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Abstract

We provide formulas for the entropy of free-string states depending
on their mass, charges and size, both in bosonic and superstring theory
(IIA or IIB). We properly define these quantities in full-fledged string
theory. We then investigate the corrections to the entropy due to
self-interactions of the string for states with fixed mass, charge and
size, both for BPS and non-BPS configurations. Again, the analysis
is performed using string theory techniques.
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1 Introduction

Black holes obey a set of laws that are formally identical to the thermody-
namical ones:

1. κs = constant on horizon (κs = surface gravity)

2. δM = κs

8πGN
δA+ ωδJ + φδq

(M = black hole mass, A = horizon area, ω = angular velocity at horizon,

J = angular momentum, φ = electric potential, q = electric charge

GN = Newton’s constant)

3. δA > 0 1

1This law is violated by Hawking radiation, and therefore substituted by a generalized
law stating that the area of the black holes plus the entropy of the universe do not decrease
in a physical process.
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4. κs = 0 impossible for any physical process.

It is tempting to relate, then, A to an “entropy” S, and κs to a tem-
perature T . This is meaningless in classical theory, since black holes do not
radiate and it is not possible to associate a temperature to them. At this
level is therefore necessary a quantum theory. In fact, Hawking radiation
determines

κs = 2πT

and then

S =
A

4GN

+ . . .

where the dots stand for corrections due to higher curvature terms and quan-
tum contributions as well2.

In the modern interpretation, we think of classical gravitational black
holes as a coarse-grained description of a quantum system3. This last de-
scription is the one that should provide us not only with an interpretation
of black holes’ laws, but also with the possibility of deriving them from first
principles.

We will focus in particular on the entropy. According to Bekenstein
principle, the black hole’s one is proportional to the area of the horizon
(plus corrections); for a quantum statistical ensemble, instead, the entropy
is defined as the logarithm of the number G of microstates:

S = ln(G). (1)

Relating the two definitions represents the entropy issue. It is necessary
to individuate the correct ensemble of microstates accounting for S: we need
therefore a quantum gravity theory. String theory represents probably the
best candidate nowadays for such a theory and it has a general principle
(known as the “String-Black holes correspondence principle”) individuating
those microstates. In the case of supersymmetric BPS configurations at
fixed tree-level mass, their counting at the level of free string (string coupling

2The more general classical formula for the entropy of a black hole, including higher
derivative terms, is Wald’s one [1].

3This is one of the possible resolution of the problems posed by classical black holes.
As an example it is typical of the ”fuzzball” proposal, which sees the black hole solution
as the coarse-grained description of many microstates’ solutions which have no horizon.
Other interpretations of black holes which do not includes processes of averaging and
coarse-graining are in fact possible, but in general they have to cope with the problem of
explaining how an horizon and trapped surfaces can arise from the pure quantum states
accounting for the black hole microstates [2].
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gc = 0) does not receive corrections, in the non supersymmetric case, instead,
quantum corrections must be taken in consideration.

In this work we want to focus on these effects on the string theory side
(microstates). We consider closed string, and perform our analysis both in
the bosonic and in the superstring theory (type IIB or IIA). We will deal
both with states carrying no charges and with states carrying charges of the
Neveu-Schwarz type. We begin in Section 2, by reviewing the String-Black
Holes Correspondence Principle. Special emphasis is given to the role played
by the value of the horizon radius of the black hole and the corresponding
requirements for the size of the string microstates.

It is therefore interesting to find the entropy of string microstates de-
pending on both mass and size (concept that we will define properly in the
following). This task is not easily solved because it is not straightforward, in
the quantum theory of strings, to define an operator measuring the (average)
size of string states. The main topic of this work will therefore be to compute
such entropy in a well-defined way. Furthermore, the free-string entropy as
a function of mass and size will now receive corrections in both the non-BPS
and the BPS cases (renormalization of the radius).

We discuss and specify our statistical ensemble of closed string states in
section 3, and in 4 we investigate the spatial distribution and the number of
microstates with zero charge at fixed squared mass and “size” . At the end
of the section we provide formulas for the entropy of single free (bosonic and
super-)string states constrained both in mass and in size.

We extend our results to string states carrying Neveu-Schwarz charges
(winding and Kaluza-Klein mode numbers) in section 5, and study BPS
states as well.

In section 6 we study the one-loop corrections: we propose a method for
implementing the constraint on the size of string states and investigate how
this affects the one-loop amplitude. The results are obtained by evaluating
full-fledged (super)string path integrals. There are important differences
between the non-BPS and the BPS case: we elucidate them and treat both
cases, separately. Finally, we comment and conclude.

2 The String-Black Holes correspondence prin-

ciple

String theory and black holes’ physics set two characteristic lenght scales:

Rbh the black hole horizon radius (Schwarzschild radius)

ls =
√
α′ the string lenght scale
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so that





if Rbh ≫ ls general relativity description is reliable

if Rbh . ls strings feel space-time as flat, α′-corrections are important,

string theory description is reliable

The “String-Black Holes Correspondence Principle” states that a black
hole is described by an ensemble of excited string and/or D-brane states
(depending on the type of charges the black hole possesses) when Rbh ∼ ls.

