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Perfect fluid spheres with cosmological constant
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We examine static perfect fluid spheres in the presence of a cosmological constant. Due to the
cosmological constant, new classes of exact matter solutions are found. One class of solutions
requires the Nariai metric in the vacuum region. Another class generalizes the Einstein static
universe such that neither its energy density nor its pressure is constant throughout the spacetime.
Using analytical techniques we derive conditions depending on the equation of state to locate the
vanishing pressure surface. This surface can in general be located in regions, where going outwards,
the area of the spheres associated with the group of spherical symmetry is decreasing. We use
numerical methods to integrate the field equations for realistic equations of state and find consistent
results.

PACS numbers: 04.20.Jb, 04.40.Dg, 04.20.-q

I. INTRODUCTION

Static and spherically symmetric perfect fluid solutions have always been a rich source of investigation in classical
general relativity ever since the pioneering work of Schwarzschild in 1916. He solved the field equations for the interior
region by assuming a perfect fluid of constant energy density, and also for the outside vacuum region, the famous
Schwarzschild solutions.
The interior solution has the geometry of a three-sphere, which was noticed as early as 1919 by Weyl [1]. The

pressure of the Schwarzschild interior solution always vanishes before the equator of the three-sphere, therefore, this
geometrical picture is not of great importance. This situation chances significantly in the presence of the cosmological
constant [2, 3]. In some special cases the interior metric with cosmological constant was studied earlier, see e.g. [4, 5].
However, the complete analysis was only completed [2, 3] 85 years after Weyl noted the interesting geometrical
structure of these solutions: With Λ the pressure can vanish exactly at the equator of the three-sphere in which case
one has to join on the Nariai metric [6, 7] as the exterior vacuum metric. We note that although the spatial geometry
of the interior Schwarzschild is a three sphere, the four-metric is not homogeneous. There is a center of symmetry in
the fluid region, surrounded with concentric spheres defined by the orbits of the group generating spherical symmetry.
The spacetime metric associate an induced metric and thereby an area to each group orbit. Going outwards from
the center this area is increasing until one reaches the equator, the sphere with the maximal area. It is furthermore
possible that the pressure vanishes in a region where the area of the group orbits is decreasing.
Lastly, the matter can occupy the whole three-sphere having two regular centers. This generalizes the Einstein

static universe [2, 3, 8], see [9] for early results in that direction. The Einstein universe also emerges as a special
case (vanishing expansion rate and vanishing vorticity) when considering homogeneous shear-free perfect fluids [10].
In recent years it has been generalized in various different theories, like brane world models [11], Einstein-Cartan
theory [12], in modified gravity theories [13] or Loop Quantum Gravity [14].
In this paper we are analyzing systematically the effects of a positive cosmological constant on perfect fluid spheres.

We generalize known exact solutions of the field equations with cosmological term and discuss their new properties.
The principal result of the analysis is the increase of the radial sizes of matter spheres. This naturally lead to questions
regarding the physical picture applicable to these solutions. Analytical and numerical techniques are used to obtain
a consistent picture of the underlying physics.
A positive cosmological constant can be regarded as an external force pulling matter apart. Therefore, a ‘large’

positive cosmological constant can increase the radius of a known perfect fluid solution such that it occupies more than
just ‘half’ of the three-space. The effects of the actual cosmological constant are very small and therefore one may
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ask why the investigation of solutions with ‘large’ values of the cosmological term is beneficial. This can be answered
from two points of view. From a mathematical point of view we deepen our understanding about exact solutions of
Einstein’s field equations and the influence of the additional parameter Λ. However, also from a physical point of
view this study can be justified easily. In the bag model of hadrons [15, 16, 17] the bag is stabilized by a term of the
form Bgab, which has the same form as a cosmological constant, though its numerical value is considerably bigger

B
1/4
e ≈ 8.91MeV, whereas we have Λ1/4 ≈ 1.78× 10−9MeV. Hence, the key physical motivation is the possibility that

effects within stellar models can be effectively described by a term that looks like a cosmological constant, which can
indeed have large effects. Also in the context of Boson stars [18, 19] the matter energy-momentum tensor contains
a part proportional to the metric which can be read as an effective cosmological term. Within the context of Loop
Quantum Gravity it has recently been shown [20] that quantum gravity effects can be effectively of the form of a
cosmological constant.
Apart from an equation of state relating the density ρ to the pressure p, a spherically symmetric perfect fluid

has to satisfy only one condition, the pressure isotropy condition, requiring the equality of the radial and angular
directional pressures. Since this condition does not involve the cosmological constant Λ, any solution with Λ = 0
having an equation of state f(ρ, p) = 0 can also be interpreted as a Λ 6= 0 cosmological solution with equation of
state f(ρ + Λ, p − Λ) = 0. It is one of the main purposes of the present paper to re-investigate known perfect fluid
solutions with cosmological constant and to analyze whether these solutions for some special cosmological constant
require the Nariai metric as the exterior vacuum spacetime. We also try to construct solutions with two regular
centers, i.e. constructing more general Einstein static universes, having neither constant energy density nor constant
pressure.
Since the static and spherically symmetric field equations with more realistic equations of state in general cannot be

