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Abstract. We discuss how the surface gravity can be classically defined for dynamical

black holes. In particular we focus on defining the surface gravity for locally defined

horizons and compare a number definitions proposed in the literature. We illustrate

the differences between the various proposals in the case of an arbitrary dynamical,

spherically symmetric black hole spacetime. We also discuss how the trapping horizon

formalism of Hayward can be related to other constructions.
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1. Introduction

In black hole thermodynamics the surface gravity of a black hole plays a role analogous to

temperature. The relationship between black hole evolution and thermodynamics is one

of the most widely studied topics in theoretical physics. Indeed the discovery of the semi-

classical Hawking radiation effect put black hole thermodynamics on a firm theoretical

footing and directly established the relationship between the surface gravity and the

temperature. However, the derivation of the Hawking radiation effect depends on quasi-

stationary, quasi-equilibrium evolution. In a non-equilibrium, dynamical situation the

temperature may not be well defined.

In a fully dynamical situation, the surface gravity will probably not be directly

analogous to a temperature of any thermal spectrum. However, there are two reasons

for investigating the surface gravity in dynamical situations. The first is the desire

to derive a purely classical evolution law for the black hole, in the sense of the first

law, without making any appeal to true thermal behaviour. In this context the surface

gravity will play the role as the ‘constant’ of proportionality between the change in the

mass of the black hole and the change in the area. In this way the definition of the

surface gravity is closely connected to our choice of quasi-local mass for the black hole.

The second reason is that the surface gravity is likely to play a key role in the

emission of Hawking radiation, even in non-equilibrium processes. There have been a

number of derivations of the Hawking effect that are easily applicable to dynamical
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situations (see for example [1, 2, 3]). These derivations make it clear that the Hawking

effect is a local geometrical effect and that something resembling the surface gravity

plays a key role. Heuristically, one is tempted to think that the larger the surface

gravity, the more Hawking radiation there will be and the quicker the black hole will

evaporate.

The most widely known definition of the surface gravity is in terms of a Killing

horizon. This is for example, how the surface gravity is calculated for a Schwarzschild

black hole. This works well in stationary situations but breaks down in fully dynamical

situations, where no such Killing horizon exists. A key question is whether the surface

gravity can be defined for black holes that are evolving, either by accreting matter or

by emitting Hawking radiation.

In stationary spacetimes the event horizon of a black hole is typically a Killing

horizon for a suitably chosen Killing vector. However, for event horizons in more

general, non-stationary spacetimes, the surface gravity can be defined in terms of the

null generators of the horizon. In these more general cases there is no Killing vector

field to use to fix the normalization of the surface gravity. Since the generator of the

horizon is only really defined on the event horizon, there is no natural way of fixing this

normalization by imposing a condition off the horizon.

However, recently much interest has focused on local definitions of horizons [4, 5, 6].

These local horizons are typically defined in terms of spacelike two-surfaces for which

the expansion of the outgoing null normal vanishes. Indeed, there are good reasons for

believing that it is such a local horizon, and not the event horizon, that is responsible

for the Hawking process [1, 3]. Since we expect the surface gravity to play a role

in governing the ‘amount’ of Hawking radiation, it makes sense to investigate surface

gravity definitions for local horizons in dynamical situations.

While there have been many proposals for what the dynamical surface gravity

should be, there is not yet any consensus as to what the correct definition is. In this

paper, we investigate a number of different definitions for the dynamical surface gravity

that have appeared in the literature. In order to compare them, we will compute their

forms for marginally trapped surfaces in a generic, dynamic, spherically symmetric

spacetime. Furthermore, we will be able to evaluate how these definitions compare to

the familiar Killing horizon definition in the static limit.

The results presented here will be of a purely classical nature based purely on the

geometry of the spacetime. We will not perform any quasi-classical calculations involving

quantum fields and we will not prove any relation between the classical surface gravity

discussed here and any Hawking radiation that may be emitted, although such a relation

is of course one of the main motivations for the work. We rather take the viewpoint

that the surface gravity can be defined in a classical way and thus its nature is tied up

with the local geometrical properties of the space-time at the horizon.

The paper is organized as follows. In section 2 we give an overview of the various

proposals that have appeared in the literature for defining surface gravity including for

Killing horizons and event horizons. In section 3 we go on to compare these various
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definitions in the case of a fully general, dynamical, spherically symmetric spacetime.

