula for the number
of templates assumes that the templates are placed in the centers of hyperspheres and that the
hyperspheres fill the parameter space without holes. In order to have a tiling of the parameter
space without holes we can place the templates in the centers of hypercubes, which are inscribed
in the hyperspheres. Then the formula for the number of templates reads

1 mm/2
Ne= =g /V«/detG(E)dV. (108)

For the case of the signal given by Eq. our formula for the number of templates is equivalent
to the original formula derived by Owen [103]. Owen [I03] has also introduced a geometric approach
to the problem of template placement involving the identification of the Fisher matrix with a metric
on the parameter space. An early study of the template placement for the case of coalescing
binaries can be found in [122] 45| 26]. Applications of the geometric approach of Owen to the case
of spinning neutron stars and supernova bursts are given in [33], [16].
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4.4.1 Covering problem

The problem of how to cover the parameter space with the smallest possible number of templates,
such that no point in the parameter space lies further away from a grid point than a certain
distance, is known in mathematical literature as the covering problem [38]. This was first studied
in the context of gravitational-wave data analysis by Prix [I12]. The maximum distance of any
point to the next grid point is called the covering radius R. An important class of coverings are
lattice coverings. We define a lattice in m-dimensional Euclidean space R™ to be the set of points
including 0 such that if © and v are lattice points, then also u + v and u — v are lattice points. The
basic building block of a lattice is called the fundamental region. A lattice covering is a covering
of R™ by spheres of covering radius R, where the centers of the spheres form a lattice. The most
important quantity of a covering is its thickness © defined as

volume of one m-dimensional sphere

(109)

volume of the fundamental region

In the case of a two-dimensional Euclidean space the best covering is the hexagonal covering and its
thickness ~ 1.21. For dimensions higher than 2 the best covering is not known. However, we know
the best lattice covering for dimensions m < 23. These are A}, lattices, which have thicknesses
©4: equal to

On = Vo T (M2 )" 11
A = YmVmt (12(m+1)) ’ (110)
where V,,, is the volume of the m-dimensional sphere of unit radius. The advantage of an A},
lattice over the hypercubic lattice grows exponentially with the number of dimensions.

For the case of gravitational-wave signals from spinning neutron stars a 3-dimensional grid was
constructed [I8]. It consists of prisms with hexagonal bases. Its thickness is around 1.84, which is
much better than the cubic grid with a thickness of approximately 2.72. It is worse than the best
3-dimensional lattice covering, which has a thickness of around 1.46.

In [I9] a grid was constructed in the 4-dimensional parameter space spanned by frequency,
frequency derivative, and sky position of the source, for the case of an almost monochromatic
gravitational-wave signal originating from a spinning neutron star. The starting point of the
construction was an A} lattice of thickness ~ 1.77. The grid was then constrained so that the
nodes of the grid coincide with Fourier frequencies. This allowed the use of a fast Fourier transform
(FFT) to evaluate the maximum-likelihood F-statistic efficiently (see Section[4.6.2). The resulting
lattice is only 20% thicker than the optimal A} lattice.

Efficient 2-dimensional banks of templates suitable for directed searches (in which one assumes
that the position of the gravitational-wave source in the sky is known, but one does not assume
that the wave’s frequency and its derivative are a priori known) were constructed in [105]. All grids
found in [105] enable usage of the FFT algorithm in the computation of the F-statistic; they have
thicknesses 0.1 —-16% larger than the thickness of the optimal 2-dimensional hexagonal covering. In
the construction of grids the dependence on the choice of the position of the observational interval
with respect to the origin of time axis was employed. Also the usage of the FFT algorithms with
nonstandard frequency resolutions achieved by zero padding or folding the data was discussed.