There are two possible interpretations of the Principle (for simplicity we
consider now the case without charges):

• a physical process (Hawking radiation) where the black hole de-
creases its mass, therefore reducing the value of its Schwarzschild radius

Rbh ∼ (GNM)
1

d−2 until Rbh ∼ ls where a transition to an excited string
states takes place;

in this case

{
gc is fixed

M varies

• two complementary descriptions valid in different regimes at equal
mass;

in this case

{
gc varies

M is fixed

The possibility of equating the black hole entropy (proportional to a power
of its mass) and the string one (proportional to the square root of its mass)
relies on the fact that the first is constant in Plank units, the second in string
ones and therefore the entropies match at a determined value of the string
coupling. At the transition point it is found that, in units of α′ [4],

Rbh ∼ ls ⇒ gc ∼M− 1
2 (2)

independently of the number of dimensions. Since we are to consider very
massive string states, this value for the string coupling turns out to be suffi-
ciently small to allow perturbation theory.

We would expect that only states whose size is of the same order of the
black hole horizon radius can be related to the black hole at the transition

3We are in d = D−1 spatial dimensions, and we relate Newton’s constant to the string
length as GN ∼ g2c (α

′)d−1 at small closed string coupling gc, see [3].
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point4. It is therefore interesting to find the entropy of string microstates
depending on both mass and “size”.

In this work we will determine the number (and therefore the entropy) of
perturbative (super)string states depending on their mass and size at tree-
level and we will investigate the corrections to their entropy due to the self-
interactions of the string. We will then consider states carrying charges, and
extend the results to that case.

In the past, a few attempts have been made to study such issues: [3], [5]
(see also [6]). In [5], it was employed a thermal scalar formalism, interpret-
ing the size of the bound states of a certain scalar field as the size of the
excited string. The thermal scalar is a formal device capable to give us some
statistical information about the string system (string gas). Nevertheless its
relation to the string states remains open. In particular, an Hamiltonian
interpretation for its degrees of freedom seems to question an identification
between its states and the string spectrum (see [7]).

The approach followed in [3] was more directly linked to a model of
(bosonic open) strings, but the computations were performed within a simpli-
fied toy model, believed to be valid in a large number of dimensions (d≫ 1),
not taking into account Virasoro constraints.

We will perform our calculations in full-fledged string theory.
The computation of the entropy of strings is ultimately connected also

with the Hagedorn transition in string theory, but we will deal with single-
string entropy and therefore our results do not apply directly.

Our conventions, here and in the following are:

α′ = 4, D = d+ 1 large space-time dimensions

Mtree =
√
N = bare mass of the string state

gc/go = closed/open string coupling.

Furthermore, objects with “c” subscript will refer to closed strings, whereas
those with an “o” subscript will relate to open strings.

3 The microcanonical ensemble

We want to determine statistical properties of massive string states, in par-
ticular concerning their spatial distribution. We will use the microcanonical

4Consider for example the gravitational binding to mass ratio, or, for the case of the
“fuzzball” proposal, the fact that the metric sourced by the microstates must differ from
the one of a black hole only at distance lower than the horizon radius.
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ensemble. Ensembles are defined by density matrices: the microcanonical
one has the form5

ρE = aEδ(E − Ĥ) (3)

where Ĥ 6 is the Hamiltonian of the system and aE ensures the normalization
of the density matrix:

tr[ρE ] = 1 (4)

when traced over the states.
We can try to modify the traditional microcanonical ensemble, fixing

the value of other observables, in order to investigate different statistical
properties of the system. Considering a discrete observable with associated
operator Q̂, we can define the density matrix:

ρE,Q = aE,Qδ(E − Ĥ)δ(Q− Q̂). (5)

The quantity

G(E,Q) = tr[δ(E − Ĥ)δ(Q− Q̂)]

=
∑

φ

〈φ|δ(E − Ĥ)δ(Q− Q̂)|φ〉 (6)

gives the number of states having the values E, Q for the chosen observables.
It is, therefore:

aE,Q = G(E,Q)−1 (7)

If Q represents a continuous observable, we need further to specify a small
interval δQ (uncertainty) around the value of the observable we are interested
in, and define:

ρE,Q,δQ = aE,Q,δQ δ(E − Ĥ)
(
θ(Q + δQ− Q̂)− θ(Q− Q̂)

)

= aE,Q,δQ δ(E − Ĥ)

∫ Q+δQ

Q

δ(Q− Q̂). (8)

Once again, tracing the density matrix over the states of the system, yields
the number G(E,Q, δQ) = a−1

E,Q,δQ of microstates having values E for the
energy, and Q < Qi < Q+ δQ7 for the other observable. We will let δQ→ 0,
so that we can write

ρE,Q = GE,Q δ(E − Ĥ)δ(Q− Q̂). (9)

5 The expressions for the density matrix are meaningful when applied to the states of
a system; with that understanding our notation with Dirac’s delta functions is clear.

6From now on a ˆ will distinguish an operator from its value(s).
7Here, i runs over the set of microstates.
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Our microcanonical ensemble will be defined by fixing the values

• of the level number operator N̂ ≡ −p̂2

• of the operator (to be defined) measuring the size of the string.

In this way, we will be able to count the number of states G(N,R) with fixed
squared mass N and size R, whose logarithm will yield the entropy we are
looking for.

A problem arises: it is difficult to define an operator whose (average)
value, when applied to a string state, represents its (average) size, satisfying
all the constraints of the theory (superconformal or conformal constraints, or
BRST constraints in the various quantization procedures) or being compu-
tationally manageable (in light-cone gauge), see [3, 8]. In order to cope with
this problem, we follow a somehow roundabout procedure.

In sections 4, 5 we do this for free string states, whereas in section 6, we
address self-interacting strings.