We then conclude with a discussion.

When working in advanced Eddington-Finkelstein coordinates we will use a dot

to denote differentiation with respect to the time coordinate v, ṁ = ∂vm, and a dash

to denote differentiation with respect to the radial coordinate r, m′ = ∂rm. Greek

superscripts and subscripts denote components in a given coordinate basis, while Latin

superscripts and subscripts denote tensor indices in the abstract index notation [7].

2. Surface gravity definitions

2.1. Surface gravity for Killing horizons and event horizons

The traditional definition of surface gravity [8], is based on the idea of a Killing horizon,

a hypersurface where a Killing vector of the metric becomes null. In general relativity,

stationary event horizons are typically Killing horizons for a suitably chosen Killing

vector ka (for the technical assumptions for this proposition see [9]). The surface gravity

κ of the Killing horizon can be defined by

ka∇ak
b = κkb. (1)

Thus, the surface gravity for a Killing horizon is defined by the fact that the Killing

vector is a non-affinely parameterized geodesic on the Killing horizon§. The proof of

this is as follows: Since kaka is constant and zero on the Killing horizon by definition,

then ∇b(k
aka) must be normal to the horizon, in the sense of being orthogonal to any

vector tangent to a curve lying in the horizon. Since ka is also normal to the horizon,

and this normal is unique, we have ka∇bka ∝ kb. Using the Killing relation, we then

obtain the above.

We note here, for later use, that due to Killing’s equation the above can also be

written as
1

2
gabkc (∇cka −∇akc) = κkb. (2)

Since ka is normal to the null hypersurface, it is hypersurface orthogonal and by the

Fröbenius theorem, we have

k[a∇bkc] = 0. (3)

Contracting this condition (3) with ∇akb and using the Killing property we get another

formula often seen in the literature as a definition of surface gravity [7],

κ2 = −1

2
(∇akb)(∇akb). (4)

This version also provides us with a nice physical interpretation of the surface gravity.

In static spacetimes the surface gravity can be interpreted as the limiting force required

at infinity to hold a mass stationary above the event horizon (one could imagine the

§ In general, off the horizon, the Killing vector is not geodesic.
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mass connected to infinity by a very long massless string). Note that this physical

interpretation does not work in non-static spacetimes [7].

By virtue of Killing’s equation ∇akb + ∇bka = 0, the Killing vector is only

determined up to a constant factor. This freedom corresponds to a gauge freedom to

rescale the curve parameter along the integral curves of the Killing vector by a constant

factor. The advantage of using a Killing horizon of a global Killing vector field is that for

static, asymptotically flat spacetimes, this factor can be fixed by requiring kak
a = −1

at infinity and thus, at infinity, the Killing vector coincides with the four-velocity of a

static observer parameterized by the observers proper time τ .‖ This fixes the freedom in

ka globally and uniquely determines the value of the surface gravity of a Killing horizon.

This prescription can also be extended to apply to static observers anywhere in

the spacetime and leads to the idea that the temperature of the event horizon tends to

infinity as seen by static observers located closer and closer to the horizon. However,

this procedure relies on a Killing vector field to relate the normalization to a point away

from the horizon.

A similar definition to (1) can be made for an event horizon that is not a Killing

horizon, with the role of the Killing vector replaced by the null generator of the event

horizon. However, in the general case, there is no natural way to fix the parametrization

of this generator. Even in spherically symmetric spacetimes, where the generators of

the future event horizon will form a subset of the congruence of radially outgoing null

geodesics it is not easy to fix the parameterization of the generators and thus the value

of the surface gravity.

2.2. Surface gravity for marginally trapped surfaces

In dynamical situations, it is a well known fact that local definitions of horizons such as

apparent horizons, trapping horizons or dynamical horizons do not necessarily coincide

with the location of the event horizon¶. In such cases one is left with the question ‘for

which surface should one define the black hole area or the black hole surface gravity?’

The canonical choice is to use the event horizon. However, as noted above, there is

evidence that it is the apparent horizon, and not the event horizon, that plays the key

role in Hawking radiation. This idea has become a key point in hopes to demonstrate

Hawking radiation in the laboratory using analogue gravity models [12]. Furthermore,

it has been shown that the laws of black hole thermodynamics can easily be applied to

the case of trapping [4] and dynamical [5] horizons.