The above template placement constructions are based on a Fisher matrix with constant co-
efficients, i.e., they assume that the parameter manifold is flat. The generalization to curved
Riemannian parameter manifolds is difficult. An interesting idea to overcome this problem is to
use stochastic template banks where a grid in the parameter space is randomly generated by some
algorithm [90] 58|, 87, [120].
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4.5 Suboptimal filtering

To extract gravitational-wave signals from the detector’s noise one very often uses filters that are
not optimal. We may have to choose an approximate, suboptimal filter because we do not know
the exact form of the signal (this is almost always the case in practice) or in order to reduce
the computational cost and to simplify the analysis. In the case of the signal of the form given
in Eq. the most natural and simplest way to proceed is to use as detection statistic the F-
statistic where the filters hj (¢t;¢) (k = 1,...,n) are the approximate ones instead of the optimal
ones hy(t;€) (k =1,...,n) matched to the signal. In general the functions hj (¢; ¢) will be different
from the functions hy(t;€) used in optimal filtering, and also the set of parameters ¢ will be
different from the set of parameters & in optimal filters. We call this procedure the suboptimal
filtering and we denote the suboptimal statistic by Fs. It is defined as [see Eq. ]

Rl €] o= g Nolos €17 - MA(Q) ™ - Nl ] (1)

where the data-dependent n x 1 column matrix Ng and the square n x n matrix Mg have components
[see Eq. (60
Nsilw; €)= (@(@)[hi(5:€)), - Mz (Q) = (hi(t: QIPG(:€)), i =1,....m. (112)

We need a measure of how well a given suboptimal filter performs. To find such a measure we
calculate the expectation value of the suboptimal statistic Fg in the case where the data contains
the gravitational-wave signal, i.e., when z(¢;a,&) = n(t) + h(t;a,£). We get

BIA (1, €):¢]] = 5 (n+a" - Qul€,0)-M(O) - QuE Q)T -a), (13)
where we have introduced the matrix Qs with components
Quis(€.€) == (h(EOIW(EC), inj =1, (114)
Let us rewrite the expectation value in the following form,

b Qu6,¢) M) QuE.0)T - )
aT-M(€) -2 ’

1

E[Fz(t;a,€);¢]] = = (”+P(a7f)

5 (115)

where p is the optimal signal-to-noise ratio [given in Eq. (64)]. This expectation value reaches
its maximum equal to (n + p?)/2 when the filter is perfectly matched to the signal. Therefore, a
natural measure of the performance of a suboptimal filter is the quantity FF defined by

. aT'QS(EaC) ) Ms(<)71 'QS(&?C)T'B
= r@f?f\/ aT-M(€) - a : (116)

We call the quantity FF the generalized fitting factor. From the Rayleigh principle, it follows that
the generalized fitting factor is the maximum of the largest eigenvalue of the matrix M(&)~! -
Qs(&,¢) - Mg (€)™ - Qs(&,¢)T over the intrinsic parameters of the signal.

In the case of a gravitational-wave signal given by

s(t; Ao, §) = Ao h(t; ), (117)
the generalized fitting factor defined above reduces to the fitting factor introduced by Aposto-
latos [13]:

. (h(t; €)|W (;€)) ,
FF(&) =mg V (h(t; )[R (t: €)) v/ (W (£ Q)R (¢ €)) "
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The fitting factor is the ratio of the maximal signal-to-noise ratio that can be achieved with
suboptimal filtering to the signal-to-noise ratio obtained when we use a perfectly matched, optimal
filter. We note that for the signal given by Eq. , FF is independent of the value of the
amplitude Ag.

For the case of a signal of the form

s(t; Ao, ¢0,&) = Ag cos ((t; &) + ¢o) , (119)

where ¢ is a constant phase, the maximum over ¢q in Eq. (118)) can be obtained analytically. More-
over, assuming that over the bandwidth of the signal the spectral density of the noise is constant
and that over the observation time cos ¢(t; &) oscillates rapidly, the fitting factor is approximately
given by

97 1/2

PF(€) = max ( /0 cos (¢(t;s)—¢'<t;c>)dt> + ( /0 sin (¢>(t;£>—¢’<t;<>)dt> . (120)

In designing suboptimal filters one faces the issue of how small a fitting factor one can accept.
A popular rule of thumb is accepting FF = 0.97. Assuming that the amplitude of the signal and
consequently the signal-to-noise ratio decreases inversely proportionally to the distance from the
source this corresponds to 10% loss of the signals that would be detected by a matched filter.