4 States with no charge

4.1 The setup

As an illustration of the difficulties in defining an operator to measure the
size of a string state8, let us discuss the most natural choice, which will also
clarify what we mean with the term size. Consider taking the quantized
version of the classical average (squared) size of a string:

R̂2 =
1

∆σ+∆σ−

∫ ∆σ+

0

∫ ∆σ−

0

(XO(σ+, σ−))
2 σ± = σ ± τ, (10)

where XO represents the projection of the oscillator part of the string coor-
dinate orthogonally to the center of mass momentum of the string. Three
evident issues regarding such operator are:

• its definition is gauge-dependent,

• the operator has a zero-order contribution proportional to

∞∑

n=1

1

n
(11)

which needs to be interpreted and regularized (see [8]),

8We consider both pure and mixed states.
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• the insertion of this operator in a path-integral is problematic because
it does not commute with the BRST operator, or, when using Light-
Cone gauge, poses ordering problems9.

The approach that we will choose solves all these issues. We will adopt
a physical way of measuring the spatial distribution of an object: the spatial
distribution of an object is obtained from the scattering of other (light) probes
off it in an elastic limit. This will lead us to correctly define the density
matrix for our ensemble.

Figure 1: Scattering process b + φ → b′ + φ′. At low momentum transfer the

process is dominated by the massless channel, which is represented here.

Consider, indeed, the Born approximation for the amplitude of a process

A = b+ φ→ b′ + φ′, q ≡ exchanged momentum (12)

(see figure 1). At low momentum transfer, in the elastic limit, this is given
by

A ∼ V (q2) · · · ∼ Fb(q
2)Fφ(q

2)

q2
(13)

and Fi(q
2), mi can be interpreted respectively as the form factor and the

mass of the particle i. In particular, for elastic scattering (when q2 = ~q 2),
the form factor represents the Fourier transform of the spatial distribution
µi(x):

Fi(~q
2) =

∫
ddxe−i~q·~xµi(~x) (14)

9Consider the part of the operator proportional to X+X−, where X− is a quadratic
function of the transverse coordinates.
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According to the nature of the probe b, we obtain different distributions:
mass distribution, charge distribution . . . . In the following we will consider
the mass distribution, choosing b to be a graviton (actually a superposition
of graviton, dilaton and Kalb-Ramond field). Our targets φ will be closed
string states extended in the large uncompactified dimensions, though the
analysis can be carried over for open strings as well10.

4.2 The String Spatial Distribution.

The string theory formula11 for the amplitude (S-matrix) for the process (12)
is:

Aclosed = g2c

∫
d2 z 〈φ|V (k′, 1)V (k, z)|φ〉 (15)

Let us discuss for the moment an ensemble of states with fixed squared
mass N only. We then need to trace over the density matrix12

ρN =
1

Gc(N)
δ(N − N̂) =

1

Gc(N)

∮
dw

wN+1
wN̂ (16)

so that:

Aclosed = g2c

∫
d2 z tr[V (k′, 1)V (k, z)ρN ρ̃N ], (17)

where objects with a tilde refer to the anti-holomorfic (left-moving) sector.
We consider separately the cases of the bosonic string and the superstring.

We will find out that the computations are very similar. We therefore discuss
first and at length the superstring, and leave the bosonic one at the end.

The superstring.

As we said, our probe consists of a superposition of the graviton, the
dilaton and the Kalb-Ramond field, represented by the vertex operator:

V (k, z) =
2

α′ e
ik·X(ξ · ∂X − i

2
ξ · ψk · ψ)(ξ̃ · ∂̄X − i

2
ξ̃ · ψ̃k · ψ̃) (18)

10See [9] for a study of the size of open string states on the leading Regge trajectory
using tachyons and photons as probes.

11Note that this formula, and therefore the result that we will obtain, as we will discuss
in the following are very different from the formulas in [10]. In our case the interpretation
of FN (q2) as a form factor is justified, according to scattering theory, whereas in [10] it
could not be accepted, and indeed a different interpretation of the results was proposed
in [11]

12Gc(N) is the number of states at mass level N , the trace is over physical string states.
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where we have (formally) written the polarization tensor as ξµν = ξµξ̃ν and
X,ψ are, respectively, the space-time string bosonic and fermionic coordi-
nates. We perform our computations in the gauge ξ00 = 0.

We will make use of the relation (Kawai, Lewellen and Tye, [12])13:

Ac(1234;α
′, gc) =

πig2cα
′

g4o
sin(πα′t)Ao(s, t;

α′

4
, go)Ão(t, u;

α′

4
, go). (19)

where s, t, u are Mandelstam variables.
The amplitude that we will compute is therefore:

Ao(s, t; 1, go) = g2o

∫
dy tr[Vopen(k

′, 1)Vopen(k, y)ρN ] (20)

with

Vopen(k, y) =
1√
2α′ e

ik·X(y) (iyξ · ∂yX(y) + 2α′k · ψ(y)ξ · ψ(y)) . (21)

We will consider the limit t ≡ −q2 = −(k + k′)2 → 0. The lowest terms
of the amplitude in this limit can be calculated using the OPE (see [10]):

Vopen(k
′, 1)Vopen(k, y) ∼

y→1
2ξ · ξ′(1− q2) (1 − y)

2k′·k−2
y2k·p̂eiq·X̂O(1)eiq·x̂ (22)

where X̂O indicates the oscillator part of X . The amplitude factorizes as:

Aopen = g2oA
zero modes
o Aoscillators

o (23)

By writing y = e−ǫ with ǫ→ 0, we find the result14:

Azero modes
o = −

∫
dǫ ǫq

2−2e−ǫ(2k·p+1) (1− q2) (24)

∼
q2→0

(2
√
NE)2

q2

√
Fb(q2, E) (2

√
N)−q2 . (25)

where we have defined Fb(q
2, E) ≡ e−2q2 ln(E) and E ≡ k0.

