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Abstract

A general class of cosmological models driven by a nonlocal scalar field inspired by

the string field theory is studied. Using the fact that the considering linear nonlocal

model is equivalent to an infinite number of local models we have found an exact special

solution of the nonlocal Friedmann equations. This solution describes a monotonically

increasing Universe with the phantom dark energy.

1 Introduction

Recently string theory and brane cosmology have been intensively discussed as promising
candidates for the theoretical explanation of the obtained experimental data (see for example
[1]–[6]).

The purpose of this paper is to present new results concerning studies of nonlocal linear
models in the Friedmann–Robertson–Walker Universe. These models are inspired by the
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string field theory (SFT) (for review of the SFT see [7]). A distinguished feature of nonlocal
linear and nonlinear models [8]–[21] is the presence of infinite number of higher derivative
terms (note also nonlocal models in the Minkowski space-time [22]–[29]). For special val-
ues of the parameters these models describe linear approximations to the cubic bosonic or
nonBPS fermionic SFT nonlocal tachyon models, p-adic string models or the models with
the invariance of the action under the shift of the dilaton field to a constant. The NonBPS
fermionic string field tachyon nonlocal model has been considered as a candidate for the dark
energy [8].

Present cosmological observations [30] do not exclude an evolving dark energy (DE) state
parameter w, whose current value can be less than −1, that means the violation of the null
energy condition (NEC) (see [31, 32] for a review of the DE problems and [33] for a search
for a super-acceleration phase of the Universe).

Field theories, which violate the NEC [34, 35], are of interest not only for the construc-
tion of cosmological dark energy models with the state parameter w < −1, but also for the
solution of the cosmological singularity problem. A possible way to avoid cosmological singu-
larities consists of dealing with nonsingular bouncing cosmological solutions. In this scenario
the Universe contracts before the bounce [2]. Such models have strong coupling and higher-
order string corrections are inevitable. It is important to construct nonsingular bouncing
cosmological solutions in order to make a concrete prediction of bouncing cosmology.

A simple possibility to violate the NEC is just to deal with a phantom field. In the present
paper we consider nonlocal models which are linear and admit solutions, which are linear
combinations of local fields. Some of these local fields are phantoms. Namely due to the
presence of these ghost excitations such nonlocal models present an interest for cosmology.

At the same time there are well known problems with instability of quantum models with
phantoms, namely a lost of unitarity and so on. We believe that nonlocal SFT models in
true vacua are stable with respect to quantum fluctuations. This question has to be consider
in the full SFT framework and demands further investigations. We also believe that due
to these string theory origin the corresponding nonlocal cosmological models, which are
nonlinear in matter fields, have no problem with instability in the quantum case. In this
paper we consider only the classical case and models, which are linear in a nonlocal scalar
field.

In our previous paper [15] as well as in paper [16] nonlocal linear models already have
been studied. In [15] nonlocal linear model has been studied in the flat space-time and
we have proposed special deformations of the potential, which allows us to get the same
scalar field solutions in flat and nonflat (the FRW metric) cases. As result we have obtained
nonlinear models in the FRW metric. In [16] few exact solutions to linear model in the
FRW metric have been found. In this paper we present a systematic method that permits
us to transform the initial nonlocal system into infinity set of local systems. The choice of
a local system is equivalent to the choice of a special solution of the nonlocal system. This
approach allows us to use the standard method of analysis of the differential equations and
in particular to find exact solutions.

The paper is organized as follows. In Section 2 we describe string inspired models with
quadratic nonlocal potentials. In Section 3 we assume that the metric is given and consider
the equation of motion as an equation for the nonlocal scalar field. We construct solutions,
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using eigenfunctions of the �g-operator with eigenvalues, belonging to the set of roots of the
characteristic equation. In Section 4 we find values of the energy density and pressure for
these solutions. In Section 5 we consider the Friedmann–Robertson–Walker Universe and find
local models, which correspond to particular solutions of the initial nonlocal model. In the
case of dilaton massless scalar field we construct the general solutions for the corresponding
local model, which are the special exact solution for the initial nonlocal model as well. We
analyze cosmological properties of the obtained solutions.

