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Super-horizon fluctuations and acoustic oscillations in relativistic heavy-ion collisions
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We focus on the initial state spatial anisotropies, originating at the thermalization stage, for
central collisions in relativistic heavy-ion collisions. We propose that a plot of the root mean square

values of the flow coefficients
p

v2n ≡ vrms
n , calculated in a laboratory fixed coordinate system,

for a large range of n from 1 to about 30, can give non-trivial information about the initial stages
of the system and its evolution. We also argue that for all wavelengths λ of the anisotropy (at the
surface of the plasma region) much larger than the acoustic horizon size Hfr

s at the freezeout stage,
the resulting values of vrms

n should be suppressed by a factor of order 2Hfr
s /λ. For non-central

collisions, these arguments naturally imply a certain amount of suppression of the elliptic flow.
Further, by assuming that initial flow velocities are negligible at thermalization stage, we discuss
the possibility that the resulting flow could show imprints of coherent oscillations in the plot of vrms

n

for sub-horizon modes. For gold-gold collision at 200 GeV/A center of mass energy, these features
are expected to occur for n ≥ 5, with n < 4 modes showing suppression due to being superhorizon.
This has strong similarities with the physics of the anisotropies of the cosmic microwave background
radiation (CMBR) resulting from inflationary density fluctuations in the universe (despite important
differences such as the absence of gravity effects for the heavy-ion case). It seems possible that the
statistical fluctuations due to finite multiplicity may not be able to mask such features in the flow
data, or, at least a non-trivial overall shape of the plot of vrms

n may be inferred. In that case, the
successes of analysis of CMBR anisotropy power spectrum to get cosmological parameters can be
applied for relativistic heavy-ion collisions to learn about various relevant parameters at the early
stages of the evolving system.

I. INTRODUCTION

In the experimental search of the deconfined phase of QCD, namely the quark-gluon plasma (QGP), one of the
most important results has been the observation of the elliptic flow [1, 2]. This has given strong evidence of very
early thermalization and of the collective behavior of the partonic matter produced in RHICE [3]. (We use RHICE
to denote general class of relativistic heavy-ion collision experiments, to distinguish from the Relativistic Heavy-Ion
Collider, RHIC, at Brookhaven). Much work has been done to extract physical information about the system from
the behavior of the elliptic flow, e.g., equation of state, thermalization time, freezeout time etc.
Elliptic flow results from the spatial anisotropy of the thermalized region at the initial stage in a given event with

nonzero impact parameter. Anisotropic pressure gradients then lead to anisotropic fluid velocity which results in
anisotropic momentum distribution of particle momenta. Elliptic flow measures the second Fourier coefficient of the
angular distribution of the particle momenta in the transverse plane. It has also been noticed [4, 5, 6] that even in
central collisions, due to initial state fluctuations, one can get non-zero anisotropies in particle distribution (and hence
in final particle momenta) in a given event, though these will be typically much smaller in comparison to the non-
central collisions. These will average out to zero when large number of central events are considered. Fluctuations in
the elliptic flow resulting from these initial state fluctuations, as well as the resulting modifications in the eccentricity
of the initial region have been investigated in the literature [7, 8]. In this paper, we present a different approach to
analyze the flow anisotropies for central events, resulting from these initial state fluctuations.
It is sometimes mentioned in popular terms that attempts to learn about early stages of phases of matter in RHICE

from the observations of hadrons is in some sense similar to the attempts to understand the early stages of the
universe from the observations of the cosmic microwave background radiation (CMBR). The surface of last scattering
for CMBR is then similar to the freezeout surface in RHICE. We will argue below that this correspondence is in fact
much deeper. There are strong similarities in the nature of density fluctuations in the two cases (with the obvious
difference of the absence of gravity effects for RHICE). Following the successes of the analysis of the CMBR anisotropy
power spectrum, we argue below that, for central events in RHICE, a plot of the root mean square values of the flow
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coefficients
√

v2n ≡ vrms
n , calculated in a laboratory fixed coordinate system, for a large range of n from 1 to about

30, can give non-trivial information about the initial stages of the system and its evolution. In addition, we recall that
one of the most important aspects of the density fluctuations in the universe is the coherence effect which eventually
results in the remarkable acoustic peaks in the power spectrum of CMBR anisotropies. The source of this lies in the
inflationary origin of the density fluctuations leading to production of super-horizon density fluctuations. Some of
these eventually re-enter the horizon around the decoupling stage and leave these imprints on CMBR anisotropies
[9]. We will argue below that quite similarly, super-horizon fluctuations are present in RHICE as well. However,
here they will result in non-zero flow coefficients as spatial anisotropies lead to anisotropic pressure gradients. The
anisotropies in the momentum distributions of the particles, especially at large orders of the Fourier coefficients, will
capture information about the nature of initial spatial anisotropies, their evolution, and freezeout.
The paper is organized as follows. In section II we discuss the nature of the anisotropies present initially at the

stage of equilibration. Section III discusses the basic physics of our model exploring the correspondence with CMBR
physics. Section IV incorporates the presence of a finite acoustic horizon in RHICE and discusses the expected
suppression of the values of vrms

n . Section V discusses expected features in the plot of vrms
n based on the physics of

our model. Section VI presents numerical results and conclusions are given in section VII.

II. INITIAL FLUCTUATIONS IN CENTRAL COLLISIONS

As mentioned in the Introduction, main focus of our analysis is on central events, the considerations can be trivially
extended to the non-central case. Just as for the elliptic flow, here also we only consider transverse fluctuations by
assuming Bjorken scaling for the longitudinal expansion. This is a reasonable approximation if the freezeout, when
momentum anisotropies of the particles are frozen out, does not happen too late. For a given central event, azimuthal
distribution of particles and energy density are in general anisotropic due to fluctuations of nucleon coordinates as
well as due to localized nature of parton production during initial nucleon collisions. As an example, for Au-Au
collision at 200 GeV/A center of mass energy, we show the contour plot of initial transverse energy density in Fig.1.
This is obtained using HIJING [10]. For parton positions we use random locations inside the volume of the parent
nucleon. For partons which are produced by the string systems we position them randomly along the line joining the
two nucleons corresponding to the relevant string. The transverse energy density at a given transverse position ~x, at
proper time τ = τeq , is taken as [4],

ǫtr(~x, τeq) =
1

∆A

∑

i

Ei
tr F (τeq , ptr) δ

2(~x− ~xi
0
− ~viτeq) ∆(yi) (1)

where ~xi
0
denotes the initial transverse coordinates of the ith parton (determined using the coordinates of the

parent nucleon in HIJING as discussed above), Ei
tr is its transverse energy, ptr the transverse momentum, and ~vi is

its transverse velocity. For the rapidity window we take ∆(yi) = 1 centered at y = 0, [4]. The sum over i includes all
partons in a small transverse area element ∆A(≃ 0.5 fm2) at position ~x. Following ref.[4, 11] we have included a factor
F (τeq , ptr) ≡ 1/(1+1/(ptrτeq)