Therefore:

Ac(1234; 4, gc) ∼ π2ig2c
(2
√
NE)4

q2
Fb(q

2, E)(2
√
N)−2q2Aoscillators

o Ãoscillators
o

(26)

13Here we have explicitly written the α′ squared lenght in order to present clearly the
formula. Remember that eventually in the computations we will always set α′ = 4.

14We need to perform the same analytical continuation as for the Veneziano amplitude,
as usual in these representation of the string amplitudes.
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with
Aoscillators

o = tr[eiq·XO(1)ρN ] (27)

and we have expanded sin(−πt) ∼ −πt ∼ πq2.
According to the results and the discussion in [10, 13], we identify Fb(q

2, E)
with the form factor for the probe b.

It is now straightforward to read the form factor for the target φ at
squared mass N :

FN (q
2) = N−q2Aoscillators

o Ãoscillators
o (28)

=
N−q2

Gc(N)

∮
dw

wN+1

∮
dw̃

w̃N+1

g(w)g(w̃)

(f(w)f(w̃))d−1
e−2q2

P∞
n=1

wn

n(1−wn)
+ w̃n

n(1−w̃n)

where

g(w) =

(
1√
w
g3(w)

d−1 − 1√
z
g4(w)

d−1 + g2(w)
d−1

)
(29)

f(w) =
∞∏

n=1

(1− wn) g3(w) =
∞∏

r= 1
2

(1 + wr) (30)

g4(w) =
∞∏

r= 1
2

(1− wr) g2(w) =
∞∏

r=0

(1 + wr) . (31)

We compute the loop-integrals by saddle point approximation for large N ,
finding

ln(w) ∼ − π√
N

√
d− 1

4
− q2

3
(32)

and similarly for w̃.
Therefore, considering the elastic limit:

FN (~q
2) ∼

N→∞

e4π
√
N

q

d−1
4

− ~q 2

3

Gc(N)
πd

(
(d− 1)

4
− ~q 2

3

) d
2

N− d+2
2

∼
~q 2→0

N→∞

e
− 4π

3

q

N
D−2

~q 2

(33)

where in the last line we have simplified the result with

Gc(N) ∼ e2π
√

N (d−1)πd

(
d− 1

4

) d
2

N− d+2
2 . (34)
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Finally, the average radius is

〈r2〉 = −2 d ∂~q 2FN(~q
2)|~q 2=0 =

8π d

3

√
N

d− 1
(35)

and the mass distribution

µN(~x) =
1

(2π)d

∫
ddqei~q·~xFN(~q

2) =

(
3

16π2

√
d− 1

N

) d
2

e−
3

16π

√
d−1
N

~x2

. (36)

The bosonic string.

The case of the bosonic string follows the same steps. A few things are
different:

• the vertex operator for the probe now is:

Vopen(k, y) =
1√
2α′

eik·X(y) (iyξ · ∂yX(y)) . (37)

• due to the absence of fermionic excitations, the number of closed string
states at fixed large mass squared N is

Gc(N) ∼ e4π
√
N
√

d−1
6 πd

(
(d− 1)

6

) d
2

N− d+2
2 ; (38)

• the integral (24) becomes now:

Azero modes
o = −

∫
dǫ ǫq

2−2e−ǫ(2k·p+1) . (39)

Namely, we see that the integral would be divergent also for q2 = 1, cor-
responding to the exchange of a tachyon. But we are considering the limit
q2 → 0, picking out the graviton pole, so that

Azero modes
o ∼

q2→0

(2
√
NE)2

q2

√
Fb(q2, E) (2

√
N)−q2 (40)

as for the superstring. Therefore we obtain:

• form factor

FN (~q
2) ∼

~q 2

N
→0

e
−2π

q

2N
3 (d−1)

~q 2

, (41)
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• the average radius

〈r2〉 = 4
√
2 π d

√
N

3 (d− 1)
, (42)

• the mass distribution

µN(~x) =

(
1

8π2

√
3 (d− 1)

2N

) d
2

e−
1
8π

q

3 (d−1)
2N

~x2

, (43)

being intended that the number of extended spatial dimensions now can go
up to d = 25, not only up to 9 as for the superstring.

4.2.1 Corrections

We show here how the lowest terms in the expansion for y → 1 in (22),
dominate the amplitude (20) and the result is safe against possible corrections
in a determined kinetic and mass range.

The superstring.

Without any approximations, the amplitude (20) is given by

Ao(s, q
2; 1, go) ∼ g2o

Go(N)

∫
dǫ

∮
dw

wN+1

g(w)

f(w)d−1
e−ǫ(2k·p+1) ψ(ǫ, w)q

2

(44)

×
[
−2∂2ǫ ln (ψ(ǫ, w)) + χ(ǫ, w)

]

with

ψ(ǫ, w) = (1− e−ǫ)

∞∏

n=1

e
−q2 wn

n(1−wn)
(enǫ+e−nǫ)

(45)

∂2ǫ ln (ψ(ǫ, w)) =

∞∑

n=1

ne−ǫn +

∞∑

n=1

nwn

(1− wn)
(enǫ + e−nǫ) (46)

χ(ǫ, w) = 2q2
4∑

s=2

(
θs(0)

θ2(0)

) d−1
2 θs(ǫ)

2θ′1(0)
2

θ1(ǫ)2θs(0)2
, (47)

where we have written y = e−ǫ. Note that θs(z) ≡ θs(
z
2πi
, ln(w)

2πi
) in the usual

notation, where the θs’s are the Theta functions.
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Expand for ǫ → 0:

Iǫ ∼
∫
dǫe−ǫ (2k·p+1)ǫq

2−2e−2q2
P

n
wn

n(1−wn)

(
1− q2 +O

(
wǫ2

(1− w)

))

∼ (2k · p)−q2+2Γ(q2)

(
1 +O(

1

(k · p)2 )
)
. (48)

Being k · p = −E
√
N (E probe energy,

√
N tree-level mass for the massive

state), our results appear to be correct in the limit of heavy massive string
states and probes at high energy.