2 Nonlocal linear models

In this paper we consider a model of gravity coupling with a nonlocal scalar field, which
induced by string field theory

S =

∫

d4x
√−g

(

M2
p

2
R +

M4
s

g4

(

1

2
φF

(

−�g/M
2
s

)

φ− Λ′
))

, (1)

where gµν is the metric tensor (we use the signature (−,+,+,+) ), �g =
1√
−g

∂µ
√−ggµν∂ν ,

Mp is a mass Planck, Ms is a characteristic string scale related with the string tension
α′: Ms = 1/

√
α′, φ is a dimensionless scalar field, g4 is a dimensionless four dimensional

effective coupling constant related with the ten dimensional string coupling constant g0 and

the compactification scale. Λ = M4
s

g4
Λ′ is an effective four dimensional cosmological constant.

The form of the function F is inspired by a nonlocal action appeared in the string field
theory. We consider the case

F (z) = −ξ2z + 1− c e−2z, (2)

where ξ is a real parameter and c is a positive constant. Using dimensionless space-time
variables and a rescaling we can rewrite (1) for F given by (2) as follows

S =

∫

d4x
√
−g

(

m2
p

2
R +

ξ2

2
φ�gφ+

1

2

(

φ2 − c Φ2
)

− Λ′
)

, (3)

where
Φ = e�gφ

and m2
p = g4M

2
p/M

2
s . Generally speaking the string scale does not coincide with the Plank

mass. That gives a possibility to get a realistic value of Λ.
The form of the term (e�gφ)2 is analogous to the form of the interaction term for the

tachyon field in the SFT action. The case of the open cubic superstring field theory tachyon

corresponds to ξ2 = − 1/
(

4 ln
(

4
3
√
3

))

≈ 0.9556 and c = 3 (see [25]-[27]).

The equation of motion for the scalar field has the following form

(ξ2�g + 1)e−2�gφ = c φ. (4)

The energy-momentum tensor

Tαβ = − 2√−g

δS

δgαβ
(5)
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has the following explicit form

Tαβ = −gαβ

(

1

2
φ2 − ξ2

2
∂µφ∂

µφ− c

2
(e�gφ)2 − Λ′

)

− ξ2∂αφ∂βφ−

− gαβ c

1
∫

0

dρ
[

(e(1+ρ)�gφ)(�ge
(1−ρ)�gφ) + (∂µe

(1+ρ)�gφ)(∂µe(1−ρ)�gφ)
]

+

+ 2c

1
∫

0

dρ
(

∂αe
(1+ρ)�gφ

) (

∂βe
(1−ρ)�gφ

)

.

Note that the energy-momentum tensor Tαβ includes the nonlocal terms, so the Einstein’s
equations are nonlocal ones.

3 Generalization of Flat Dynamics

3.1 Flat Dynamics

In the flat case action (1) has the following form:

Sflat =
1

2

∫

d4xφF (−�)φ. (6)

If the scalar field φ depends only on time, then equation of motion (4) is reduced to the
following linear equation:

F (∂2
0)φ(t) = 0. (7)

A plane wave φ = eαt is a solution of (7) if α is a root of the characteristic equation

F (α2) = 0. (8)

For a case of F given by (2) equation (7) has the following form

− ξ2∂2
0φ+ φ− c e−2∂2

0φ = 0. (9)

This equation has been analysed in detail in our paper [15]. Using the explicit form the
function φ(t) we have found the solutions of equations of motion and the corresponding
values of the energy density and pressure. In this paper we generalise these calculations for
non-flat case.