2) to account for the probability of formation of partons with zero rapidity. Fig.1 shows
the contour plot of the energy density at τeq = 1 fm. We assume that by this time the produced partons thermalize and
hydrodynamic description becomes applicable for subsequent times, (with the energy density decreasing, for τ > τeq,
due to longitudinal as well as transverse hydrodynamical expansions). We will present results with the transverse
energy given as above in Eq.(1). We have also checked the effects of the presence of a smooth background, such as the
one representing soft beam-jet component in ref.[4]. As in ref.[4], we model it as ǫsoft ∼ ρc(1 − (rtr/R)2)1/2, where
rtr is the transverse radial coordinate, and R is taken as the nucleus size. The central density for this soft component,
ρc, at τeq, is varied from 0 up to about 3 GeV/fm2 [4]. As expected, the presence of this soft component reduces
the overall magnitude of the fluctuations, and hence the initial anisotropies. However, the qualitative nature of our
results do not change with this, as we will discuss later in Sect.IV.
Azimuthal anisotropy of produced partons is manifest in Fig.1. It is thus reasonable to expect that the equilibrated

matter resulting from this parton distribution will also have azimuthal anisotropies (as well as radial fluctuations) of
similar level. The process of equilibration will lead to some level of smoothening. However, flow measurements have
given very interesting result that thermalization is expected to happen quickly, within proper time τeq ≤ 1 fm for
RHIC energies. Hence, no homogenization can be expected to occur beyond length scales larger than this, leading to
presence of non-uniformities at the initial stage.
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FIG. 1: Contour plot of the initial transverse energy density distribution from HIJING for a given Au− Au collision central
event at 200 GeV/A center of mass energy

III. BASIC PHYSICS OF THE MODEL

From the discussion in the last section we conclude that inhomogeneities, especially anisotropies with wavelengths
larger than the thermalization scale should be necessarily present at the thermalization stage when the hydrodynamic
description is expected to become applicable. This brings us to the most important correspondence between the
universe and the RHICE. It is the presence of fluctuations with superhorizon wavelengths. In the universe, density
fluctuations with wavelengths of superhorizon scale have their origin in the inflationary period. Quantum fluctuations
of sub-horizon scale are stretched out to superhorizon scales during the inflationary period. During subsequent
evolution, after the end of the inflation, fluctuations of sequentially increasing wavelengths keep entering the horizon.
The largest ones to enter the horizon, and grow, at the stage of decoupling of matter and radiation lead to the first
peak in CMBR anisotropy power spectrum.
Fig.1 shows that superhorizon fluctuations should be present in RHICE at the initial equilibration stage itself. The

reason these are superhorizon is that the causal horizon is given by cτ . More appropriately, one should be using
the sound horizon, Hs ∼ csτ where cs is the sound speed, as we are interested in the flow arising from pressure
gradients. At the stage of equilibration, cτeq is at most 1 fm, with corresponding acoustic horizon Heq

s being even
smaller. Thus every fluctuation of wavelength larger than Heq

s is superhorizon. With the nucleon size being about
1.6 fm, the equilibrated matter will necessarily have density inhomogeneities with superhorizon wavelengths. As the
system evolves beyond τeq , fluctuations of larger wavelengths enter the horizon. We will argue in section IV that the
(r.m.s. values of) the flow coefficients corresponding to fluctuations which remain superhorizon at the freezeout stage
will be suppressed.
It is important to note that density fluctuations will also be present in the longitudinal direction. However, partons

being created near z = 0 (z being the longitudinal coordinate), and subsequently expanding out, one cannot argue
that these longitudinal fluctuations are out of causal contact (except possibly, in the color glass condensate models
[12], as we discuss later). In contrast, the transverse fluctuations are superhorizon because of simultaneous collisions
of different (transverse) parts of a system with large transverse dimensions compared to the causal horizon at the
thermalization stage (the system being longitudinally Lorentz contracted nuclei, or at the smallest level, colliding
nucleons or clusters of nucleons). In this way, the fluctuations leading to the elliptic flow are necessarily superhorizon.
As we will see later, they remain superhorizon even at the freezeout stage, and hence the resulting elliptic flow is
necessarily suppressed compared to maximum possible value. This difference between the longitudinal and transverse
fluctuations may be important in the context of our model (apart from other differences due to different expansion
dynamics in the two directions), as we will discuss later.
To estimate spatial anisotropies for the system as in Fig.1 we will use the following procedure. As mentioned, we
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assume that the hydrodynamic description becomes applicable by τ = τeq, which we take to be 1 fm. We calculate
the anisotropies in the fluctuations in the spatial extent R(φ) at this stage, where R(φ) represents the energy density
weighted average of the transverse radial coordinate in the angular bin at azimuthal coordinate φ. We divide the region
in 50 - 100 bins of azimuthal angle φ, and calculate the Fourier coefficients of the anisotropies in δR/R ≡ (R(φ)−R̄)/R̄
where R̄ is the angular average of R(φ). Note that in this way we are representing all fluctuations essentially in terms
of fluctuations in the boundary of the initial region. Clearly there are density fluctuations in the interior region as
well. However, in view of thermalization processes operative within the plasma region, as far as the development
of flow anisotropies is concerned, presumably the representation by fluctuating boundary will capture the essential
physics. A more careful analysis should include the details of fluctuations in the interior regions and their effects on
the evolution of the flow. We will use Fn to denote Fourier coefficients for these spatial anisotropies, and use the
conventional notation vn to denote nth Fourier coefficient of the resulting momentum anisotropy in δp/p. Here δp
represents fluctuation in the momentum p of the final particles from the average momentum, in a given azimuthal
angle bin.
An important difference between the conventional discussions of the elliptic flow and our analysis is that, here one

does not try to determine any special reaction plane on event-by-event basis. A fixed coordinate system is used for
calculating azimuthal anisotropies. This is why, as we will see later, averages of Fns (and hence of vns) will vanish
when large number of events are included in the analysis. However, the root mean square values of Fns, and hence
of vns, will be non-zero in general and will contain non-trivial information. In fact, it is the same as the standard
deviation for the distribution of Fns since the average value of Fns is zero. This is what is exactly done for the CMBR
case also [9]. This is why even when temperature fluctuations are very tiny for CMBR (1 part in 105), one is still able
to resolve the acoustic peaks. Note, we use v2 with the present definitions to denote the elliptic flow even though we
do not adopt the conventional usage of the eccentricity for defining the corresponding spatial anisotropy. Clearly the
procedure described above gives a crude estimate of the spatial anisotropy of the initial plasma region. We have taken
other different measures of the spatial anisotropy and, as we will discuss later, it does not affect our results much.