Proposals for good suboptimal (search) templates for the case of coalescing binaries are given
in [35], 135] and for the case-spinning neutron stars in [66] [18].

4.6 Algorithms to calculate the F-statistic
4.6.1 The two-step procedure

In order to detect signals we search for threshold crossings of the F-statistic over the intrinsic
parameter space. Once we have a threshold crossing we need to find the precise location of
the maximum of F in order to estimate accurately the parameters of the signal. A satisfactory
procedure is the two-step procedure. The first step is a coarse search where we evaluate F on
a coarse grid in parameter space and locate threshold crossings. The second step, called a fine
search, is a refinement around the region of parameter space where the maximum identified by the
coarse search is located.

There are two methods to perform the fine search. One is to refine the grid around the threshold
crossing found by the coarse search [95] [93] [T35] [128], and the other is to use an optimization routine
to find the maximum of F [60, [79]. As initial values to the optimization routine we input the values
of the parameters found by the coarse search. There are many maximization algorithms available.
One useful method is the Nelder-Mead algorithm [80], which does not require computation of the
derivatives of the function being maximized.

4.6.2 Evaluation of the F-statistic

Usually the grid in parameter space is very large and it is important to calculate the optimum
statistic as efficiently as possible. In special cases the F-statistic given by Eq. can be fur-
ther simplified. For example, in the case of coalescing binaries F can be expressed in terms of
convolutions that depend on the difference between the time-of-arrival (TOA) of the signal and
the TOA parameter of the filter. Such convolutions can be efficiently computed using FFTs. For
continuous sources, like gravitational waves from rotating neutron stars observed by ground-based
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detectors [66] or gravitational waves form stellar mass binaries observed by space-borne detec-
tors [79], the detection statistic F involves integrals of the general form

To _ -
/0 z(t) m(t;w, €) exp (iwdmoa (t; €)) exp(iwt) dt, (121)

where é are the intrinsic parameters excluding the frequency parameter w, m is the amplitude
modulation function, and w¢n,eq the phase modulation function. The amplitude modulation func-
tion is slowly varying compared to the exponential terms in the integral . We see that the
integral can be interpreted as a Fourier transform (and computed efficiently with an FFT), if
Pmod = 0 and if m does not depend on the frequency w. In the long-wavelength approximation the
amplitude function m does not depend on the frequency. In this case, Eq. can be converted
to a Fourier transform by introducing a new time variable ¢}, [125],

tb(t§ é) =t+ ¢mod(t; é) (122)

Thus, in order to compute the integral 7 for each set of the intrinsic parameters é we multiply
the data by the amplitude modulation function m, resample according to Eq. (122)), and perform
the FFT. In the case of LISA detector data when the amplitude modulation m depends on frequency
we can divide the data into several band-passed data sets, choosing the bandwidth for each set to be
sufficiently small so that the change of m exp(iwgmoq) is small over the band. In the integral
we can then use as the value of the frequency in the amplitude and phase modulation function the
maximum frequency of the band of the signal (see [79] for details).

4.7 Accuracy of parameter estimation
4.7.1 Fisher-matrix-based assessments

Fisher matrix has been extensively used to assess the accuracy of estimation of astrophysically-
interesting parameters of different gravitational-wave signals. For ground-based interferometric
detectors, the first calculations of the Fisher matrix concerned gravitational-wave signals from
inspiralling compact binaries (made of neutron stars or black holes) in the leading-order quadrupole
approximation [51 [77, [64] and from quasi-normal modes of Kerr black hole [49].