integrated analytically, we also use numerical methods to study perfect fluid spheres. In particular we will show that
the effect of a ‘large’ cosmological constant on polytropic perfect fluids is such that the matter is pulled sufficiently
apart so that it occupies much of the three-space. The same result is also found by considering the stiff matter equation
of state and also the Hagedorn equation of state. However, realistic equations of state seem not to allow the presence
of a second regular center. It is important to distinguish between coordinate and physical effects. For instance, one
cannot numerically integrate the constant density solutions for large cosmological constants if the original radius is
used as a variable. The code breaks down at the equator of the three-sphere. This is a pure coordinate effect, since
the coordinate system does not cover the whole spacetime. In order to distinguish coordinate and physical effects,
also the Riemann curvature tensor is considered.
Various other effects of the cosmological constant have been studied in the past, like the dynamical instability of

perfect fluid spheres [21, 22], possibly detectable effects of the cosmological constant within our solar system [23, 24,
25, 26], and effects within astrophysical structures [27, 28, 29, 30, 31]. Recently, the bending of light with Λ has been
discussed in [32, 33].
The paper is outlined in the following manner: In Section II we analytically study the effect of the cosmological

constant on the Whittaker and Tolman IV solution, and also discuss the matching of the matter and the vacuum
solution. In Section III we derive conditions on the equation of state and the cosmological constant to characterize the
different possible solutions. In Section IV we numerically integrate the field equations for realistic equations of state
and find results consistent with our analytical results. We summarize and conclude our work in the final Section V

II. THE WHITTAKER AND TOLMAN SOLUTIONS

In the present section the Whittaker solution [34] and the Tolman IV solution [35] are recalled. In both cases we
firstly introduce a third angular coordinate α, so that the coordinate system covers the complete three-space and not
just ‘half’ of it like the usual radial coordinate r. Secondly, we introduce the cosmological constant in the solutions
and analyze its effect (the ‘external’ force due to Λ) on those solutions. We also explicitly show, how to join the
interior and the exterior solution through the vanishing pressure surface.

A. The Whittaker solution

The Whittaker solution is characterized by the relation ρ+ 3p = ρ0 between the energy density and the pressure,
where ρ0 is a positive constant. Similarly to the constant density case this condition allows one to write down the
solution to Einstein’s field equations in terms of elementary functions. The metric of the Whittaker solution in the
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original Schwarzschild coordinates reads [34]

ds2 = −b

[

1 +B − B

ar

√

1− a2r2 arcsin(ar)

]

dt2

+

[

(1 +B)(1 − a2r2)− B

ar
(1− a2r2)3/2 arcsin(ar)

]−1

dr2 + r2dΩ2, (1)

where a, b and B are constants. The special importance of the Whittaker solution lies in the fact that it is the
non-rotating static limit of the Wahlquist solution [36], the most important rotating perfect fluid exact solution. The
parameter κ of the Wahlquist solution is related to the parameter B of the Whittaker metric by B = 1/κ2. Since the
change of the parameter n corresponds merely to a rescaling of the coordinate t, we set b = 1. After introducing a
new radial coordinate, the third angle α, by r = (1/a) sinα, metric (1) simplifies to

ds2 = −fdt2 +
1

a2

(

dα2

f
+ sin2αdΩ2

)

, (2)

f = 1 +B(1 − α cotα). (3)

Although the introduced radial coordinate α is very similar to the third angle of the ellipsoid used for the interior
Schwarzschild solution, the spatial metric is not ellipsoidal in this case because of the non constant nature of the metric
component gαα. On the other hand, it should be emphasized that the r = const. hypersurfaces are round two-spheres.
Therefore, the topology of the three-space essentially depends on the function gαα. In the above mentioned constant
density case, the three-space is in fact a three-sphere. When we discuss next the modified Tolman IV solution the
three-space will be ellipsoidal. The introduction of the new radial coordinate α is important in all cases where there
is a group orbit with maximum area, since in these cases the usual radial coordinate only covers the region up the
this maximum orbit. Henceforth we will refer to the coordinate α as the third angle.
It is possible to express the constant in the equation of state ρ + 3p = ρ0 in terms of the constants in the metric

and the cosmological constant by

ρ0 =
a2B + Λ

4π
. (4)

Positivity of the pressure and density implies ρ0 > 0, which we require from now on, by assuming

Λ > −a2B. (5)