The bosonic string.

The bosonic string case is similar to the superstring one: it can be ob-
tained eliminating from the formulas above the term χ(ǫ, w) and substituting
1 to g(w), which leads to the result:

Iǫ ∼ (2k · p)−q2+2Γ(q2 − 1)

(
1 +O(

1

(k · p)2 )
)
. (49)

showing again the validity of our expansion for heavy target states and probes
at high energy.

4.3 Number of string states of a given mass and size.

Ultimately, we are interested in (the logarithm of) the number of states with
a given mass and size. This can be obtained from the results in section 4.2.
Indeed, looking at formulas (16, 27, 28, 36) and remembering that we are
considering elastic scattering, we can write:

FN(~q
2) =

1

Gc(N)
tr[ei~q·

~̂XO
closed(1)δ(N − N̂)] (50)

where ~̂XO
closed(z) is the projection of the oscillator part of the string coordi-

nates operator, orthogonally to the momentum of the string15.
Therefore

µN(~x) =

∫
dq

(2π)d
e−i~q·~xFN(q

2) =
1

Gc(N)
tr[δ(~x− ~̂XO

closed(1))δ(N − N̂)] (51)

For fixed ~x, we recognize in µN(~x) the trace of the (incorrectly normalized)

density matrix for an ensemble with fixed ~XO, N̂ . We note that, in terms of

15In the limit ~q2 → 0, the state |φ〉 is in his rest frame.
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the string oscillators ~αm, ~̃αm:

~̂XO
closed(1) =

√
2

∞∑

m=−∞
m6=0

~αm

m
+
~̃αm

m
(52)

and, thanks to the normal ordering in the string amplitude, ~q 2 is multiplied
by

2

∞∑

m=1

~α−m · ~αm

m
+
~̃α−m · ~̃αm

m
=: R̂2 : , (53)

where R̂2 is the operator, modulo the zero-point contribution16, which we
had described in (10), and :: denotes normal ordering.

Therefore, writing ~x in spherical coordinates and integrating over the
angular dependence, we obtain:

• for the superstring

– the number of closed string states with fixed R,N

Gc(N,R)=
2

Γ(d
2
)

(
3
√
d− 1

16π2
√
N

)d
2
(

R√
N

)d−1
e
π
√
d−1

“

2
√
N− 3

16π2
√
N
R2

”

N
3
2

(54)

– and the entropy

S = ln(Gc(
√
N,R))

∼ 2π
√
N
√
d− 1− 3

√
d− 1

16
√
Nπ

R2 + ln

(
Rd−1

√
N

3
4
d+1

)
(55)

• for the bosonic string

– the number of closed string states with fixed R,N

Gc(N,R)=
2

Γ(d
2
)

(√
3(d− 1)

8
√
2π2

√
N

)d
2(

R√
N

)d−1
e
π
√
d−1

“√
8N
3

−
√

3

8
√

2π2
√

N
R2

”

N
3
2

(56)

16The zero-point contribution gives rise to the factor N−q2 in (28) which is negligible
for N → ∞.
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– and the entropy

S = ln(Gc(N,R))

∼ 4π
√
N

√
d− 1

6
−
√
3 (d− 1)

8
√
2
√
N π

R2 + ln

(
Rd−1

√
N

3
4
d+1

)
.(57)

Two remarks are important at this point. First, looking at (50, 51), we
note that we have been inserting an operator

δ(~x− ~̂XO
closed(1)) =

∫
d~q ei~q·~x−iq· ~̂XO

closed(1) (58)

in a string path integral. This operator, being integrated over all momenta,
is off-shell. But string theory is defined only on-shell, how is then possible
that our computation is correct? We appreciate here, the importance of
the factorization property of (string) amplitudes: factorizing two external
legs of an amplitude, the momentum square q2 flowing along the connecting
propagator is a variable, allowing analytic continuation.

Since [ ~̂XO
closed(1), N̂ ] 6= 0, we could also wonder whether our computa-

tion for the number of states is incorrect, because the result in (54, 56)
should be independent from the ordering of the two deltas. Naturally, δ(~x−
~̂XO
closed(1))δ(N − N̂) and δ(N − N̂)δ(~x − ~̂XO

closed(1)) yield the same result
when traced over, and, furthermore, we are working with very massive string
states, for which it is also reasonable to take a semi-classical limit.

5 States carrying Neveu-Schwarz charges

The results obtained in the previous sections can be extended to ensembles of
string states carrying Neveu-Schwarz charges QR, QL. We have to distinguish
states according to their mass and their winding and Kaluza-Klein mode
numbers (mi, ni), such that:

Qi
R,L =

(
ni

ri
± miri

4

)
(59)

Q2
R,L =

∑

i

Qi 2
R,L, (60)

where ri is the radius17 of compactification in the i-th compactified direction.