3.2 The equation of motion in an arbitrary metric

Let us consider eq. (4). Really this equation is a consequence of the Einstein’s equations,
hence, both the metric gµν and the scalar field φ are unknown. We assume that the metric
gµν is given and consider eq. (4) as an equation in φ.
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In this paper we study solutions in the following form:

φ =

N
∑

n=1

φn, (10)

where N is a natural number, φn is a solution of the following equation:

�gφn = − α2
nφn, (11)

and αn are solutions to the corresponding characteristic equation:

F (α2
n) ≡ −ξ2α2

n + 1− c e−2α2
n = 0. (12)

Without loss of generality we can assume that for any n and k 6= n the conditions α2
n 6= α2

k

are satisfied. Indeed, if the sum (10) includes two summands φk1 and φk2, which correspond
to one and the same α2

k, then we can consider them as one summand φk ≡ φk1 + φk2, which
corresponds to α2

k.
We start with construction of a solution to equation (4) in the case N = 1:

�gφ = − α2φ, (13)

where α is a root of (12). Note that this ansatz is widely used in studying of nonlocal linear
models [6, 13, 16, 17, 18, 36]. Equation (12) has the following solutions

αn = ± 1

2ξ

√

4 + 2ξ2Wn

(

− 2c e−2/ξ2

ξ2

)

, n = 0,±1,±2, ... (14)

where Wn is the n-s branch of the Lambert function satisfying a relation W (z)eW (z) = z.
The Lambert function is a multivalued function, so eq. (12) has an infinite number of roots.
Parameters ξ and c are real, therefore if αn is a root of (12), then the adjoined number α∗

n

is a root as well. Note that if αn is a root of (12), then −αn is a root too.
If α2 = α2

0 is a multiple root, then at this point F (α2
0) = 0 and F ′(α2

0) = 0. These
equations give that

α2
0 =

1

ξ2
− 1

2
, (15)

hence α2
0 is a real number and all multiple roots of F (α2

0) = 0 are either real or pure
imaginary. Double roots exist if and only if

c =
ξ2

2
e(2/ξ

2−1). (16)

Note that the existence of double roots means that there exist solutions of equation (4),
which does not satisfy of equation (13), but satisfy the following equation

(�g + α2)(�g + α2)φ = 0. (17)

In the flat case an example of such solution is the function φ(t) = t exp(αt) (see [15]).
All roots for any ξ and c are no more than double degenerated, because F ′′(α2

0) 6= 0. In this
paper we consider such values of ξ and c that equality (16) is not satisfied and all roots are
simple ones. Under this assumption we can consider the set of the solutions (10) as a quite
general solution.
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3.3 Real Roots of the Characteristic Equation

For some values of the parameters ξ and c eq. (12) has real roots. To mark out real values
of α we will denote real α as m: m = α.

To determine values of the parameters at which eq. (12) has real roots we rewrite this
equation in the following form:

ξ2 = g(m2, c), where g(m2, c) =
e2m

2 − c

m2e2m2
. (18)

The dependence of g(m, c) on m for different c is presented in Fig. (1). This function has a
maximum at m2

max

m2
max = −1

2
− 1

2
W−1

(

−e−1

c

)

, (19)

provided c is such that W−1

(

−e−1

c

)

< −1, in the other words 0 < c < 1.
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Figure 1: The dependence of the function g(m2, c), which is equal to ξ2, on m at c = 1/2
(left), c = 1 (center) and c = 2 (right).

There are three different cases (see Fig. 1).

• If c < 1, then eq. (12) has two simple real roots: m = ±m1 for any values ξ.

• If c = 1, then eq. (12) has a zero root. Nonzero real roots exist if and only if ξ2 < 2.

• If c > 1, then eq. (12) has

– no real roots for ξ2 > ξ2max, where

ξ2max =
1− ce−2m2

max

m2
max

= − 2

W−1(−e−1/c)
(20)

– two real double roots m = ±mmax for ξ2 = ξ2max

– four real simple roots for ξ2 < ξ2max. In this case we have the following restriction
on real roots: m2 > 1

2
ln c.