A. Correspondence with CMBR physics: Coherence of fluctuations

Before we proceed any further in analyzing the nature of density fluctuations in RHICE and its similarities with
CMBR anisotropies, let us be clear about the relevant experimentally measurable quantities. For the case of the
universe, density fluctuations at the surface of last scattering are accessible through their imprints on the CMBR.
Thus only for the fluctuations present at the decoupling stage, starting from the short wavelength fluctuations which
would have undergone several oscillations until decoupling, including the large wavelength fluctuations which just enter
the horizon at decoupling and start growing due to gravity, upto the superhorizon fluctuations, CMBR anisotropies
capture imprints of all of them, and are observed today [9]. For the RHICE case, the experimentally accessible data
is particle momenta which are finally detected. Initial stage spatial anisotropies are accessible only as long as they
leave any imprints on the momentum distributions (as for the elliptic flow) which survives until the freezeout stage.
What one is looking for, therefore, is the evolution of spatial anisotropies of different wavelengths, and corresponding
buildup of momentum anisotropies (i.e. essentially different flow coefficients), existing at the freezeout stage.
The two most crucial aspects of the inflationary density fluctuations leading to the remarkable signatures of acoustic

peaks in CMBR are coherence and acoustic oscillations. Let us consider them in turn to see if any such features are
expected for RHICE. Let us recall that coherence of inflationary density fluctuations essentially results from the fact
that the fluctuations initially are stretched to superhorizon sizes and are subsequently frozen out dynamically. Thus,
at the stage of re-entering the horizon, when these fluctuations start growing due to gravity, and subsequently start
oscillating due to radiation pressure, the fluctuations start with zero velocity. For an oscillating fluctuation, this
will mean that only cosωt term survives. As all the fluctuations, entering the horizon at a given stage, have same
wavelength (by definition) they all are phase locked, coming to zero amplitude simultaneously. In summary, the
crucial requirement for coherence of fluctuations is that they are essentially frozen out until they re-enter the horizon
[9].
This should be reasonably true for RHICE, especially as we are considering transverse fluctuations. Transverse

velocity to begin with is expected to be zero. Though, note that with initial state fluctuations due to fluctuations in
nucleon (hence partons) positions and momenta, there may be some residual transverse velocities even at the earliest
stages [4]. However, due to averaging, for wavelengths significantly larger than the nucleon size, it is unlikely that
the fluid will develop any significant velocity at the thermalization stage. For much larger wavelengths, those which
enter (sound) horizon at proper times much larger than τeq , build up of the radial expansion will not be negligible.
However, our interest is in the presence of any oscillatory modes. For such oscillatory time dependence even for such
large wavelength modes, there is no reason to expect the presence of sinωt term at the stage when the fluctuation is
just entering the sound horizon.
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B. Acoustic oscillations

Let us now address the possibility of the oscillatory behavior for the fluctuations. In the universe, attractive
forces of gravity and counter balancing forces from radiation pressure (with the coupling of baryons to the radiation)
lead to acoustic oscillations [9]. For RHICE, there is no gravity, but there is a non-zero pressure present in the
system. First let us just follow the conventional analysis as in the case of elliptic flow. We know that, as the spatial
anisotropy decreases in time by the buildup of momentum anisotropy (starting from isotropic momentum distribution),
it eventually crosses zero and becomes negative. This forces momentum anisotropy to saturate first (when spatial
anisotropy becomes zero), and then start decreasing. In principle, one could imagine momentum anisotropy to decrease
to zero, becoming negative eventually. The whole cycle could then be repeated, resulting in an oscillatory behavior
for the spatial anisotropy as well as for the momentum anisotropy, possibly with decreasing amplitude.
Unfortunately, the situation is not that favorable. For the elliptic flow, in hydrodynamic simulations one does see

saturation of the flow, and possibly turn over part [13], but the momentum anisotropy does not become zero, and
there is never any indication of an oscillatory behavior. Important thing to note here is that this primarily happens
because of the build up of the strong radial flow by the time elliptic flow saturates, and subsequently freezes out.
This can be seen from the evolution of transverse velocity in hydrodynamics simulations [13]. One then would like to
know whether the same fate is necessarily true for fluctuations of much smaller wavelength as well. At this stage it
is important to be clear about the relevant freezeout time τfr for the flow. If radial expansion becomes very strong
then pressure gradients, or any interface tension effects (as we will discuss below) may not be able to significantly
affect fluid flow anisotropies. Flow anisotropy would then essentially freezeout even if chemical or thermal freezeout
may not have occurred yet. For elliptic flow this is usually accounted for by referring to the flow build up time scale
of order R/cs where R represents the initial average transverse extent of the region [1]. This is the time scale when
transverse expansion is expected to become strong. For central collisions, we will take R = R̄(τeq) ≡ R̄ which was
earlier defined as the energy density weighted average of the transverse radial coordinate at τ = τeq . For Au − Au
collision at 200 GeV, the value of R̄ is obtained to be about 3 fm from HIJING. This gives us τfr = R̄/cs + τeq ≃ 6

fm. (We use velocity of sound cs = 1/
√
3. Later we will discuss the effects of changing the value of cs.) Note that

this value of τfr is much smaller than the value of the thermal freezeout time at these energies which is expected to
be of order 12 fm. Certainly flow anisotropies have to freeze by the stage of thermal freezeout. We have also used the
value of τfr to be 12 fm and it does not change our results, as we will discuss later. We will use the freezeout stage
as given by τfr − τeq = R̄/cs. The size of the acoustic horizon at τ = τfr is then simply Hfr

s = cs(τfr − τeq) = R̄ ≃ 3
fm for Au−Au collision at 200 GeV. We take the sound horizon to be proportional to the proper time elapsed since
the stage of equilibration given by τeq, because this is the stage when hydrodynamics becomes applicable. Before
τeq, individual particles can interact with each other, so in principle one could define a non-zero causal horizon size
for individual particles. However, there is no sense in which one can talk about the interaction of different collective
modes before τeq. Hence it seems reasonable that the acoustic horizon, as appropriate for these collective modes, is
defined in terms of time elapsed from τeq . In the present case with τeq being very small, of order 1 fm, our results
remain almost unchanged even if we take Hfr

s = csτfr. Important point to note is that this time τfr remains fixed
for a given collision, irrespective of the wavelength λ of the fluctuation considered. For small wavelengths, if the time
scale for the build up of momentum anisotropy is much smaller than τfr, then oscillations may be possible before
the flow freezes out at τfr. Consider spatial anisotropy with a wavelength which is much shorter than Hfr