17Recall that we set α′ = 4 and express everything in units of α′.
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The mass-shell condition and the Virasoro constraint L0 − L̃0 = 0 read:

M4 = Q2
L +NL (61)

= Q2
R +NR (62)

NL −NR =
∑

i

nimi. (63)

where L,R indicate respectively the holomorphic and anti-holomorfic sectors.
We define our microcanonical system by fixing charge and squared mass,

or, more conveniently and equivalently, by constraining the values of the
operators:

N̂L = −p̂2 − Q̂2
L N̂R = −p̂2 − Q̂2

R. (64)

and letting their values, NL, NR, be large. Therefore:

• for the superstring

– the number of closed string states with fixed size, mass, charge is

Gc ∼
2

Γ(d
2
)

(
3
√
d− 1

8π2N

) d
2

(
R

N
1
4
LN

1
4
R

)d−1
eπ

√
d−1(N− 3

8π2N R2)

N
3
4
LN

3
4
R

(65)

– and the entropy

S = ln(Gc)

∼ πN
√
d− 1− 3

√
d− 1

8Nπ
R2 + ln

(
Rd−1

N
d+2
4

L N
d+2
4

R N d
2

)
(66)

• for the bosonic string

– the number of closed string states with fixed size, mass, charge is

Gc =
2

Γ(d
2
)

(√
3(d− 1)

4
√
2π2N

)d
2
(

R

N
1
4
LN

1
4
R

)d−1
e
π
√
d−1

“√
2
3
N−

√
3

4
√

2π2 N R2
”

N
3
4
LN

3
4
R

(67)

– and the entropy

S = ln(Gc)

∼ 2πN
√
d− 1

6
−
√
3 (d− 1)

4
√
2N π

R2 +ln

(
Rd−1

N
d+2
4

L N
d+2
4

R N d
2

)
.(68)

where we have written:
N =

√
NL +

√
NR. (69)
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5.1 BPS states

We study, now, BPS configurations of fundamental superstrings. They are
states with:

M2 = Q2
L, NL = 0, NR =

∑

i

nimi. (70)

We find:

• the number of BPS string states with fixed size, mass, charge is

Gc ∼
2

Γ(d
2
)

(
3
√
d− 1

8π2
√
NR

) d
2

(
R

N
1
4
R

)d−1
e
π
√
d−1

„√
NR− 3

8π2
√

NR
R2

«

N
3
4
R

.

(71)

• and the entropy

S = ln(Gc)

∼ π
√
NR

√
d− 1− 3

√
d− 1

8
√
NRπ

R2 + ln

(
Rd−1

N
d+1
2

R

)
. (72)

It is interesting to note that the average radius for this ensemble is

〈r2〉 = 4π d

3

√
NR

d− 1
. (73)

6 One-loop corrections

6.1 States with no charge

The counting of states at a given mass level is affected by the self-interaction
of the string, unless we are considering supersymmetric configurations, which
enjoy a protection mechanism for the mass. We are interested in counting at
fixed mass and size, and therefore also the supersymmetric case will receive
corrections.

Studying the mass-shift of fundamental closed strings means to compute
one-loop amplitudes with the insertions of two vertex operators representing
the string state. Such calculations are difficult to be performed and even
defined in string theory for a series of reasons:

• the form of vertex operators for massive states is complicated
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• looking for statistical properties means in principle to be able to com-
pute one-loop two-points amplitudes for all possible string states in an
ensemble, but only a few vertex operators are explicitly known

• one-loop two-points amplitudes are divergent (due to the presence of
an imaginary part); they need analytic continuation, but String Theory
is defined only on-shell.

An optimal method for solving these problems and computing would be
factorization ([14]): starting from a known four-point amplitude, we can
factorize the external legs pairwise and obtain the mass-shifts for the in-
termediate states as the residue of the double pole for the center of mass
energy. In that case we do not need the detailed knowledge of the form of
vertex operators and, as we said above, the momentum square flowing in
the loop is now a variable, allowing analytical continuation. Unfortunately
this approach has a residual problem: in order to identify mass-shifts for the
various states we need to know the form of all their couplings with the exter-
nal legs of the amplitude (for particular states, namely those on the Regge
trajectory, which are non-degenerate, the method works, see [14]).

We are interested in the mass renormalization for states with both mass
and size fixed. The idea is that the formulas for the entropy obtained in
sections 4 and 5 will receive corrections, such that string states would have
a typical size18 matching the radius of the correspondent black hole at the
transition point.

The average mass-shift for states constrained in both mass and (average
squared) size can be written as:

∆MN,R =
M−1

Gc(N,R)
tr[∆̂M

2
δ(N − N̂)δ(R2 − R̂2)] (75)

where ∆̂M
2
is an operator yielding the squared mass shift once applied to a

set of states19.
Once again there is an issue in defining an operator for the observable

“size”; we try to cope with this by relying on our factorization procedure,
as in sections 4, 5. We consider therefore the one-loop amplitude for two

18Given by the saddle points of the integral

Gc(M) =

∫
dReS(M,R), (74)

where Gc(M) is the total number of states at fixed squared mass M2.
19It can be obtained opportunely normalizing the real part of the one-loop S-matrix

operator.
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states represented by vertex operators Vφ, in the appropriate pictures for the
superstring case, and two probes with vertex operator V given in (18) or the
analog for the bosonic string case. Our goal is to factorize the full amplitude
so that it can account for a mass-shift amplitude with the insertion of a delta

function constraining the operator ~̂XO
closed as in (51). We argue that, for the

same reasons explained in section 4.3, this will be the most efficient way to
constrain the size of the ensemble states. The relevant result, in the limit of
low momentum transfer q ≡ k + k′ and elastic scattering, can be obtained
from the OPE and integration over ξ, ξ̄, as follows20:

〈Vφ′(p′, 0)V (k′, z)V (k, ξ)Vφ(p, ν)〉T 2 ∼
q2→0
ξ∼z

1

~q 2
〈Vφ′(p′, 0) ei~q·

~̂XO
closed(z)|z|4k′·p̂Vφ(p, ν)〉T 2

(76)
We want to discuss mass renormalization, but the amplitude involving

(76) corresponds to various field theory diagrams, accounting also for vertex
corrections. To obtain the one relevant for the mass-shift, we propose to con-
sider the limit z → ν, in order to single out the string amplitude represented
in figure 2. We must be careful to take a limit where the vertex operators
Vφ(1), V (z), V (ξ) approach. Indeed when they do it altogether at the same
rate, we are in a situation that leads to a dangerous infrared divergence (see
[19, 20, 21]). Instead, we look for a limit where two of them (V (z), V (ξ))
first approach each other, and then, at a slower rate, Vφ(ν).