‖ A slightly different prescription is required for non-static spacetimes such as the Kerr solution, since

the relevant Killing vector is no longer composed purely of a time-translational Killing vector. In this

paper we are only considering spherically symmetric spacetimes.
¶ This issue is actually quite subtle. In spacetimes satisfying the Null Energy Condition, it has been

conjectured by Eardley [10] that the outer boundary of the region containing marginally trapped

surfaces is in fact the event horizon. However, in spherically symmetric spacetimes, with spherically

symmetric slicings, the apparent horizon is in most cases also a dynamical horizon and a trapping

horizon. In most dynamical cases it does not coincide with the location of the event horizon [11].
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Most of the definitions we will consider in this work are motivated by investigations

of local horizons. Therefore we will evaluate the surface gravity for marginally outer

trapped surfaces, although several of the definitions could equally well be applied to

event horizons.

A marginally trapped surface is a compact spacelike two-surface for which the

expansion of one of the future-directed null normals vanishes. In the following we will

consider spacelike two-surfaces with an ingoing null normal na and an outgoing null

normal la. Furthermore, we will assume that the cross-normalization of these two null

vectors is such that lana = −1. A marginally outer trapped surface is therefore defined

by the requirement that θl = 0 where the expansion is given by

θl = gab∇alb + nalb∇alb + lanb∇alb. (5)

A common approach to defining the surface gravity of a non-Killing horizon is to use the

fact that la is typically a non-affinely parameterized geodesic on the horizon, although

it is not always a horizon generator. This mirrors the requirement for a Killing horizon

that the Killing vector should be a non-affinely parameterized null geodesic on the

Killing horizon. In this way the surface gravity can be defined via the equation

la∇al
b = κlb, (6)

or

κ = −nbla∇alb. (7)

While the direction of the null geodesic la will be fixed by the location of the horizon and

its foliations into spacelike two-spheres, the choice of parametrization of la will become

crucial to the overall value of the surface gravity.

Writing the null vector la as the tangent vector of a curve xµ(λ) with parameter λ,

under a change of parametrization of the curve λ → λ′, the components of the tangent

vector change by+

lµ ≡ dxµ

dλ
→ lµ

′ ≡ dxµ

dλ′
=

dλ

dλ′
(x)lµ = Ω(x)lµ, (8)

and the surface gravity changes by

κ → κ′ =
dλ

dλ′
(x)κ+ la∇a

(

dλ

dλ′

)

(x) = Ω(x)κ + la∇aΩ(x). (9)

If the surface gravity is to measure the extent to which the geodesic la fails to be affinely

parameterized, the choice of parametrization becomes essential. For a Killing horizon

the normalization is fixed by the link between the parametrization of the Killing vector

and the proper time at infinity.

For an affinely parameterized geodesic κ = 0. In general the tangent vector la can

always be reparameterized to eliminate κ. However, a number of proposals have been

made to fix the parameterization of this null vector and in order to give a non-zero

+ Note this change of parametrization can depend on the spacetime point x.
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surface gravity this parameterization is required to be non-affine. The following are

some of the proposals that have been given for fixing this normalization.

Fodor et al. [13] proposed a non-local choice of normalization for spherically

symmetric spacetimes in terms of an affinely-parameterized ingoing null geodesic na

whose asymptotic form was such that tana = −1 where ta is the asymptotic time-

translational Killing vector. In order to do this one needs to require that the spacetime

admits an asymptotically flat spatial infinity. This choice of parameterization for ingoing

na is then transferred to the choice of parameterization of outgoing la by requiring the

condition lana = −1 everywhere in the spacetime. The proposal of [13] is therefore

κF = −nbla∇alb, (10)

where na must be affinely parameterized everywhere and at asymptotically flat spatial

infinity by the proper time of static observers. Fodor et al. discuss how this

normalization can be observed locally by measuring the frequency of fiducial photons

sent in from infinity.