s at the
freezeout stage, say λ being of order 2 fm, see Fig.2. One will expect that due to unequal initial pressure gradients in
the two directions φ1 and φ2, momentum anisotropy would have built up in these two directions in relatively short
time. Most importantly, we expect that spatial anisotropy should reverse sign in time of order τflip ≃ λ/(2cs) ≃ 2
fm. The momentum anisotropy should then reach saturation before this time, and start decreasing by τ ≃ τflip. Due
to short time scale of evolution here, radial expansion may still not be most dominant and there may be possibility
of momentum anisotropy changing sign, leading to some sort of oscillatory behavior.
The arguments presented above are very qualitative, but they allow a possibility of oscillatory behavior for the

spatial anisotropy (i.e. fluctuations) of short wavelengths, and hence possibly for the flow anisotropy. An entirely
different line of argument supporting oscillatory behavior can be given as follows. As the QGP region is surrounded by
the confining vacuum (or the hadronic phase), one may expect some sort of interface, with non-zero surface tension, to
be present at the boundary of the QGP region [14]. This is necessarily true if the confinement-deconfinement transition
is of first order. Once we assume an interface present at the boundary of the QGP region, its surface tension will
induce oscillatory evolution given initial fluctuations present (as shown in Figs.1,2). For a relativistic domain wall
such fluctuations propagate with speed of light. However, here one will be dealing with an interface bounding a dense
plasma of quarks and gluons. In such a case it will be reasonable to expect that tiny perturbations on the interface
will evolve with speed of sound (appropriate for the QGP region enclosed). The interface will eventually disappear
after the quark-hadron phase transition stage. We mention here that the contributions of any such interface could
also be present (though, possibly small, relatively) for the conventional calculations of the elliptic flow for non-central
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FIG. 2: Schematic diagram of a part of the region showing spatial anisotropies of small wavelength

collisions. Also, effects of surface tension will be more prominent for lower energy collisions, and the considerations
of our model can be applied for such low energy heavy-ion collision experiments.

IV. ACOUSTIC HORIZON AND DEVELOPMENT OF FLOW

One important aspect of these fluctuations is that of horizon entering. In the case of the universe every fluctuation
leads to CMBR anisotropies even when it is superhorizon. This is because these are density fluctuations and local
thermal equilibrium directly leads to associated CMBR temperature fluctuations. The importance of horizon entering
there is for the growth of fluctuations due to gravity. This leads to increase in the amplitude of density fluctuations,
with subsequent oscillatory evolution, leaving the imprints of these important features in terms of acoustic peaks [9].
For RHICE, there is a similar (though not the same, due to absence of gravity here) importance of horizon entering.
Azimuthal spatial anisotropies are not directly detected. They are detected only when they are transferred to the
momentum anisotropies of particles. Consider first an anisotropy of wavelength λ much larger than the acoustic
horizon at freezeout Hfr

s . The evolution of fluid velocity (particle momenta) depends on pressure gradients. However,
pressure gradients at τ = τfr should only be calculated within regions of size Hfr

s as outside regions could not
have affected the region under consideration. Consider, for simplicity, fluid expanding radially with initial transverse
velocity v being zero. Then keeping only terms which are of first order in v (and neglecting ∂P/∂τ term) the Euler’s
equation gives [15],

∂v

∂τ
=

−1

(ρ+ P )

∂P

∂r
(2)

where ρ is the energy density, P is the pressure, and r is the transverse radial coordinate. This equation illustrates
the expected build up of the flow velocity being proportional to the pressure gradient. However, for a spatial anisotropy
with λ >> Hfr

s the angular variation of the pressure gradient should only be calculated using information within
a region of size Hfr

s . We will argue below that we can approximate the angular variation of the relevant pressure
gradient, operative within length scale of Hfr

s , to be a fraction of order Hfr
s /(λ/2) of its value arising from the full

magnitude of the spatial anisotropy.
Presence of such a suppression factor is most naturally seen for the case when the build up of the anisotropies in the

flow from spatial anisotropies is dominated by the surface tension of the interface bounding the QGP region. For an
anisotropy of wavelength λ, the maximum and minimum of spatial extent are separated by distance λ/2 at the surface
(see, Fig.2). After half oscillation we expect the reversal of the anisotropy, i.e. maximum will become minimum and
minimum will become maximum. However, if the acoustic horizon Hfr

s = cs(τfr − τeq) << λ/2, then this full reversal
is not possible. Starting from the position of the initial maximum amplitude, the relevant amplitude for oscillation is
only a factor of order Hs/(λ/2) of the full amplitude. Thus, we conclude that the resulting anisotropy of the flow for
this particular mode will be suppressed by a factor f of order 2Hfr

s /λ.
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Let us now consider the situation when flow anisotropies result from the pressure gradients, as in the conventional
calculations of the elliptic flow for non-central events. There, the difference in the pressure gradients in the two
directions (X and Y) arises from the difference in the values of the semi-minor axis a and semi-major axis b of the
elliptical transverse overlap region. A given central pressure Pc then gives different pressure gradients in the X and
Y directions. However, it should be obvious that for times at which the acoustic horizon is much smaller than a, or
b, the value of Pc should be irrelevant. There is no way that the surface of QGP would get any information about Pc

for Hs = csτ << a, b. Only relevant pressure gradients should be calculated using interior pressure value at distances
of order csτ starting from the surface in the X and the Y directions. For example, for our case of central events, let
us parametrize the radial profile of the pressure, along a particular direction φ, as

P (r) = Pcexp[
−r2

2σ2

φ

] (3)

with σφ varying with azimuthal angle giving the spatial anisotropy. For calculating the pressure gradient at small
time τ (measured from τeq), at r = R0 at the surface region, we can use the following estimate.

∂P

∂r
≃

P (R0 − csτ)− P (R0)

(−csτ)
≃ −Pcexp[

−R2

0

2σ2

φ

]

(

R0

σ2

φ

+
csτ

2σ2

φ

(
R2

0

σ2

φ

− 1)

)

(4)