Cutler and Flanagan [41] initiated the study of the implications of the higher-order post-
Newtonian (PN) phasing formula as applied to the parameter estimation of inspiralling binary
signals. They used the 1.5PN phasing formula to investigate the problem of parameter estimation,
both for spinning and non-spinning binaries, and examined the effect of the spin-orbit coupling on
the estimation of parameters. The effect of the 2PN phasing formula was analyzed independently
by Poisson and Will [I07] and Krélak, Kokkotas and Schéfer [76]. In both cases the focus was to
understand the leading-order spin-spin coupling term appearing at the 2PN level when the spins
were aligned perpendicularly to the orbital plane. Compared to [76], [T07] also included a priori
information about the magnitude of the spin parameters, which then leads to a reduction in the
rms errors in the estimation of mass parameters. The case of a 3.5PN phasing formula was studied
in detail by Arun et al. [I7]. Inclusion of 3.5PN effects leads to an improved estimate of the binary
parameters. Improvements are relatively smaller for lighter binaries. More recently the Fisher
matrix was employed to assess the errors in estimating the parameters of nonspinning black-hole
binaries using the complete inspiral-merger-ring-down waveforms [7].

Various authors have investigated the accuracy with which the LISA detector can determine
binary parameters including spin effects. Cutler [40] determined LISA’s angular resolution and
evaluated the errors of the binary masses and distance considering spins aligned or anti-aligned
with the orbital angular momentum. Hughes [61] investigated the accuracy with which the redshift
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can be estimated (if the cosmological parameters are derived independently), and considered the
black-hole ring-down phase in addition to the inspiralling signal. Seto [129] included the effect of
finite armlength (going beyond the long wavelength approximation) and found that the accuracy of
the distance determination and angular resolution improve. This happens because the response of
the instrument when the armlength is finite depends strongly on the location of the source, which
is tightly correlated with the distance and the direction of the orbital angular momentum. Vec-
chio [140] provided the first estimate of parameters for precessing binaries when only one of the two
supermassive black holes carries spin. He showed that modulational effects decorrelate the binary
parameters to some extent, resulting in a better estimation of the parameters compared to the case
when spins are aligned or antialigned with orbital angular momentum. Hughes and Menou [62]
studied a class of binaries, which they called “golden binaries,” for which the inspiral and ring-down
phases could be observed with good enough precision to carry out valuable tests of strong-field
gravity. Berti, Buonanno and Will [29] have shown that inclusion of non-precessing spin-orbit and
spin-spin terms in the gravitational-wave phasing generally reduces the accuracy with which the
parameters of the binary can be estimated. This is not surprising, since the parameters are highly
correlated, and adding parameters effectively dilutes the available information.

Extensive study of accuracy of parameter estimation for continuous gravitational-wave signals
from spinning neutron stars was performed in [65]. In [I30] Seto used the Fisher matrix to study
the possibility of determining distances to rapidly rotating isolated neutron stars by measuring the
curvature of the wave fronts.

4.7.2 Comparison with the Cramér—Rao bound

In order to test the performance of the maximization method of the F-statistic it is useful to
perform Monte Carlo simulations of the parameter estimation and compare the simulated variances
of the estimators with the variances calculated from the Fisher matrix. Such simulations were
performed for various gravitational-wave signals [74] [26] [66], [36]. In these simulations one observes
that, above a certain signal-to-noise ratio, called the threshold signal-to-noise ratio, the results
of the Monte Carlo simulations agree very well with the calculations of the rms errors from the
inverse of the Fisher matrix. However, below the threshold signal-to-noise ratio they differ by a
large factor. This threshold effect is well known in signal processing [I39]. There exist more refined
theoretical bounds on the rms errors that explain this effect, and they were studied in the context
of the gravitational-wave signals from coalescing binaries [99].

Use of the Fisher matrix in the assessment of accuracy of the parameter estimation has been
critically examined in [I38], where a criterion has been established for the signal-to-noise ratio
above which the inverse of the Fisher matrix approximates well covariances of the parameter
estimators. In [148] [T42] the errors of ML estimators of parameters of gravitational-wave signals
from nonspinning black-hole binaries were calculated analytically using a power expansion of the
bias and the covariance matrix in inverse powers of the signal-to-noise ratio. The first-order term
in this covariance matrix expansion is the inverse of the Fisher information matrix. The use of
higher-order derivatives of the likelihood function in these expansions makes the errors prediction
sensitive to the secondary lobes of the pdf of the ML estimators. Conditions for the validity of
the Crameér—Rao lower bound are discussed in [142] as well, and some new features in regions of
the parameter space so far not explored are predicted (e.g., that the bias can become the most
important contributor to the parameters errors for high-mass systems with masses 200 Mg and
above).