Hayward [14] gave a definition of surface gravity for dynamic, spherically symmetric

spacetimes in terms of the Kodama vector Ka [15]. The Kodama vector has the property

that the combination KaT
ab is divergence free in spherical symmetry and that Ka

reduces to KaKa = −1 at spatial infinity. The overall sign can be fixed by requiring it to

be future directed. In static electrovac solutions it coincides with the time-translational

Killing vector of the Reissner-Nordström geometry [14]. The value of the ‘dynamic

surface gravity’ for a trapping horizon was defined by

1

2
gabKc (∇cKa −∇aKc) = κKoK

b. (11)

This matches the form of (2) but note that the Kodama vector does not in general

satisfy Killing’s equation and it is not necessarily geodesic on the horizon. The surface

gravity defined in this way is unique since Ka is unique and agrees with the surface

gravity in the Reissner-Nordström case. However, this definition does not agree with

that given in [4] or [13] and is only applicable in spherically symmetric spacetimes.

For an isolated horizon, Ashtekar, Beetle and Fairhurst [16] fixed the normalization

by setting the expansion of the ingoing null vector na to be the same as the Reissner-

Nordström value and cross-normalizing with la via nala = −1. This idea was elaborated

by Ashtekar, Fairhurst and Krishnan [17] by fixing κ as a unique function of the horizon

parameters a△ and Q△, in terms of the known value given in the static case. However it

is not possible to extend this method to situations such as Einstein-Yang-Mills where the

surface gravity in the static sector is not a unique function of the horizon parameters.

In the case of a slowly evolving horizon, defined in terms of a perturbative expansion

around an isolated horizon, Booth and Fairhurst [18] gave a new definition of surface

gravity that was an extension of the definition for isolated horizons. It is given by

κB = −Bnalb∇bla − Clanb∇bna, (12)
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where the normal to horizon is given by τa = Bla+Cna. B and C are just scalar fields on

the dynamical horizon that encode how the choice of a horizon normal (unique up to a

factor) can be expressed in terms of the chosen la and na. Clearly in the isolated horizon

case, where B = 1 and C = 0, it reduces to the original isolated horizon definition. In

addition, it is clear in this form that this definition incorporates information about the

inaffinity of la, through the term nalb∇bla, and the inaffinity of na, through the term

lanb∇bna.

It is also possible to define a surface gravity without appealing to the inaffinity of

a null vector. This is usually done by identifying the surface gravity in a dynamical law

for the black hole evolution. An analogue of surface gravity, called trapping gravity, was

presented by Hayward in [4]. In the notation used here it is given by

κH =
1

2

√

−na∇aθl. (13)

On a marginally outer trapped surface, where θl = 0 this definition is independent of

the parametrization of la since under a reparameterization of la by λ → λ′, we have

la → dλ
dλ′

la, na → dλ′

dλ
na (since we require nala = −1) and θl → dλ

dλ′
θl.

Another definition of surface gravity for a trapping horizon was proposed by

Mukohyama and Hayward [19]

κM = − 1

16πr

∫

S

d2θ
√
h

(

na∇aθl + la∇aθn +
θn
Λ
la∇aΛ

)

. (14)

Their original definition was also based on affinely parameterized null vectors. However,

the original definition also included a factor of lana which will not be −1 if both

null vectors are affinely parameterized. Here we have introduced a factor 1/Λ that

would make a general la affinely parameterized. A full derivation of this result appears

in Appendix A. Since this formula involves an integral over the marginally trapped

surface it is manifestly quasi-local. Once again this definition is independent of the

parametrization of la, provided the normalization nala = −1 is preserved.

For a dynamical horizon [5], the effective surface gravity is identified from an area

balance law [5] and takes the value

1

2r

df(r))

dr
(15)

where r is the area defining radial coordinate and f(r) is any function of r. Once

again there is freedom in the normalization that can usually be fixed by appeal to the

stationary Kerr solution.

3. Surface Gravity in dynamic, spherically symmetric spacetimes

To see how these various definitions compare to one another we turn now to a specific

example of a dynamical, spherically symmetric metric. A general, dynamic, spherically
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symmetric metric can be written in advanced Eddington-Finkelstein coordinates∗ as

ds2 = −A2(v, r)△(v, r)dv2 + 2A(v, r)dvdr + r2dΩ2, (16)

The two free functions A(v, r) and △(v, r) could in principle be determined by solving

the full Einstein equations, although we will see here that this is not necessary for

our purposes. The function △(v, r) can be written in terms of the Misner-Sharp mass

function m(v, r) as

△(v, r) = 1− 2m(v, r)

r
. (17)

The function A(v, r) will also play an important role in what follows and should not

be confused with the area of the horizon. Note that in, general, the function A(v, r)

cannot be gauged away and a general spherically symmetric spacetime must contain

two free functions [11]. In certain situations, such as the Schwarzschild and Reissner-

Nordström solutions, one can consistently choose A = 1. However, in other situations,

such as the Einstein-Skyrme system studied in [20], this function cannot be set equal to

one everywhere and its value on the horizon will affect the value of the surface gravity

computed in terms of a Killing horizon.