Note that values of roots do not depend on H(t) and, therefore, coincide with roots in
the flat case, which have been found in [15].
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4 Energy Density and Pressure

4.1 General Formula

Let us calculate the energy density and the pressure for the solution (10). Up to this moment
we do not put any restrictions on the metric tensor gµν , now we start to consider the case of
the spatially flat Friedmann–Robertson–Walker Universe:

ds2 = − dt2 + a2(t)
(

dx2
1 + dx2

2 + dx2
3

)

(21)

and spatially homogeneous solutions φ(t). In this case

Tαβ = gαβ diag{E ,−P,−P,−P}, (22)

where the energy density E and pressure P are as follows

E = Ek + Ep + Enl2 + Enl1 + Λ′, P = Ek − Ep + Enl2 − Enl1 − Λ′. (23)

Nonlocal term Enl1 plays a role of an extra potential term and Enl12 plays a role of an extra
kinetic term. The explicit form of the terms in the R.H.S. of (23) is [24, 29] as follows

Ek =
ξ2

2
(∂0φ)

2,

Ep = − 1

2

(

φ2 − c(eDφ)2
)

,

Enl1 = c

1
∫

0

(

e(1+ρ)Dφ
) (

−De(1−ρ)Dφ
)

dρ,

Enl2 = − c

1
∫

0

(

∂e(1+ρ)Dφ
) (

∂e(1−ρ)Dφ
)

dρ,

(24)

where

D ≡ − ∂2
0 − 3H(t)∂0, H =

∂0a

a
. (25)

For N = 1 we obtain

E ≡ E(φ1) + Λ′ =
ηα

1

2

(

(∂0φ1)
2 − α2

1φ
2
1

)

+ Λ′, (26)

P ≡ P (φ1)− Λ′ =
ηα

1

2

(

(∂0φ1)
2 + α2

1φ
2
1

)

− Λ′, (27)

where for arbitrary α
ηα ≡ ξ2 + 2ξ2α2 − 2. (28)

Note that considering the flat space-time [15], we have introduced the parameter pα ≡
α2ηα. The use of parameter ηα instead of pα is more convenient, because we do not need to
consider the case α = 0 separately.
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Hereafter we denote the energy density and pressure of function φ(t) as the functionals
E(φ) and P (φ), respectively.

For the solution φ(t) = φ1(t) + φ2(t) it is convenient to write the energy density in the
following form

E = E(φ1 + φ2) + Λ′ = E(φ1) + E(φ2) + Ecross(φ1, φ2) + Λ′,

where the functional Ecross(φ1, φ2) is defined as follows:

Ecross(φ1, φ2) = Ekcr + Enl2cr + Epcr + Enl1cr , (29)

Ekcr ≡ ξ2∂0φ1∂0φ2, Epcr ≡ − φ1φ2 + c e−α2

1
−α2

2φ1φ2,

Enl1cr ≡ − c

1
∫

0

[(

e(1+ρ)Dφ1

)

D
(

e(1−ρ)Dφ2

)

+
(

e(1+ρ)Dφ2

)

D
(

e(1−ρ)Dφ1

)]

dρ,

Enl2cr ≡ − c

1
∫

0

[

∂0
(

e(1+ρ)Dφ1

)

∂0
(

e(1−ρ)Dφ2

)

+ ∂0
(

e(1+ρ)Dφ2

)

∂0
(

e(1−ρ)Dφ1

)

]

dρ.

Using (12), we calculate Enl2cr :

Enl2cr = −
c
(

e−2α2

1 − e−2α2

2

)

α2
2 − α2

1

∂0φ1∂0φ2 = − ξ2∂0φ1∂0φ2. (30)

So
Enl2cr + Ekcr = 0. (31)

The straightforward calculation also gives that

Enl1cr = − c e−α2

1
−α2

2φ1φ2 +
c
(

α2
2e

−2α2

1 − α2
1e

−2α2

2

)

α2
2 − α2

1

φ1φ2 = − Epcr . (32)

Therefore, we obtain that

Ecross(φ1, φ2) = 0, and Pcross(φ1, φ2) = 0, (33)

where
Pcross(φ1, φ2) ≡ Ekcr + Enl2cr − Epcr − Enl1cr . (34)

So,
E(φ1 + φ2) = E(φ1) + E(φ2), (35)

P (φ1 + φ2) = P (φ1) + P (φ2). (36)

Finally, for the case of N summands we obtain (compare with [14, 15, 17]):

E = E

(

N
∑

n=1

φn

)

+ Λ′ =
N
∑

n=1

E(φn) + Λ′, (37)
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P = P

(

N
∑

n=1

φn

)

− Λ′ =

N
∑

n=1

P (φn)− Λ′. (38)

From formulas (37) and (38) we see that the energy density and the pressure are sums
of ”individual” energy densities and pressures respectively and have no crossing term.