This example shows that −∂P/∂r, at the surface for R0 > σφ, starts from a small value at τ = 0 (again τ measured
from τeq), and increases with the sound horizon as csτ . Though, the growth of velocity also requires the value of ρ+P
(whose average value also increases with τ), which in some sense provides the inertia of the fluid element. However,
we can focus on a particular fluid element near the surface and estimate its acceleration using above pressure gradient.
Thus, though we are calculating the average pressure gradient using an increasing region with τ (as csτ), we do not
consider the average velocity of this entire region. We are always focusing on the region near r ≃ R0 near the surface.
The fact that the magnitude of the average pressure gradient increases in time suggests that the pressure gradient
operative at r ≃ R0 should also increase in time. Note that Eq.(3) is only meant to give the initial profile of the
pressure and it would be incorrect to use it to calculate ∂P/∂r (say, at R0) at a later stage, by which the interior
higher pressure will be expected to affect the fluid flow at the surface. (For τ = 0, Eq.(4) gives the same result for
∂P/∂r as directly obtained from Eq.(3).) Also note that the particular dependence on τ in Eq.(4) is due to our
specific choice of pressure profile in Eq.(3). For example, a linear r dependence for the pressure in Eq.(3) would give
constant pressure gradient in time for Eq.(4) by the above estimate. However, the pressure profile of the sort in Eq.(3)
is more representative of the expected profile than a linear dependence. (Though, even here, for interior regions with
R0 < σφ, one will conclude that −∂P/∂r decreases in time.) We mention that the physical considerations discussed
above may be relevant for the early rise of the pressure gradients seen in the simulations in ref. [16].
The length scale relevant for considering the azimuthal variation of the flow is the wavelength λ of the fluctuation

under consideration. Again, for a spatial anisotropy of wavelength λ near the surface of the QGP region, we would
like to know flow buildup at two regions separated by λ/2. These two regions will have access to a common value of
central pressure after a time τcmn with τcmn − τeq ≃ λ/(2cs). This implies that as far as azimuthal anisotropy of the
pressure gradient, and the resulting flow, are concerned, there should be no suppression in the anisotropy after time
τcmn arising from the considerations of horizon entering. In some sense, this fluctuation would be said to have ”entered
the horizon” after τcmn. For τcmn = τfr this means that the largest wavelength mode which will be unsuppressed,
will have λmax ≃ 2cs(τfr − τeq).
The above discussion leads us to the conclusion that for superhorizon fluctuations (at freezeout stage), full mo-

mentum anisotropy (vn)max, as expected from hydrodynamics, will not be developed, and only a fraction f of the
maximum possible anisotropy will develop. In terms of the corresponding flow coefficients, for modes with λ/2 ≥ Hfr

s ,
we expect,

(vn)observed =
2Hfr

s

λ
(vn)max (5)

where λ ∼ 2πR̄fr/n, (n ≥ 1), is the measure of the wavelength of the anisotropy corresponding to the nth

Fourier coefficient. Here R̄fr represents the transverse radius at the stage τfr. Using the rough estimate of the rate
of change of the transverse velocity to be about 0.1 fm−1 at the early stages at these energies [13], we can estimate
R̄fr ≃ R̄ + 0.05(τfr − τeq)

2 = R̄(1 + 0.05R̄/c2s). Here R̄ ≡ R̄(τeq) = cs(τfr − τeq), as discussed above. The largest
wavelength λmax of spatial anisotropy which will have chance to develop to its maximum hydrodynamic value is,
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therefore, λmax ≃ 2Hfr
s = 2cs(τfr − τeq) = 2R̄(τeq). This gives us the corresponding minimum value nmin of n below

which flow coefficients should show suppression due to being superhorizon,

nmin = π(1 +
0.05R̄(τeq)

c2s
) (6)

V. EXPECTED FEATURES IN PLOTS OF vrms
n

First we would like to emphasize the important lessons from CMBR analysis which we are proposing to use for
RHICE. As we are considering central events, associated anisotropies will be small. Thus we will need large amount
of statistics to be able to see any non-trivial features, especially the possibility of oscillations etc. An important thing
to realize is that we cannot take averages of the Fourier coefficients, as these will simply be zero when large number
of events are included. Note that our analysis is being done in a laboratory fixed frame. For elliptic flow, one defines
an event plane and a special direction given by the impact parameter and then calculates average spatial anisotropy.
There is no such direction for a central event. The correct measure of the spatial anisotropy here is to take the root
mean square values of the Fourier coefficients taken for the whole ensemble of events. As the average value of Fns
is zero, it is the same as the standard deviation for the distribution of Fns. This is what is exactly done for the
CMBR case [9]. This is why even when temperature fluctuations are very tiny for CMBR (1 part in 105), one is still
able to resolve the acoustic peaks. One important difference which is in the favor of RHICE is the fact that for the
CMBR case, for each l mode of the spherical harmonic, there are only 2l + 1 independent measurements available,
as there is only one CMBR sky to observe. In particular for small l values this leads to the accuracy limited by
the so called cosmic variance [9]. In contrast, for RHICE, each nucleus-nucleus collision (with same parameters like
collision energy, centrality etc.) provides a new sample event (in some sense like another universe). The accuracy,
for any Fourier mode, is only limited here by the number of events one includes in the analysis. Therefore it should
be possible to resolve any signal present in these events as discussed in this paper. Note, due to the absence of any
special reflection symmetry here (which was present in the elliptic flow case) there is no reason to expect that only
even flow coefficients will be present. In our case all flow coefficients give non-zero contributions to vrms

n , and the
“sin′′ terms give same values as the “cos′′ terms. In the plots of vrms

n in the next section, we show the sum of these
two contributions, i.e. square root of the sum of the squares of the “sin” term and the “cos” term.
We have argued in the last section that for fluctuations with n < nmin (Eq.(6)) we expect suppression of values of

vrms
n . For the Au−Au collision at 200 GeV, with R̄(τeq) ≃ 3 fm, we get nmin ≃ 4.5 ≃ 5. Note in particular that this
implies that the mode with n = 2, which corresponds to the elliptic flow, will be expected to be suppressed by a factor
of order f ≃ 1/2. This suppression is roughly of same order as the suppression factor for the elliptic flow discussed in
the literature [8, 17]. Note, however, that in ref.[8, 17], the suppression of the elliptic flow is related to the non-zero
value of the Knudsen number arising from incomplete thermalization. One will then expect that the final suppression
should be a combination of both of these factors. Note, also, that if velocity of sound cs becomes smaller then, taking
flow freezeout to occur at fixed time, the acoustic horizon Hs will be smaller. Suppression factor in Eq.(5) will be
stronger then leading to a smaller flow. We can also see from Eq.(6) that decreasing cs increases nmin leading to larger
suppression for the elliptic flow (by a factor ≃ 2/nmin). This is consistent with the findings in [8]. We mention here
that the scaling of v2 with cs(t− t0) is known in literature, see ref. [8]. What we have discussed above essentially says
that similar scaling, when applied to spatial anisotropies with different wavelengths (i.e. different Fourier modes),
will lead to a multiplicative factor given by Eq.(5) for the corresponding flow anisotropies.
For all wavelengths smaller than λmax, spatial anisotropy should be able to develop into its full hydrodynamic