In the static case where A and △ are only functions of r there is a Killing vector

that is timelike for △ > 0. Suitably normalized this Killing vector has components

(1, 0, 0, 0) and thus on the Killing horizon, choosing the positive root, equation (4) gives

κ =
A(rH)

4m(rH)
(1− 2m′(rH)), (18)

This we will take as the surface gravity of a spherically symmetric Killing horizon. We

can now compare how this result for the Killing horizon compares with the various static

limits of the proposed dynamical surface gravities in spherically symmetric spacetimes.

The first definition for a dynamical, non-Killing horizon, surface gravity proposed

by Hayward in [4], is independent of the chosen normalization on the horizon.

κ
H
=

1

2

√

−na∇aθl. (19)

For the spherically symmetric metric we have

na∇aθl =
A△−A′r△− Ar2△′

Ar3
. (20)

where m′ = ∂rm. Therefore, on the horizon △ = 0, we have

κ
H
=

1

4m

√
1− 2m′. (21)

This will reduce to the static result in situations where A(r) = 1/
√
1− 2m′. However,

as already noted in [13] this does not give the correct answer in the Reissner-Nordström

case where A = 1 and m′ = Q2/2(2M2 −Q2 + 2M
√

M2 −Q2).

∗ These coordinates will be well-defined on the future horizon (but not the past horizon) and are

therefore better suited to examining functions defined there than Schwarzschild coordinates. Painlevé-

Gullstrand coordinates served a similar purpose in [11].
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Fodor et al.’s value [13] for the surface gravity κF is simple to evaluate in Eddington-

Finkelstein coordinates. The correctly normalized na and la are given by

nµ = (0,−1, 0, 0) , (22)

lµ =

(

1,
A△
2

, 0, 0

)

. (23)

Therefore, we obtain

−nalb∇bla =
Ȧr2 + AA′r(r − 2m) + A2(m−m′r)

Ar2
. (24)

On the horizon this becomes

κ
F
=

A

4m
(1− 2m′) +

Ȧ

A
. (25)

This definition will always give the Killing horizon value in static spacetimes, since in

static cases Ȧ = 0.

The Kodama vector in a spherically symmetric spacetime has the following form in

Eddington-Finkelstein coordinates

Kµ =

(

1

A
, 0, 0, 0

)

. (26)

In spherical symmetry we have

gabKc (∇cKa −∇aKc) =

(△A′ + A△′

A2
,
△(△A′ + A△′)

A
, 0, 0

)

(27)

on the horizon this becomes

1

2

(△′

A
, 0, 0, 0

)

= κKoK
µ (28)

and thus we find

κ
Ko

=
1

4m
(1− 2m′) , (29)

which will reduce to the static, Killing horizon case when A = 1.

The value for the surface gravity κM given by Mukohyama and Hayward in [19] has

the form

κ
M
= −r

4

(

la∇aθn + na∇aθl +
θn
Λ
la∇aΛ

)

. (30)

Since we have

la∇aθn =
2Ȧr2 + A2△+ A′Ar△

A2r3
, (31)

this gives

κ
M
=

m

2

(

1− 2m′

4m2
− Ȧ

A2m

)

− rθn
4Λ

la∇aΛ, (32)
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Thus the value of the surface gravity depends on knowing the factor Λ that makes

la affinely parameterized. This will be discussed further in Appendix A. In static

situations, we have Λ = kA2△, where k is a constant of integration, and thus

κ
M
=

1

4M
(1− 2m′). (33)

The surface gravity for a slowly evolving horizon, proposed by Booth and Fairhurst

in [18], does not fix the overall normalization of the surface gravity. The value of

lanb∇bna depends on the choice of normalization for la and for affinely parameterized

na in spherical symmetry (equation (22) above) we naturally find

lanb∇bna = 0. (34)

However, for general parameterizations, transforming via lµ
′

= Ω(x)lµ we find

la
′

nb∇bna =
na∇aΩ

Ω2
+

1

Ω
lanb∇bna. (35)

Thus, the surface gravity for a slowly evolving horizon depends on the choice of

normalization and will only coincide with that given by the isolated horizon formula

κ = −nalb∇bla if na is affinely parameterised or Ω′ = 0.