In the case of an arbitrary metric gαβ and a scalar field φn(t, x1, x2, x3), which satisfies
eq. (11), we obtain that

Tαβ(φn) = −gαβ

(

1

2
φ2
n −

ξ2

2
∂µφn∂

µφn −
c

2
(e�gφn)

2

)

− ξ2∂αφn∂βφn −

−c gαβ

1
∫

0

dρ
[

(e(1+ρ)�gφn)(�ge
(1−ρ)�gφn) + (∂µe

(1+ρ)�gφn)(∂
µe(1−ρ)�gφn)

]

+

+ 2c

1
∫

0

dρ(∂αe
(1+ρ)�gφn)(∂βe

(1−ρ)�gφn) =

= gαβ

(

ηαn

2
∂µφn∂

µφn −
ηαn

α2
n

2
φ2
n

)

− ηαn
∂αφn∂βφn.

The energy-momentum tensor, which corresponds to the function (10), is as follows

Tαβ = Tαβ

(

N
∑

n=1

φn

)

+ gαβΛ
′ =

N
∑

n=1

Tαβ(φn) + gαβΛ
′. (39)

4.2 Energy Density and Pressure for real α

As we have seen in Section 3 for some values of parameters ξ and c eq. (12) has real roots.
We denote as ηm the value of ηα for real α = m:

ηm = ξ2
(

1 + 2m2
)

− 2 =
e2m

2 − c

m2e2m2

(

1 + 2m2
)

− 2. (40)

If and only if c > 1, then there exists the interval of 0 < m2 < m2
max, on which ηm <

0. Some part of this interval is not physical, because g(m2, c) < 0 on this part. The
straightforward calculations (compare with [15]) show that at the point

m2
max = − 1

2
− 1

2
W−1

(

−e−1

c

)

, (41)

we obtain ηm(mmax) = 0. So, for c > 1 and ξ2 < ξ2max we have two positive roots of (12): m1

and m2 > m1, with ηm1
< 0 and ηm2

> 0. In the next section we use this fact to construct
a quintom local model with one tachyon real scalar field, which corresponds to ηm2

, and one
phantom real scalar field, which corresponds to ηm1

. For different values of c the function
pm ≡ m2ηm is presented in Fig. 2.
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Figure 2: The dependence of pm on m at c = 1/2 (right), c = 1 (center) and c = 2 (left).

5 Construction of solutions in the Friedmann–Robert-

son–Walker metric

5.1 Equations of motion and Friedmann equations

In the spatially flat Friedmann–Robertson–Walker Universe we get the following equation of
motion for the space homogeneous scalar field φ

(ξ2D + 1)e−2Dφ = c φ. (42)

The Friedmann equations have the following form


















3H2 =
1

m2
p

E ,

Ḣ = − 1

2m2
p

(E + P),

(43)

where dot denotes the time derivative (Ḣ ≡ ∂0H).
The second equation of system (43) is the nonlinear integral equation in H(t):

Ḣ = − 1

m2
p





ξ2

2
(∂0φ)

2 − c

1
∫

0

(

∂0e
(1+ρ)Dφ

) (

∂0e
(1−ρ)Dφ

)

dρ



 . (44)

Let us make an assumption, that φ(t) and H(t) satisfy the following equation

Dφ = − α2φ, (45)

where α is a root of eq. (12).
In this case eq. (42) is solved. Using formulas (26) and (27), we rewrite system (43) in

the following form:






















3H2 =
ηα
2m2

p

(

φ̇2 − α2φ2
)

+
Λ′

m2
p

,

Ḣ = − ηα
2m2

p

φ̇2.

(46)
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It is easy to check that (45) is a consequence of system (46). Instead of (46) we can consider
the following third order system:



















φ̈+ 3Hφ̇ = α2φ,

Ḣ = − ηα
2m2

p

φ̇2.