It is not necessary for our purposes, but it simplifies the formulas, if we
work in a time gauge ([15, 16, 17, 18]), such that:

Vφ = e−ip0X0+i~p· ~XV (X i) for the bosonic string, (77)

Vφ = e−ip0X0+i~p· ~XV (X i, ψi, Sα) for the fermionic string. (78)

Here the Sα are spin-fields, i runs over the spatial dimensions and −p2 = N .
Then:

AR
T 2 = g4c

∫∫∫
〈Vφ′(0)ei~q·

~̂XO
closed(z)Vφ(ν)〉T 2 (79)

∼
z=ν−ǫ
ǫ→0

ig4s

∫
d2τ d2ǫ d2ν

e−4πN
Im(ν)2

Im(τ)

(Im(τ))
d+1
2

T (dc, d, τ, τ̄)

|η(τ)|2(D−2)

∣∣∣∣
θ1(ν, τ)

θ′1(0, τ)

∣∣∣∣
4N

|ǫ|−4q2

× PX
φ (W,Ω, ∂νΩ, .., Ω̃, ∂ν̄Ω̃, .., ~qB, ~q

2∂ǫB, ...~qB̃, ~q
2∂ǭB̃, ..)

× χ(ν, ν̄, τ, τ̄)

20To avoid cluttering formulas we will write Vη(v) instead than Vη(v, v̄) = Vη(v)Vη(v̄)
for the vertex operator corresposnding to a state |η〉. Furthermore, we have avoided, in
formula (76) to write the sign of integration over ξ, ξ̄ on the left hand side.
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Figure 2: The diagram for the string amplitude for the one-loop mass renormal-

ization at fixed ~̂XO
closed

(1).

where

Ω = ∂2ν ln(e
−πIm(ν)2

Im(τ) θ1(ν, τ)) (80)

W =
2π

Im(τ)
(81)

B =
ǫ→0

∂ǫ ln

(
e−

πIm(ǫ)2

Im(τ) θ1(ǫ, τ)

)
. (82)

Pφ is a polynomial in W Ω, ∂νΩ, higher derivatives of Ω, the anti-holomorfic
Ω̃ and its derivatives, B, B̃ and their higher derivatives, such that:

PX
φ (W,Ω, . . . , Ω̃, . . . , ~qB, ~qB̃, . . .) = Pφ(W,Ω, . . . , Ω̃, . . .) + P ′

φ(~qB, ~qB̃, . . .)
(83)

and χ(ν, ν̄, τ, τ̄) is the fermionic part of the amplitude; the bosonic string
case is recovered by substituting 1 to it. The contribution from the com-
pactified dimensions is given by T (dc, d, τ, τ̄), which, assuming for simplicity
compactification on a torus, reads:

T (dc, d, τ, τ̄) =
dc−d∏

i=1

1

Ri

e
P

ni,wi
iτ

“

ni

Ri +
wiRi

4

”2
−iτ̄

“

ni

Ri−wiRi

4

”2

, (84)

where dc is the critical (spatial) dimension, that is 25 for the bosonic theory
and 9 for the superstring.
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Considering the form of formula (76), together with the diagrammatic
representation in figure 2, we propose to identify the amplitude (79), in the
limit z → ν, with:

AR
T 2 = 〈φ|∆̂M 2

δ(R2 − R̂2)|φ〉 (85)

and from this, by tracing over states at fixed squared mass and appropriately
normalizing, to arrive at (75).

The form of P ′
φ depends on the various vertex operator Vφ and it is very

hard to say something in quantitative details about it. We content ourselves
to stress the presence of the term |ǫ|−4~q 2

in the amplitude integrand. Indeed,
let us for a moment neglect P ′

φ, we find:

AR
T 2 ∼ AT 2

∫

|ǫ|<1

d2ǫ |ǫ|−~q 2

∼ −AT 2

2

1

~q 2 − 1
(86)

where AT 2 is the one-loop amplitude with two insertions of the vertex oper-
ator Vφ (giving the mass-renormalization for the state |φ〉):

AT 2 = g4c

∫∫
〈Vφ(0)Vφ(ν)〉T 2 . (87)

If we Fourier transform the last factor and take the real part (we are
interested in the mass-shift, not in the decay), we find something of the form
(Jn, Yn are Bessel functions, a, b real functions of N):

−AT 2

∫
d~q ei~q·~x

1

~q 2 − 1
∼ −

aJ d−2
2
(|x|) + bY d−2

2
(|x|)

|x| d−2
2

(88)

As a mass correction in the formulas for the entropy, this term would favour
small |x| (or penalize it, depending on the signs of a and b). Note also that,
while the rest of the dependence on q in (79), coming from P ′

φ, depends
strongly on the specific state |φ〉 considered, this contribution will be always
present, and therefore also recovered in the averaging over the states of an
ensemble.