In [11] it was shown how the use of the Misner-Sharp mass can lead to a preferred

normalization for the surface gravity in spherically symmetric spacetimes. As shown in

[11] the surface defined by

r = 2m(v, r), (36)

defines a marginally trapped surface at r = rH and in many cases is also a dynamical

horizon or trapping horizon. Differentiating this equation with respect to any parameter

ξ, labeling spherically symmetric foliations of the horizon, gives

dr

dξ
= 2

∂m

∂v

dv

dξ
+ 2

∂m

∂r

dr

dξ
. (37)

In we take ξ = v and rearrange using the formula for the area A = 4πr2 this becomes

∂m

∂v
=

1

8π

(1− 2m′)

2r

dA

dv
, (38)

where m′ = ∂m
∂r
. In order for this to take the same form as the first law of black hole

thermodynamics dm = 1
8π
κ dA it seems natural to take

κN =
(1− 2m′)

2rH
. (39)

This gives a natural normalization of the surface gravity in terms of the Misner-Sharp

mass function, which we can interpret as the mass of the black hole contained within

the radius rH . In the static case, this does not reduce to the usual Killing horizon

definition, although this derivation automatically assumes a dynamical evolution since,
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in the static case, the differentiation with respect to v is not valid. It is also interesting

to note that direct differentiation of (36) gives

dm

dv
=

1

8π

1

2rH

dA

dv
, (40)

suggesting a surface gravity identical to the one mentioned in [5] for a dynamical horizon

in spherical symmetry.

4. Conclusion

We have seen a variety of ways of defining surface gravity for dynamical situations.

These seem to fall into three different categories. Firstly there is the very simple form

1/2rH in spherical symmetry [5]. The second category is of the form κ = (1− 2m′)/2m

(29), (33) and (39), while the third category is of the form A(1− 2m′)/4m+ Ȧ/A (25).

Only the third form gives the correct Killing horizon behaviour in the static limit for

spherically symmetric spacetimes, although all forms give the correct version for the

Schwarzschild spacetime. However, the first and second categories seem to be much

more closely related to full dynamical evolution of the horizon. In situations where one

can set A = 1 everywhere, such as the Vaidya solution, the second and third categories

will coincide.

It thus seems that the issue of the surface gravity is far from clear for general

black holes. What role one wants the surface gravity to play depends on the context.

In terms of the classical first law of black hole mechanics there is a close connection

between the definition of the surface gravity and a choice of quasi-local mass. We have

noted that using this approach there is a tension between the surface gravity defined in

terms of a Killing horizon and the static limit of the surface gravity defined in terms of

the Misner-Sharp quasi-local mass in a spherically symmetric spacetime. Local horizons

have many simple properties in spherically symmetric spacetimes. In spherical symmetry

the Misner-Sharp mass is equivalent to the Hawking mass and forms a ‘preferred’ quasi-

local mass. In rotating spacetimes, such as the Kerr solution, the Hawking mass may

not give a useful definition of the mass associated with the horizon [5] and thus the

situation is not as clear.

Furthermore, in spherical symmetry it is easy to show that the Hawking-Gibbons

method for calculating the temperature of a static black hole (by eliminating the conical

singularity in the Euclidean sector) gives a finite temperature for the Hawking radiation

corresponding to the Killing horizon surface gravity (18). However, this version does

not correspond to the versions derived from a fully dynamical first law of black hole

evolution. Whether this apparent ‘tension’ between the two formulations has any deeper

significance for understanding the fully dynamical evolution of black holes remains to

be seen.
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Appendix A. Double null foliations of the Schwarzschild metric

In [19] Mukohyama and Hayward define a double null foliation based on two foliations

of null hypersurfaces labeled by ξ+ and ξ−. In order to compare their notation with the

notation used here, in the following all tensors from Mukohyama and Hayward will have

a + or a − attached to them. We will also use abstract index notation for consistency,

although it is not used by Mukohyama and Hayward. They define one-forms normal to

the null hypersurfaces by n± = −dξ±. In abstract index notation this corresponds to

n+
a ≡ −∇aξ

+ (A.1)

and

n−
a ≡ −∇aξ

−. (A.2)