(47)

This system has the following integral of motion:

I1 = 3H2 − ηα
2m2

p

(

φ̇2 − α2φ2
)

=
1

m2
p

Λ′, (48)

therefore, choosing the initial date for (47) one fixes the value of Λ′.
So, our assumption allows to transform a system with a nonlocal scalar field into a system

with a local one. In the same way we obtain systems with two or more local fields. Let

φ(t) =

N
∑

n=1

φn(t), (49)

where all φn(t) are solutions of (45) with the same function H(t) and different values of α:
α = αn. If all αn (n = 1..N) are different roots of (12), then system (43) transforms into the
following system with N scalar fields:



























3H2 =
1

2m2
p

(

N
∑

n=1

ηαn

(

φ̇2
n − α2

nφ
2
n

)

+ 2Λ′

)

,

Ḣ = − 1

2m2
p

(

N
∑

n=1

ηαn
φ̇2
n

)

.

(50)

In the case of two real roots α1 > 0 and α2 > α1:



















3H2 =
1

2m2
p

(

ηα1

(

φ̇2
1 − α2

1φ
2
1

)

+ ηα2

(

φ̇2
2 − α2

2φ
2
2

)

+ 2Λ′
)

,

Ḣ = − 1

2m2
p

(

ηα1
φ̇2
1 + ηα2

φ̇2
2

)

,

(51)

we have obtained that ηα1
< 0 and ηα2

> 0. Therefore the corresponding two-field model is a
quintom one, in other words, includes one phantom scalar field (ηα1

< 0 ) and one scalar field
with the canonical kinetic term (ηα2

> 0 ) and with the tachyon mass term (α2
2ηα2

> 0). The
SFT inspired nonlinear local quintom models and their exact solutions have been studied, for
example, in [37, 38]. To obtain exact solutions with physically important properties usually
one should add some additional terms in the potential, which tend to zero in the limit of the
flat space-time [15, 37, 38, 39]. It is interesting that system (46) allows to find a physically
important exact solution without adding any term in the potential.
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5.2 Exact Solution in the case N = 1

Let us consider system (46) with real α. Two exact nontrivial real solutions of this system
have been presented in [16]. In our notations these solutions are the following:

• At α 6= 0 and ηα < 0

φ(t) = A(t− t0), Λ′ = −A2, H(t) =
α2

3
(t− t0), (52)

where

A = ±
√

−
2m2

pα
2

3ηα
, (53)

t0 is an arbitrary constant.

• At α = 0, Λ′ = 0 and ηα = ξ2 − 2 > 0

φ(t) = ±
√

2m2
p

3ηα
ln(t− t0) + C1, H(t) =

1

3(t− t0)
, (54)

where t0 and C1 are arbitrary constants. Note that the root α = 0 exists if and only if
c = 1.

In this paper we present a new solution, which looks more realistic for the SFT inspired
cosmological model. At present time one of the possible scenarios of the Universe evolution
considers the Universe to be a D3-brane (3 spatial and one time variable) embedded in
higher-dimensional space-time. This D-brane is unstable and does evolve to the stable state.
This process is described by the dynamics of the open string, which ends are attached to
the brane (see reviews [7] and references therein). A phantom scalar field is an open string
theory tachyon. According to the Sen’s conjecture [28] this tachyon describes brane decay,
at which a slow transition in a stable vacuum takes place. This vacuum is characterized
by the absence of open string states, i.e. corresponds to states of the closed string. This
picture allows us to specify the asymptotic conditions for the scalar field. We assume that
the phantom field φ(t) smoothly rolls from the unstable perturbative vacuum (φ = 0) to a
nonperturbative one, for example φ = A0, where A0 is a nonzero constant, and stops there.
It is easy to see that exact solutions, presented in [16] do not satisfy these conditions.