value (apart from the effects such as incomplete thermalization [8, 17], as mentioned above). For the case of elliptic
flow several studies have shown that for near central events, the momentum anisotropy is related to the initial spatial
anisotropy by a proportionality constant of about 0.2 [18]. The relation between the Fourier coefficients of the spatial
anisotropy and resulting momentum anisotropy in our model can only be obtained using a full hydrodynamical
simulation, with proper accounts of any surface tension, as well as factors such as horizon crossing etc. to properly
account for the physics discussed here. In the absence of such a simulation, we make a strong assumption here that
all Fourier coefficients for momentum anisotropy are related to the corresponding coefficients for spatial anisotropy by
roughly the same proportionality factor, which we take to be 0.2 for definiteness. As we will see, this choice gives us
reasonably good agreement with the results for v2 in the literature for (almost) central events. Further, for simplicity
we evaluate the Fourier coefficients for the spatial anisotropy, Fns, at the initial stage τ = τeq . In principle one can
consider relating the final flow coefficients vn (which freezeout at τ = τfr) to the Fns at later stages. For example
we could estimate Fns at τ = τfr, or more appropriately, for each mode n we could evaluate Fn at the stage of its
horizon entering (meaning the stage when the sound horizon equals λ/2 for that mode). Such estimates will require



9

 0.012

 0.016

 0.02

 0.024

 0.028

 0.032

 5  10  15  20  25  30

V
rm

s
n

n
FIG. 3: These plots represent vrms

n calculated from the Fourier coefficients Fns of the spatial anisotropy using a proportionality
factor of 0.2 as discussed in the text. Plots show smooth joining of the values of vrms

n and obtained using 10000 events from
HIJING. Solid curve is obtained using parton positions from HIJING as discussed for Eq.(1). Dotted curve is obtained with a
uniform distribution of parton positions in a nucleus size region.

suitable modeling of transverse expansion and we hope to do that in a future work. For now we wish to emphasize
that the ambiguity in relating vn to Fn does not affect the important qualitative aspects of our results, as we will
discuss later.
As the fluctuation with λ = λmax will be expected to achieve its maximum value at the freezeout, we expect

that for all wavelengths λ < λmax, if any oscillatory behavior is present, as discussed above, then it will lead to an
additional factor of cosωτ (with τ measured from τeq) in the Fourier coefficient where ω = 2πcs/λ is the frequency of
oscillation for the relevant fluctuation. This will imply that the fluctuations which will have their maximum values
at the freezeout stage will have wavelengths given by λN ∼ λmax/N where N = 1, 2, 3... is a positive integer. Note,
this assumes that oscillation time scale for these fluctuations is governed by the sound speed which will be expected
if oscillations are dominated by the interface tension at the QGP boundary. For the oscillations resulting from the
reversal of flow due to anisotropic pressure gradients (as discussed above), the oscillation time scale may be different.

VI. NUMERICAL RESULTS

We are now ready to discuss our results. We have generated events using HIJING and we present sample results
for Au-Au collision at 200 GeV/A center of mass energy. Fig.3 shows plots where averages are taken over 10000
events. The solid curve in Fig.3 shows the root mean square values vrms

n of the flow Fourier coefficients which are
obtained from spatial Fns using proportionality factor of 0.2 (as discussed above). Fns are calculated directly from
events as depicted in Fig.1 with the rapidity constraints as discussed for Eq.(1). For comparison, we show here the
plot of vrms

n obtained from Fns when partons are distributed in a nucleus size region with uniform probability (dotted
plot in Fig.3). The pT distribution of partons for this dotted plot in Fig.3 is taken to be the same as obtained from
HIJING. We see that the resulting values of vrms

n are significantly smaller than the values shown by the solid plot
in Fig.3. Also, the plot of vrms

n vs. n is flat as shown by the dotted curve in Fig.3, in contrast to the non-trivial
shape of the solid plot. We have also considered uniform energy distribution among partons, along with uniform
probability distribution for their positions. This leads to even smaller values for vrms

n compared to the dotted curve
in Fig.3 (about 15% smaller), and the plot remains flat. This suggests that statistical fluctuations in parton positions
may remain subdominant and a genuine fluctuation in parton positions (as depicted in Fig.1) may be visible by the
non-trivial shape of the solid plot in Fig.3.
We have also calculated the root mean square values of the Fourier coefficients of the momentum anisotropy directly
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FIG. 4: These plots represent the root mean square values of the Fourier coefficients of the momentum anisotropy directly
calculated using momenta of final particles from HIJING (with 15000 events). Dotted plot corresponds to particles with no
momentum cuts, while the solid plot corresponds to the case when only particles with low pT (≤ 200 MeV) are included.

using the momenta of final particles from HIJING, using same rapidity window as for plots in Fig.3. These are shown
by the plots in Fig.4. For the sake of consistency, we denote these also by vrms

n . Here averages are taken over 15000
events. The dotted plot represents contributions from all final particles. Note that this curve is not entirely flat as
should be expected from an isotropic momentum distribution with white noise. Though fractional change for low
values of n is small compared to the solid plot in Fig.3. The plot becomes almost flat when only low pT (≤ 200 MeV)
particles are included, as shown by the solid plot, suggesting that larger values of vrms

n at lower n in the dotted plot
are due to jet correlations. Overall larger values of vrms

n for the solid plot compared to the dotted plot here are due
to smaller number of particles in each event with low pT selection leading to larger fluctuations.
In Fig.5 we replot the values of vrms

n (corresponding to the solid plot in Fig.3) with the inclusion of various physical
factors such as finite acoustic horizon and coherence of fluctuations as discussed in previous sections. The solid curve
shows plot of values of vrms

n (as given by the solid curve in Fig.3) with the inclusion of suppression factor (Eq.(5))
for superhorizon fluctuations, and the dashed curve includes this suppression factor as well as the cosωτ oscillatory
factor for sub-horizon anisotropies. The dotted curve, which is close to zero, shows the plot of average values of vn
(instead of root mean square value) corresponding to the solid plot in Fig.3. Note that various plots here represent
smooth joining of the points obtained at integer n. This is why the dashed plot in Fig.5 which includes cosωτ factor
does not reach zero (which, from Eq.(6) will typically occur at fractional values of n).
The plots in Figs3-5 have several important features. First note, in Fig.3, a systematic decrease in the values of

vrms
n as n increases, starting from a significantly non-zero value. The errors in the values of vrms

n are very small (e.g.
less than about 2% for the solid plot in Fig.3). The overall shape of this plot may contain non-trivial information
about the early stages of the system and its evolution. For example, the flattening of the curve by n ≃ 10 may be
indicative of a qualitative change in the distribution of the corresponding initial anisotropies with wavelengths smaller
than about 2 fm (i.e. with wavelengths, as given after Eq.(5) with R̄fr replaced with R̄(τeq) = 3 fm as the plots in
Fig.3 are obtained from Fns at τeq). As we discussed above, the flat shape of the dotted curve in Fig.3 corresponding
to uniformly distributed partons, and relatively smaller values of vrms