Since d2ξ± = 0, both of these one-forms are dual to affinely parameterized tangent

vectors of null geodesics. In terms of abstract index notation we have

∇an
±
b −∇bn

±
a = 0, (A.3)

contracting this with g−1(n±) we have

n±a
(

∇an
±
b −∇bn

±
a

)

= 0

⇒ n±a∇an
±
b − 1

2
∇b(n

±an±
a ) = 0

⇒ n±a∇an
±
b = 0, (A.4)

where the last two lines follow from the Leibniz rule, metric compatibility of the covariant

derivative and the fact that n±an±
a = 0 everywhere. However, in general we can choose

both null vectors to be non-affinely parameterized by making the choices

na = Γn+
a (A.5)

and

la = Λn−
a , (A.6)

where 1/Γ is a spacetime dependent factor that makes na affinely parameterized and

1/Λ is a spacetime dependent factor that makes la affinely parameterized. In particular,

in advanced Eddington-Finkelstein coordinates (v, r, θ, φ), the ingoing null geodesics are

naturally affinely parameterized (Γ = 1) and we can equate

na = n+
a (A.7)
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and

la = Λn−
a , (A.8)

The one-forms have components

nµ = (−1, 0, 0, 0), (A.9)

lµ =

(

−A2△
2

, A, 0, 0

)

. (A.10)

The corresponding vector components are

nµ =

(

0,− 1

A
, 0, 0

)

, (A.11)

lµ =

(

1,
A△
2

, 0, 0

)

. (A.12)

In this form na is affinely parameterized while la is not and the conventional

normalization has been chosen so that lana = −1.

Returning to the general case, we can choose the cross-normalization for la and na such

that lana = −1. Since Mukohyama and Hayward have g−1(n+, n−) = −ef we see that

ef =
1

ΛΓ
. (A.13)

Now Mukohyama and Hayward define two null normal vectors by l± = e−fg−1(n∓) (note

the switch as ± becomes ∓.) In our notation this becomes

la+ = ΛΓgabn−
b = Γla, (A.14)

la− = ΛΓgabn+
b = Λna. (A.15)

The expansions of l± are defined by θ± = ∗L± ∗ 1 where L± is the Lie derivative with

respect to l± and ∗ is the Hodge dual operation associated with the projection of the

metric onto a two-sphere to which both l+ and l− are normal. Using the anti-symmetric

area two-form, or Levi-Civita tensor for the two-surface, ǫab this can be written

θ± =
1

2
ǫabL±ǫab = 0. (A.16)

Thus we have

θ− =
1

2
ǫabL−ǫab

=
ǫab

2

(

lc−∇cǫab + ǫcb∇al
c
− + ǫac∇bl

c
−

)

=
ǫab

2
(Λnc∇cǫab + ǫcb∇a(Λn

c) + ǫac∇b(Λn
c))

=
ǫab

2
(Λnc∇cǫab + ǫcbΛ∇an

c + ǫacΛ∇bn
c)

= Λ
ǫab

2
Lnǫab, (A.17)
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where terms such as ǫcbn
c∇aΛ are zero because nc is normal to the surface ǫcbn

c = 0.

Similarly we find θ+ = Γ
2
ǫabLlǫab. The area two-form can be given in terms of the

Newman-Penrose null tetrad, as in Ashtekar et al. [16], as

ǫab = i (mam̄b − m̄amb) . (A.18)

We can use this to calculate the expansions by

1

2
ǫabLnǫab = −1

2
(mam̄b − m̄amb)Ln(mam̄b − m̄amb). (A.19)

Performing the necessary permutations, and using the fact that the expansion as given

in (5) is equivalent to (mam̄b + m̄amb)∇alb we find

θ− =
Λ

2
ǫabLnǫab = Λ(mam̄b + m̄amb)∇anb = Λθn (A.20)

and similarly

θ+ =
Γ

2
ǫabLlǫab = Γ(mam̄b + m̄amb)∇alb = Γθl. (A.21)