There exists a simple model that explains the deviations from the covariance matrix and re-
produces well the results of the Monte Carlo simulations (see also [25]). The model makes use
of the concept of the elementary cell of the parameter space that we introduced in Section
The calculation given below is a generalization of the calculation of the rms error for the case of a
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monochromatic signal given by Rife and Boorstyn [117].

When the values of parameters of the template that correspond to the maximum of the func-
tional F fall within the cell in the parameter space where the signal is present, the rms error is
satisfactorily approximated by the inverse of the Fisher matrix. However, sometimes, as a result
of noise, the global maximum is in the cell where there is no signal. We then say that an outlier
has occurred. In the simplest case we can assume that the probability density of the values of the
outliers is uniform over the search interval of a parameter, and then the rms error is given by

2 AQ

Oout = ﬁ’

(123)
where A is the length of the search interval for a given parameter. The probability that an outlier
occurs will be higher the lower the signal-to-noise ratio is. Let g be the probability that an outlier
occurs. Then the total variance o2 of the estimator of a parameter is the weighted sum of the two
errors

0 =020+ oér(1 - q), (124)
where ocp is the rms errors calculated from the covariance matrix for a given parameter. One can
show [66] that the probability ¢ can be approximated by the following formula:

s F Neens—1
g=1 —/0 pi(p, F) (/O po(y) dy) dF, (125)

where pg and p; are the pdfs of the F-statistic (for known intrinsic parameters) when the signal is
absent or present in data, respectively [they are given by Egs. and ], and where N is
the number of cells in the intrinsic parameter space. Eq. is in good but not perfect agreement
with the rms errors obtained from the Monte Carlo simulations (see [66]). There are clearly other
reasons for deviations from the Crameér-Rao bound as well. One important effect (see [99]) is
that the functional F has many local subsidiary maxima close to the global one. Thus, for a low
signal-to-noise ratio the noise may promote the subsidiary maximum to a global one.

4.8 Upper limits

Detection of a signal is signified by a large value of the F-statistic that is unlikely to arise from the
noise-only distribution. If instead the value of F is consistent with pure noise with high probability
we can place an upper limit on the strength of the signal. One way of doing this is to take the
loudest event obtained in the search and solve the equation

Pp(pur, FL) = B (126)

for signal-to-noise ratio pyr, where Pp is the detection probability given by Eq. , F1, is the
value of the F-statistic corresponding to the loudest event, and g is a chosen confidence [23] 2].
Then pyr, is the desired upper limit with confidence .

When gravitational-wave data do not conform to a Gaussian probability density assumed in
Eq. , a more accurate upper limit can be obtained by injecting the signals into the detector’s
data and thereby estimating the probability of detection Pp [4].
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5 Network of Detectors

Several gravitational-wave detectors can observe gravitational waves from the same source. For
example a network of bar detectors can observe a gravitational-wave burst from the same super-
nova explosion, or a network of laser interferometers can detect the inspiral of the same compact
binary system. The space-borne LISA detector can be considered as a network of three detectors
that can make three independent measurements of the same gravitational-wave signal. Simulta-
neous observations are also possible among different types of detectors. For example, a search for
supernova bursts can be performed simultaneously by resonant and interferometric detectors [21].