n for this case, imply that statistical fluctuations
due to finite particle numbers may not dominate over the non-trivial shape of the solid plot in Fig.3. As we discussed
above, the non-trivial shape of the dotted plot in Fig.4 (for direct momentum anisotropy of the final particles from
HIJING) is due to high pT particles. This is evidenced by the flatter shape of the solid curve in Fig.4 where only low
pT particles are included. The situation for the solid plot in Fig.3 (and hence for the plots in Fig.5) is different. Here
the non-trivial shape of the plot does not change much even when pT values of initial partons is constrained to be
low (e.g. ≤ 350 MeV, lowering this value further leaves very few partons as initial partons do not have very low pT
for center of mass energies used here.). Such a non-trivial shape of the solid curve in Fig.3 should, therefore, directly
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FIG. 5: These plots are obtained from the values of vrms
n of the solid plot in Fig.3 by including various factors representing

the physics of acoustic horizon and coherence etc. as discussed in the text. Solid curve shows the plot which includes the
suppression factor given in Eq.(5), while the dashed curve includes an additional cosωτ factor. Dotted curve represents the
average values v̄n (corresponding to solid plot in Fig.3). Note that the plots in this figure only show the modeling of the type
of suppression factor and oscillations discussed in the text, which are superimposed on the solid plot in Fig.3.

relate to non-trivial nature of fluctuations present initially.
Another important aspect, which may also be reasonably robust in our model, is the first peak shown by the solid

plot in Fig.5 at n ∼ 5. As we had seen, the suppression factor in Eq.(5) becomes one for λ ≤ λmax, with λmax

corresponding to n ≃ 5 mode. Note that the exact location of this peak is determined by the value of nmin (Eq.(6)) as
well as the shape of the solid curve in Fig.3. This peak contains information about the freezeout stage, being directly
related to the sound horizon size at that stage. (In this sense, this peak is similar to the first peak observed for CMBR
anisotropies, which contains information about the stage of decoupling [9].) The dashed plot denoting oscillatory
behavior will be the thing to look for and the plot (which only models the oscillations) shows that with enough
statistics, one should be able to observe it if it is present. We emphasize again that our assumption of using the same
proportionality constant (0.2) for all vns only affects the overall shape of the solid curve in Fig.3, and consequently
the shapes of other two curves in Fig.5. It has no bearing on the existence of any of the peaks, especially the first
peak. Average values vn of vn, shown by the dotted curve in Fig.5, are close to zero as expected. This also shows
that we have enough statistics to control fluctuations due to statistical errors. We have not discussed any dissipative
effects which are known to affect the transverse expansion, hence the flow, in crucial manner [19]. For example, it is
known that viscosity reduces elliptic flow [20]. Presumably such effects could lead to decreasing amplitude of vrms

n

for these plots for large n, especially one should expect damped oscillations, hence decreasing heights for the peaks
at large n.
For near central collisions (with impact parameter b ≃ 2 fm) the elliptic flow has been estimated earlier in simulations

[6]. The standard deviation for values of v2 is found to be σ ≃ 0.013 [6]. This is consistent with the experimental
results [18]. The plots of vrms

n in Fig.5 show that the value we obtain for n = 2 is in reasonably good agreement
with these values quoted in the literature. Note that the agreement is better for curves in Fig.5 which include the
suppression factor as given in Eq.(5), as compared to the solid curve in Fig.3 which does not include this factor. Note
that we do not attempt to compare v̄2 since in ref.[6, 18] v̄2 is obtained in the usual manner by determining the event
plane for events with small, but non-zero impact parameter. In contrast, in our case the impact parameter is strictly
zero and no special directions are determined on event by event basis. Presumably the comparison of the standard
deviations is not affected much by this difference.
We have repeated these calculations by taking other measure of spatial anisotropies, for example given by a uniform

fluid density approximation and taking spatial extent in a given φ bin to be proportional to the transverse energy
in that bin. For this case, the overall numerical values increase by about 20% while the overall shapes of the curves
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remain essentially similar. Therefore, the qualitative aspects of our results seem to be reasonably independent of the
specific technique chosen to represent the spatial anisotropies. The effects of adding a smooth background for the
transverse energy density [4], as discussed in Sect.II, are as expected, it reduces fluctuations, leading to an overall
decrease in the values of vrms

n . Decrease is stronger at smaller n. However, the overall shape of the curves remains
essentially unchanged. Thus the main features of our results remain unaffected. Also, since we calculate anisotropies
in the energy density weighted average of radial coordinate, only relative fraction of this soft energy density to ǫtr
(Eq.(1)) is relevant. As the fraction of this soft background is increased, the values of vrms

n further decrease. When
the contribution of smooth background is of the same order as that given by Eq.(1) (which happens with ρc ≃ 3
GeV/fm2) then values of vrms

n are reduced by about a factor of 4 for small n and by a factor of about 3 for large n.
We have checked the effects of varying various parameters on the shape of these curves. We briefly quote some

results here, a more detailed investigation and analysis will be done in a future work. We have considered a larger
value of τfr (= 12 fm) (for a given R̄(τeq)) and our results remain almost unchanged. Much larger values of τfr (=
20 fm) shifts the first peak to larger n (with corresponding shifts in the other peaks) due to increase in the average
transverse velocity, and the peak becomes less prominent primarily due to the flattening of the overall plot of vrms

n

for large n. Interestingly, the effects of changing τeq are more prominent in our model. With τeq = 0.2 fm, we get
an increase in the values of vrms

n for small n and a decrease for large n (compared to the case with τeq = 1 fm).
An increase in vrms

n for smaller τeq is natural to expect as fluctuations in parton positions are more localized with
less free-streaming (Eq.(1)). The flattening of the overall plot (as in Fig.3) happens at a larger n for smaller τeq.
This possibly again corresponds to the changeover in the behavior of fluctuations, now happening at much shorter
wavelengths (hence large n) due to less free streaming. This may also be responsible for the smaller values of vrms

n

for large n, as for such short wavelengths, the fluctuations may be decreased due to the corresponding parton density
being larger when free-streaming is less. Increasing τeq to 2.0 fm leads to an overall decrease in the values of vrms

n

(decrease is stronger at smaller n, about 20%). Also, the flattening of the curve now happens at smaller n.
The peak position, as governed by nmin given in Eq.(6) (combined with the shape of the decreasing overall curve of

vrms
n ), is sensitive to the value of sound speed cs. Decreasing cs shifts the first peak to larger n, with corresponding
shifts in the successive peaks. Thus, the location of these peaks can give important information about the equation
of state during the early stages. Increasing rapidity window decreases the values of vrms

n for all n, presumably due to
larger number of particles leading to less fluctuations. (With ∆y = 2 in our model, values of vrms