Our result is clearly incomplete, since we have neglected contributions
that are not necessarily negligible in the limit z → ν. In any case it shows how
terms that favour states with small average size R = |x| can possibly arise.
The important ingredient is the extra modulus z for the torus with punctures
that we need to integrate over: this leads to the terms we are interested in. Of
course, the overall sign of the amplitude is extremely important for favouring
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or penalizing more compact string states. Unfortunately, due to the lack of
knowledge about vertex operators for heavy massive perturbative strings, it
has been impossible to estimate the full result and we leave it for future
research.

6.2 Loop corrections for BPS states

For non-BPS states carrying Neveu-Schwarz charges, the consideration of the
previous sections apply, once taken account of the fact that the holomorfic
and the anti-holomorfic exponential part of their vertex operators are now
different21.

The question of corrections for the BPS states is particularly subtle. We
know that the counting of these states, and therefore their entropy, for fixed
mass and charge do not receive corrections due to the vanishing of their
two-points torus amplitude. Nevertheless, we have shown in (73) that their
average size at zero coupling is larger than the string scale, and therefore
of the Schwarschild radius of the correspondent black hole at the transition
point.

Which is, then, the nature of the corrections that would favour more
compact states? The procedure described above fails for BPS states, because
of the vanishing of the torus two-point function AT 2 in (86). In particular,
for the states described in section 5.1, the vanishing of AT 2 is due to the sum
over spin structure with spin-statistic signs for the holomorfic factor of the
fermionic contribution. This implies that we cannot naively take the OPE as
in (76), but we must first sum over the spin structure. With the insertion of
two vertex operators of the kind given in (18), the amplitude indeed does not
vanish. On the other side, we cannot propose any more what we get as a self-
energy diagram with the insertion of a delta function, not even considering
certain limits, as done in the previous section.

Let us see why this is the case, trying to get as close as possible to (76).
The BPS states in section 5.1 are represented by the vertex operators:

Vφ(z, z̄) = ζ · ψeipL·XLe−iϕṼφ(z̄) in the Neveu-Schwarz sector (89)

Vφ(z, z̄) = uαS
αeipL·XLe−

i
2
ϕṼφ(z̄) in the Ramond sector (90)

21Remember that our closed string states are extended only in the uncompactified di-
mensions, that is all their dependence on the compactified ones is in the exponential part
of their vertex operator.
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where:

Ṽφ(z̄) is the anti-holomorphic part of the vertex operator

pL ≡ (p, ~QL) p is the momentum in the d+ 1 extended dimensions

Sα is the ground state spin field

e−iϕ, e−
i
2
ϕ are the bosonized ground state operators for the superghost22

Summing over the spin structures and then trying to take a limit in order
to reproduce at best (76), we obtain23:

〈Vφ′(p′, 0)V (k′, z)V (k, ξ)Vφ(p, ν)〉T 2 ∼
q2→0

ξ=z+|η|
|η|→0

1

~q 2
〈eipL·XL(0)Ṽφ′(p′, 0) ei~q·

~̂XO
L,closed(z,z̄) |z|4k′·p̂ eipL·XL(ν)Ṽφ(p, ν̄)〉T 2.

(91)

Looking at (91) we see that in any case we do not find a correlator such as
(76), but instead, in the holomorphic factor, we do not have any more the
(holomorphic part of the) vertex operator for the BPS state. As we said, it
is therefore not possible to identify the amplitude AR

T 2 , obtained integrating
over the correlator (91), with the formula

AR
T 2 = 〈φ|∆̂M 2

δ(R2 − R̂2)|φ〉 (92)

In any case, we can try to study this amplitude as a correction to the
form factor, and so we find a term, by letting z = ν − ǫ, ǫ→ 0:

AR
T ∼

z=ν−ǫ
ǫ→0

ig4c

∫
d2τ d2ǫ d2ν

e−4πN
Im(ν)2

Im(τ)

(Im(τ))
d+1
2

T (dc, d, τ, τ̄)

|η(τ)|2(D−2)

∣∣∣∣
θ1(ν, τ)

θ′1(0, τ)

∣∣∣∣
4N

|ǫ|−4q2

× PX
φ (Ω̃, ∂ν̄Ω̃, .., ~qB̃, ~q

2∂ǫB̃, ..)

× χ(ν̄, τ̄) (93)

which again favours compact sizes for the string, as we argued in the previous
section.

22In order to cancel the superghost charge anomaly, the vertex operator for the second
insertion in the two-point function will have holomorphic part in the (-1) and (− 3

2 ) picture,
respectively for the Neveu-Schwarz and Ramond sector.

23Formula (91) has been obtained for the case with vertex operator (89).
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7 Conclusions

This work has dealt with two principal topics: the degeneracy of perturbative
closed superstring states depending on their mass, charges and average size
and the dynamics of such states under self-interactions.

Our principal result is the formula for the entropy of string states at
fixed mass, charge and size for the free string case (gc = 0). Its derivation
has required the proper definitions of suitable operators and density matri-
ces for the ensemble under investigation. The computations are well-defined
within Superstring Theory, since we have obtained our results starting from
well-defined string amplitudes. The key-point has been the property of fac-
torization of the amplitudes. Indeed, string theory is defined only when the
external legs of an amplitude are on-shell; however using factorization, we can
operate on the momenta flowing in the internal lines, which allows analytical
continuation.

The entropy formula for free string states generically suffers from correc-
tions, due to the self-interaction of the string at non-zero coupling. We have
investigated the one-loop corrections for states constrained in size as well as
in mass. Unfortunately the complexity of the computation has hindered to
obtain a full result, but we have shown how states with compact size can be
possibly favoured by the self-interaction of the string. Our analysis has again
relied on the factorization properties of well-defined string amplitudes.
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