Let us consider a network consisting of N gravitational-wave detectors and let us denote by x
the data collected by the Ith detector (I =1,...,N). We assume that noises in all detectors are
additive, so the data x; is a sum of the noise n; in the I'th detector and eventually a gravitational-
wave signal hj registered by the Ith detector,

wr(t) = ng(t) + hy(t), I=1,...,N. (127)

It is convenient to collect all the data streams, all the noises, and all the gravitational-wave signals
into column N x 1 matrices denoted respectively by x, n, and h,

1 (t) ny(t) hi(t)
<t)=| |, aw=| : |, ny=| : |, (128)
() n(t) hy(t)
then Eqs. can shortly be written as
x(t) = n(t) + h(t). (129)

If additionally all detectors’ noises are stationary, Gaussian, and continuous-in-time random pro-
cesses with zero means, the network log likelihood function is given by

tog Alx] = (x/h) — 5 (/h), (130)

where the scalar product (-|-) is defined by

(xly) == 4% / TR Sa () 90 df (131)

Here S,, is the one-sided cross spectral density matrix of the noises of the detector network, which
is defined by (here E denotes the expectation value)

B [a(f) -2 (7)] = 3607~ 1870 (132)

The analysis is greatly simplified if the cross spectrum matrix S, is diagonal. This means
that the noises in various detectors are uncorrelated. This is the case when the detectors of the
network are in widely separated locations, like, for example, the two LIGO detectors. However,
this assumption is not always satisfied. An important case is the LISA detector where the noises of
the three independent responses are correlated. Nevertheless for the case of LISA one can find a set
of three combinations for which the noises are uncorrelated [I09] [I13]. When the cross spectrum
matrix is diagonal the network log likelihood function is just the sum of the log likelihood functions
for each detector.

Derivation of the likelihood function for an arbitrary network of detectors can be found in [50].
Applications of optimal filtering for observations of gravitational-wave signals from coalescing bi-
naries by networks of ground-based detectors are given in [64] [41] [63, 104], and for the case of
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stellar-mass binaries observed by LISA space-borne detector in [79] [I19]. The single-detector F-
statistic for nearly monochromatic gravitational waves from spinning neutron stars was generalized
to the case of a network of detectors (also with time-varying noise curves) in [42] (in this work
the F-statistic was also generalized from the usual single-source case to the case of a collection
of known sources). The reduced Fisher matrix [defined in Eq. (81)] for the case of a network of
interferometers observing spinning neutron stars has been derived and studied in [ITT].

Network searches for gravitational-wave burst signals of unknown shape are often based on
maximization of the network likelihood function over each sample of the unknown polarization
waveforms hy and hy and over sky positions of the source [53, [96]. A least-squares-fit solution for
the estimation of the sky location of the source and the polarization waveforms by a network of
three detectors for the case of a broadband burst was obtained in [57].

There is also another important method for analyzing the data from a network of detectors — the
search for coincidences of events among detectors. This analysis is particularly important when we
search for supernova bursts, the waveforms of which are not very well known. Such signals can be
easily mimicked by the non-Gaussian behavior of the detector noise. The idea is to filter the data
optimally in each of the detectors and obtain candidate events. Then one compares parameters
of candidate events, like, for example, times of arrivals of the bursts, among the detectors in the
network. This method is widely used in the search for supernovae by networks of bar detectors [24].
A new geometric coincident algorithm of combining the data from a network of detectors was
proposed in [II8]. This algorithm employs the covariances between signal’s parameters in such a
way that it associates with each candidate event an ellipsoidal region in parameter space defined
by the covariance matrix. Events from different detectors are deemed to be in coincidence if their
ellipsoids have a nonzero overlap. The coincidence and the coherent strategies of multidetector
detection of gravitational-wave signals from inspiralling compact binaries have been compared
in [97, 08, 32]. [97] considered detectors in pairs located in the same site and [08] pairs of
detectors at geographically separated sites. The case of three detectors (like the network of two
LIGO detectors and the Virgo detector) has been considered in detail in [32], where it was
demonstrated that the hierarchical coherent pipeline on Gaussian data has a better performance
than the pipeline with just the coincident stage.