At c = 1 our model (3) is a nonlocal model for the dilaton coupling to the gravitation
field. Its distinguished feature is the invariance under the shift of the dilaton field to a
constant. In this case one of solutions of eq. (12) is α = 0. Summing the first and the second
equations of (46), we obtain:

Ḣ =
Λ′

m2
p

− 3H2. (55)

If Λ′ > 0, then we obtain a real solution:

H1(t) =

√

Λ′

3m2
p

tanh

(√

3Λ′

m2
p

(t− t0)

)

, (56)
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where t0 is an arbitrary real constant.
It is easy to see that Ḣ1(t) > 0 for any t, hence, from the second equation of (46) we

obtain that φ(t) can be real scalar field only if it is a phantom one (ηα < 0, that is equivalent
to ξ2 < 2). The explicit form of φ(t) is as follows:

φ1(t) = ±
√

2m2
p

3(2− ξ2)
arctan

(

sinh

(√

3Λ′

m2
p

(t− t0)

))

+ C2, (57)

where C2 is an arbitrary constant. Functions H1(t) and φ1(t) are presented in Fig. 3.
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Figure 3: The functions H1(t) (right) and φ1(t) (left) at Λ
′ = 3

2
, m2

p = 1, ξ2 = 1, t0 = 0 and
C2 = 0.

The Hubble parameter H1(t) is a monotonically increasing function, so, using that

w = − 1− 2

3

Ḣ1

H2
1

, (58)

we obtain w < −1. So, solution (56) corresponds to phantom dark energy. Note that we
have found two-parameter set of exact solutions at any Λ′ > 0. In other words, at any
Λ′ > 0 we have found the general solution of (46), which correspond to α = 0. At Λ′ = 0
the solution (56) transforms to a constant. In the case Λ′ = 0 the general solution has been
found in [16].

In the case Λ′ < 0 we obtain the following general solution:

H2(t) = −
√

−Λ′

3m2
p

tan

(√

− 3Λ′

m2
p

(t− t0)

)

, (59)

φ2(t) = ±
√

8m2
p

3(ξ2 − 2)
arctanh







cos
(
√

−3Λ′

m2
p

(t− t0)
)

− 1

sin
(
√

−3Λ′

m2
p

(t− t0)
)






+ C2. (60)
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This solution is real at ξ2 > 2. It is interesting that the type of solutions essentially
depends on sign of Λ′. The solution with the SFT inspired boundary conditions corresponds
to Λ′ > 0.

6 Conclusions

We have studied the SFT inspired linear nonlocal model. This model has an infinite number
of higher derivative terms and are characterized by two positive parameters: ξ2 and c.
For particular cases of the parameters ξ2 and c the corresponding actions describe linear
approximations to either the bosonic or nonBPS fermionic cubic SFT as well as to the
nonpolynomial SFT.

Roots of the characteristic equation do not depend on the form of the metric and this
property allows us to study properties of energy density and pressure. We have found that in
an arbitrary metric the energy-momentum tensor for an arbitrary N-mode solution is a sum of
the energy-momentum tensors for the corresponding one-mode solutions. In the Friedmann–
Robertson–Walker spatially flat metric the pressure for a one-mode solution corresponding
to a real root can be positive or negative, depending on parameters of our nonlocal model.
Namely, for c ≤ 1 the one mode pressure is positive and for c > 1 it could be negative or
positive.

The investigation performed in this paper shows that the general field equations in linear
nonlocal models admit an equivalent description in terms of local theory and as a conse-
quences we have representations (37) and (38) for the energy and pressure. This calculation
also supports the use of the Ostrogradski representation for our system in the case of arbi-
trary metric.

In distinguish to our previous paper [15] we do not use any approximation scheme and do
not add any terms in the potential. We have shown that our linear model with one nonlocal
scalar field generates an infinite number of local models. These models can be studied
numerically and we plan to present this analysis in future papers. Some of these models
have been solved explicitly and, hence, special exact solutions for nonlocal model in the
Friedmann–Robertson–Walker metric have been obtained. In particular we have constructed
an exact kink-like solution, which correspond to monotonically increasing Universe with
phantom dark energy. Note that the obtained behaviour of the Hubble parameter is close
to behavior of the Hubble parameter in the nonlinear nonlocal model [8], which recently has
been obtained numerically [19].
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