n decrease by about
30 %). Increasing center of mass energy also leads to an overall decrease in the values of vrms

n , again possibly due to
larger number of partons and hence reduced initial anisotropies. It also leads to a slight shift of the peaks to larger n.
This happens due to larger value of R̄ as can be seen from Eq.(6). For a nucleus of smaller size, (Cu), one gets smaller
number of partons increasing the values of vrms

n . It also slightly shifts the first peak to smaller n, due to smaller value
of R̄. We should mention that these patterns are obtained with smaller statistics and hence are crude. One needs a
more careful and detailed analysis of the effects of changing various parameters. For non-central collisions the plot of
vrms
n (as given by the solid plot in Fig.3) shows a peak at n = 2 as expected. When combined with the suppression
factor of Eq.(5), it results in a double peak structure for the solid curve of Fig.5, with similar effect for the dashed
curve of Fig.5.
We emphasize here that we are proposing a simple method for the calculation of vrms

n . These are obtained by direct
calculation of variances of the distributions of vn in the laboratory fixed frame. In the context of elliptic flow, there
have been several studies on extracting elliptic flow coefficient from two-particle azimuthal correlations, and how to
separate the non-flow contributions [21]. Two particle azimuthal correlations, which are experimentally measured,
contain contributions from non-flow effects such as jets, resonance decays, HBT correlations, final state interactions
etc. Various methods have been discussed to separate out the non-flow contributions to the azimuthal correlations[21],
e.g. using cumulant expansion of multiparticle azimuthal correlations [22]. Our estimates of vrms

n , (either by direct
calculation of variance, or using two particle correlations), will contain such non-flow contributions (as, for example,
discussed above for the plots in Fig.4). Though, here as one is making a plot vrms

n for a whole range of values of
n, different non-flow contributions may affect different parts of this plot. A detailed investigation of these issues is
needed to separate out, or at least estimate the effects of these non-flow contributions. We hope to address these
issues in a future work.

VII. CONCLUSIONS

Important aspects of our model are that we argue that important information about initial anisotropies of the
system and their evolution in relativistic heavy-ion collisions can be obtained by plotting the root mean square values
of the Fourier coefficients vrms

n of the anisotropies in the fluctuations δp/p of the particle momenta, calculated in a
fixed laboratory frame, starting from n = 1 upto large values of n ≃ 30. Note that n = 30 almost corresponds to
wavelength of fluctuation λ at the surface of the region, at τfr, being of order 1 fm. (At τeq it will correspond to λ ≃
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0.7 fm). Fluctuations with wavelengths smaller than 1 fm cannot be treated within hydrodynamical framework, so
we restrict attention within this range of n. (It may be useful to plot vrms

n for a much larger range of n. One will
expect that beyond a critical value of n the nature of the curve should change in some qualitative manner indicating
breakdown of underlying hydrodynamical description for smaller modes. The wavelength corresponding to that critical
value of n will determine the smallest scale below which hydrodynamical description is not valid.) Important thing to
note is that by taking very large number of (central) events, the root mean square values of vns can show any possible
systematic variation, for example initial rapid decrease of vrms

n with n which eventually flattens out for large n. One
needs to develop a proper understanding of this behavior, (which presumably suggests a qualitative change in the
nature of the fluctuations for small wavelengths) and of various factors affecting this. Further, there is the possibility
of a peak near n ∼ 5 (for Au−Au collision at 200 GeV) and of subsequent peaks for larger n. If any of these non-trivial
features are detected in the particle momentum spectra then it can open up a new way of accessing the information
about initial stages of the matter produced. Just as for CMBR where the location of the first peak refers to the
decoupling stage, here also the location of the first peak will give information about the freezeout stage, including the
all important equation of state which could distinguish a QGP phase from a hadronic phase. For CMBR, successive
peaks yield important information about baryon content etc. which couple to the radiation and hence contribute to
the acoustic oscillations. In the same way for RHICE, if successive peaks are present, then they may give information
about the detailed properties of the matter present at that stage, and any dissipative factors etc. One important
factor which can affect the shapes of these curves, especially the peaks, is the nature and presence of the quark-hadron
transition. Clearly the duration of any mixed phase directly affects the freezeout time and hence the location of the
first peak. More importantly, any softening of the equation of state near the transition may affect locations of any
successive peaks and their relative heights. Effects of mass ordering may also be important in this respect, especially
for the behavior of these plots at large n corresponding to small λ probing very small scale fluctuations of the order
of hadronic scale.
If one does see even the first peak for RHICE then one very important issue relevant for CMBR can be studied with

controlled experiments. It is the issue of horizon entering. For example, by changing the nuclear size and/or collision
energy, one can arrange the situation when first peak occurs at different values of n. As we have emphasized above, even
the overall shape of the curve (as given by the solid plot in Fig.3) will contain valuable information about the presence
and evolution of the initial state anisotropies of the system resulting from ultra-relativistic heavy-ion collisions. It
will be interesting if one can find a way to analyze the effects of such fluctuations along the longitudinal direction, i.e.
with rapidity, by taking fixed azimuthal angle window. Due to rapid longitudinal expansion, presumably one will need
to confine to a narrow window of rapidity. As we discussed earlier, longitudinal fluctuations are not expected to be
superhorizon. Hence one may expect qualitatively different behavior in the plots of vrms

n for this case compared to the
transverse case (this is apart from the other important differences due to very different dynamics of longitudinal and
transverse expansions). However, the situation may be different in the context of color glass condensate models [12].
In such models, initially a color field is established between receding nuclei, which subsequently decays in particles.
If certain fluctuations are imprinted on such a color field in the longitudinal direction, then even if those are causal
for the color field, for the resulting parton system, they may constitute fluctuations of super-horizon wavelengths (as
the decay of the color field will involve different time scale than the time scale of establishing the initial color field).
This issue needs to be investigated in detail as it may provide a distinctive signal for color glass condensate initial
conditions. All the considerations discussed in this paper can be straightforwardly applied to non-central events, as
well as for collision of nuclei which are deformed. The only difference is that for these cases certain Fourier coefficients
(with small values of n) will be most dominant, as discussed above. As for the case of elliptic flow, here also it is
important to estimate and measure higher moments of the flow coefficients to have a detailed understanding of the
nature of the original fluctuations. Recall that these play crucial role for the CMBR analysis where non-Gaussian
effects are very tightly constrained in inflationary models of density fluctuations. Similarly, in RHICE also, the
physical origin of original fluctuations will constrain and determine various moments of the flow coefficients. Other
issues for CMBR physics such as the effects of the thickness of the surface of last scattering on CMBR anisotropy
power spectrum will have obvious implications for RHICE where also the width of the freezeout surface will affect
the plots of values of vrms

n .
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