A general framework for studying the effectiveness of networks of interferometric gravitational-
wave detectors has been proposed in [I126]. Using this framework it was shown that adding a
fourth detector to the existing network of LIGO/VIRGO detectors can dramatically increase, by a
factor of 2 to 4, the detected event rate by allowing coherent data analysis to reduce the spurious
instrumental coincident background.
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6 Non-stationary, Non-Gaussian, and Non-linear Data

Eqgs. and provide maximum likelihood estimators only when the noise in which the signal
is buried is Gaussian. There are general theorems in statistics indicating that the Gaussian noise
is ubiquitous. One is the central limit theorem, which states that the mean of any set of variables
with any distribution having a finite mean and variance tends to the normal distribution. The
other comes from the information theory and says that the probability distribution of a random
variable with a given mean and variance, which has the maximum entropy (minimum information)
is the Gaussian distribution. Nevertheless, analysis of the data from gravitational-wave detectors
shows that the noise in the detector may be non-Gaussian (see, e.g., Figure 6 in [22]). The noise
in the detector may also be a non-linear and a non-stationary random process.

The maximum likelihood method does not require that the noise in the detector be Gaussian
or stationary. However, in order to derive the optimum statistic and calculate the Fisher matrix
we need to know the statistical properties of the data. The probability distribution of the data
may be complicated, and the derivation of the optimum statistic, the calculation of the Fisher
matrix components and the false alarm probabilities may be impractical. However, there is one
important result that we have already mentioned. The matched-filter, which is optimal for the
Gaussian case is also a linear filter that gives maximum signal-to-noise ratio no matter what the
distribution of the data. Monte Carlo simulations performed by Finn [50] for the case of a network of
detectors indicate that the performance of matched-filtering (i.e., the maximum likelihood method
for Gaussian noise) is satisfactory for the case of non-Gaussian and stationary noise.

Allen et al. [10, 11] derived an optimal (in the Neyman—Pearson sense, for weak signals) signal
processing strategy, when the detector noise is non-Gaussian and exhibits tail terms. This strategy
is robust, meaning that it is close to optimal for Gaussian noise but far less sensitive than conven-
tional methods to the excess large events that form the tail of the distribution. This strategy is
based on a locally optimal test [72] that amounts to comparing a first non-zero derivative
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of the likelihood ratio with respect to the amplitude of the signal with a threshold instead of the
likelihood ratio itself.

The non-stationarity in the case of Gaussian and uncorrelated noise can be easily incorporated
into matched filtering (see Appendix C of [I]). Let us assume that a noise sample n; in the data
has a Gaussian pdf with a variance o7 and zero mean (I = 1,..., N, where N is the number of data
points). Different noise samples may have distributions with different variances. We also assume
that the noise samples are uncorrelated, then the autocorrelation function K (I,1") of the noise is
given by [see Eq. (39)]

Kl = 0'l2 o, (134)

where d;/ is the Kronecker delta function. In the case of a known signal h; and additive noise the
optimal filter ¢g; is the solution of the following equation [which is a discrete version of the integral

Eq. ]: N
=S KLU a. (135)
r=1

Thus, we have the following equation for the filter g;:

hy
=5 (136)
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and the following expression for the log likelihood ratio:
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Thus, we see that for non-stationary, uncorrelated Gaussian noise the optimal processing is identical
to matched filtering for a known signal in stationary Gaussian noise, except that we divide both
the data x; and the signal h; by time-varying standard deviation of the noise. This may be thought
of as a special case of whitening the data and then correlating it using a whitened filter.

In the remaining part of this section we review some statistical tests and methods to detect
non-Gaussianity, non-stationarity, and non-linearity in the data. A classical test for a sequence
of data to be Gaussian is the Kolmogorov—Smirnov test [37]. It calculates the maximum distance
between the cumulative distribution of the data and that of a normal distribution, and assesses
the significance of the distance. A similar test is the Lillifors test [37], but it adjusts for the fact
that the parameters of the normal distribution are estimated from the data rather than specified
in advance. Another test is the Jarque-Bera test [70], which determines whether sample skewness
and kurtosis are unusually different from their Gaussian values.