This gives

ef (L+θ− + L−θ+ + θ+θ−) = la∇aθn + na∇aθl

+
θn
Λ
la∇aΛ +

θl
Γ
na∇aΓ + θnθl. (A.22)

The surface gravity of Mukohyama and Hayward, for a spherically symmetric trapping

horizon is

κ
M
= − 1

16πr

∫

S

d2θ
√
hef (L+θ− + L−θ+ + θ+θ−)

= − r

4

(

la∇aθn + na∇aθl +
θn
Λ
la∇aΛ

)

. (A.23)

In order to use this definition we need to know what the factor Λ is that makes la

affinely parameterized. To do this we need to pick a coordinate system that is regular

on the horizon. It is difficult, at least in advanced Eddington-Finkelstein coordinates,

to calculate what the affine parameter for the outgoing null vectors should be. By

examining the way the surface gravity changes under a reparameterization of la we see

that for a non-affine parameterization we have

la∇aΛ = −Λnalb∇bla. (A.24)

Using the non-affine parameterization given above, (22) and (23), this becomes

∂v(Λ) +
A△
2

∂r(Λ) = Λ

(

Ȧ

A
+ A′△+

A△′

2

)

(A.25)

or

∂v(lnΛ) +
A△
2

∂r(lnΛ) =
Ȧ

A
+ A′△+

A△′

2
(A.26)

The solution of this first order partial differential equation will depend on the specific

situation. For static solutions we have Ȧ = 0 = ∂v(lnΛ) and the solution to the ordinary

differential equation is just

Λ = kA2△, (A.27)
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where k is a constant of integration. Therefore, for the static case we have la∇aθn = 0,

na∇aθl = −△′/r, θn = −2/(Ar) and

κ
M
=

1

4M
(1− 2m′), (A.28)

which we see will match the Killing horizon value for A = 1. In particular, in the static

Schwarzschild solution Λ = △ and we have, at the horizon △ = 0,

na∇aθl = −2M

r3
(A.29)

la∇aθn = 0 (A.30)

θn
Λ
la∇aΛ = −2M

r3
(A.31)

κ
M
=

M

r2
=

1

4M
. (A.32)

In Kruskal-Szekeres coordinates (T,R, θ, φ) we can easily generate a double null foliation

and thus find affinely parameterized null normals. The Schwarzschild solution takes the

form

ds2 = −32M3

r
e−r/2M(−dT 2 + dR2) + r2dΩ2. (A.33)

This can be written in double null coordinates by identifying

v = T +R, (A.34)

u = T − R. (A.35)

In double null coordinates (u, v, θ, φ) the Schwarzschild metric takes the form

ds2 = −32M3

r
e−r/2Mdudv + r2dΩ2. (A.36)

The radial null vectors are

lµ =
(

0,
r

16M3
er/2M , 0, 0

)

, (A.37)

lµ = (−1, 0, 0, 0), (A.38)

and

nµ =
( r

16M3
er/2M , 0, 0, 0

)

, (A.39)

nµ = (0,−1, 0, 0). (A.40)

For these choices we have lala = 0 = nana and

lana = − r

16M3
er/2M . (A.41)

Thus, if we take la to be l+ and na to be n−, in terms of Mukohyama and Hayward’s

notation, we have

ef =
r

16M3
er/2M , (A.42)
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θ+ =
er/2M∂vr

8M3
, (A.43)

θ− =
er/2M∂ur

8M3
, (A.44)

efL−θ+ = −er/2M [∂vr∂ur − r∂u∂vr]

8M3r
, (A.45)

efL+θ− = −er/2M [∂vr∂ur − r∂u∂vr]

8M3r
. (A.46)

The surface gravity for the horizon is now simply given by

κ
M
= −r

4
ef (L−θ+ + L+θ−) . (A.47)

Since we can write the double null coordinates u, v in terms of Schwarzschild coordinates

r, t as

v =

√

r

2M
− 1e(r+t)/4M , (A.48)

u = −
√

r

2M
− 1e(r−t)/4M , (A.49)

we have

uv =
(

1− r

2M

)

er/2M (A.50)

and thus, at the horizon r = 2M

∂u∂vr = −2M. (A.51)

Putting it all together with θ+ = 0 ⇒ ∂vr = 0 gives

κ
M
=

1

4M
. (A.52)

This value agrees with the value given by the Killing horizon method for the

Schwarzschild solution.
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