A useful test to detect outliers in the data is Grubbs’ test [56]. This test assumes that the
data has an underlying Gaussian probability distribution but it is corrupted by some disturbances.
Grubbs’ test detects outliers iteratively. Outliers are removed one by one and the test is iterated
until no outliers are detected. Grubbs’ test is a test of the null hypothesis:

1. Hy: There are no outliers in the data set xy.
against the alternate hypothesis:
2. Hy: There is at least one outlier in the data set xy,.

The Grubbs’ test statistic is the largest absolute deviation from the sample mean in units of the
sample standard deviation, so it is defined as
maxy, |rg —
G = maxk [k — pl (138)
o
where p and o denote the sample mean and the sample standard deviation, respectively. The
hypothesis of no outliers is rejected if

n—1 ti/(Qn),n—2
_ 2 ’
\/ﬁ n—2+ ta/(Qn)7n—2

(139)

where t,/(2n)n—2 denotes the critical value of the t-distribution with n —2 degrees of freedom and
a significance level of a/(2n).

Grubbs’ test has been used to identify outliers in the search of Virgo data for gravitational-wave
signals from the Vela pulsar [I]. A test to discriminate spurious events due to non-stationarity
and non-Gaussianity of the data from genuine gravitational-wave signals has been developed by
Allen [9]. This test, called the x? time-frequency discriminator, is applicable to the case of broad-
band signals, such as those coming from compact coalescing binaries.

Let now zx and u; be two discrete-in-time random processes (—oo < k,l < co) and let u; be
independent and identically distributed (i.i.d.) random variables. We call the process xj, linear if
it can be represented by

N
T = Z ayUk—1, (140)
1=0
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where a; are constant coefficients. If u; is Gaussian (non-Gaussian), we say that z; is linear
Gaussian (non-Gaussian). In order to test for linearity and Gaussianity we examine the third-
order cumulants of the data. The third-order cumulant Cj; of a zero mean stationary process is
defined by

Cri := E[ZmTmikTmi] - (141)

The bispectrum S3(f1, f2) is the two-dimensional Fourier transform of Cy;. The bicoherence is

defined as
Sa(f1, f2)
fi+ f2)S(f1)S(f2)’

where S(f) is the spectral density of the process xy. If the process is Gaussian, then its bispectrum
and consequently its bicoherence is zero. One can easily show that if the process is linear then
its bicoherence is constant. Thus, if the bispectrum is not zero, then the process is non-Gaussian;
if the bicoherence is not constant then the process is also non-linear. Consequently we have the
following hypothesis testing problems:

B(f1, f2) == 5 (142)

1. Hy: The bispectrum of xy is nonzero.
2. Hg: The bispectrum of xzy, is zero.
If Hypothesis[T]holds, we can test for linearity, that is, we have a second hypothesis testing problem:
3. Hi: The bicoherence of xy, is not constant.
4. HY: The bicoherence of xy is a constant.

If Hypothesis [4] holds, the process is linear.

Using the above tests we can detect non-Gaussianity and, if the process is non-Gaussian, non-
linearity of the process. The distribution of the test statistic B(f1, f2), Eq. , can be calculated
in terms of x? distributions. For more details see [60].

It is not difficult to examine non-stationarity of the data. One can divide the data into short
segments and for each segment calculate the mean, standard deviation and estimate the spectrum.
One can then investigate the variation of these quantities from one segment of the data to the other.
This simple analysis can be useful in identifying and eliminating bad data. Another quantity to
examine is the autocorrelation function of the data. For a stationary process the autocorrelation
function should decay to zero. A test to detect certain non-stationarities used for analysis of
econometric time series is the Dickey—Fuller test [34]. It models the data by an autoregressive
process and it tests whether values of the parameters of the process deviate from those allowed by
a stationary model. A robust test for detecting non-stationarity in data from gravitational-wave
detectors has been developed by Mohanty [94]. The test involves applying Student’s t-test to
Fourier coefficients of segments of the data. Still another block-normal approach has been studied
by McNabb et al. [89]. It identifies places in the data stream where the characteristic statistics of
the data change. These change points divide the data into blocks in characteristics are stationary.
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