If there is a spherical surface where the solution is matched to a Schwarzschild-de Sitter (or Schwarzschild anti-de
Sitter) exterior region, then p must go to zero at the surface, and the fluid density becomes ρ0 there.
The pressure and energy density of the Whittaker solution are given by

p =
ρ0
2

− a2f

8π
, (6)

ρ =
3a2f

8π
− ρ0

2
. (7)

The central pressure and central energy density can be derived from equations (6) and (7) by noting that limα→0 f = 1
and read

pc =
ρ0
2

− a2

8π
, ρc =

3a2

8π
− ρ0

2
. (8)

Requiring both to be positive we get 4π
3 ρ0 < a2 < 4πρ0. Since at the center df

dα = 0 and d2f
dα2 = 2B

3 , the pressure is
maximal at the center if and only if B > 0. Since in the B < 0 case there is no zero pressure surface, we assume
B > 0 in the present discussion.
The equator, where the area of the spheres of symmetry is maximal, is located at α = π/2. There f = 1 +B and

for the equatorial pressure peq and density ρeq we get

peq =
1

8π
(Λ− a2), ρeq =

3

8π
(a2 − Λ) + ρ0. (9)
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Let us now choose the cosmological constant such that the pressure vanishes at the equator, peq = 0 in (9), which
yields

Λ = a2 =: ΛN . (10)

Hence for solutions which satisfy the relation Λ < ΛN , the pressure vanishes before the equator, where the group
orbits are still increasing.
One should check whether the choice Λ = ΛN is compatible with the positivity of pressure and energy density

at the center, and also with the positivity of energy density at the equator (otherwise these solutions would not be
physical). Positivity of energy density at the surface is ensured by (5), which now takes the form B > −1. Using
Λ = a2 in (8) and (4) we get

pc =
ΛN

8π
B > 0, (11)

ρc =
ΛN

8π
(2−B) > 0. (12)

All the three conditions are satisfied if 0 < B < 2.
For larger cosmological constants, i.e. for Λ > ΛN , the pressure vanishes after the equator of the ellipsoid, where the

group orbits are decreasing. Since the pressure function p → −∞ as α → π there always exists a zero pressure surface
at which one joins on the Schwarzschild-de Sitter metric as an exterior vacuum spacetime. Therefore the Whittaker
solution cannot have a second regular center. Since the derivative of the function f is positive for 0 < α < π in the
case B > 0, the function f remains positive, consequently the coordinate system and the metric remains regular in
the whole fluid region.
As already outlined in the introduction we will explicitly show that the choice Λ = ΛN necessitates the Nariai

metric as the exterior spacetime. Since the pressure in this case vanishes at the maximum of the area of the group
orbits the exterior spacetime must have constant area spheres of symmetry, which excludes the Schwarzschild-de Sitter
or anti-de Sitter spacetimes. The only other static and spherically symmetric vacuum spacetime with cosmological
constant is indeed the Nariai spacetime, and its group orbits have constant area.

B. Matching procedure

Here we review the necessary conditions for matching a spherically symmetric static perfect fluid solution to an
exterior vacuum region. We write the metric in both regions in the form

ds2 = −e2νdt2 +
1

y2
dr2 +R2(dθ2 + sin2 θdφ2), (13)

where ν, y and R are functions of the coordinate r. A metric written in this form have a center where R = 0, and this
center is regular, i.e. free of conical singularities, if the area of small spheres is proportional to their radius square,
with the appropriate proportionality factor, dR

dr = ± 1
y . The regularity of the four-metric also requires a finite value

for ν and dν
dr = 0 at the central point.

We assume that the matching is performed along the hypersurface described by r = rs. The Darmois-Israel
matching conditions [37, 38] essentially state that the induced metric and the extrinsic curvature have to agree on the
hypersurfaces used for joining the two solutions. The outward pointing normal vector to the symmetry surfaces has the
components na = (0, y, 0, 0). The induced metric hab can be expressed using the spacetime metric as hab = gab−nanb,
while the extrinsic curvature can be calculated asKab = h c

a ∇cnb, where∇c denotes the covariant derivative associated
to the spacetime metric gab. Using the coordinate system (t, θ, φ) on the matching surface, the induced metric hab

has the form

hab =





−e2ν 0 0
0 R2 0
0 0 R2 sin2 θ



 , (14)

while the components of the extrinsic curvature are

Kab =





−ye2ν dν
dr 0 0

0 yR dR
dr 0

0 0 yR dR
dr sin2 θ



 . (15)
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From (14) it is apparent that the induced metric agrees if and only if the value of R and ν agrees on the matching
surfaces. Then the extrinsic curvatures are matched appropriately if and only if y dν

dr and y dR
dr agrees. The agreement

of R has the obvious physical meaning of equal area matching spheres, while the equality of ν can always be ensured
by appropriate rescaling the time coordinate in the interior fluid domain. If we use Gauss coordinates in both domain
then y = 1 and the matching of the extrinsic curvature is equivalent to the continuity of the first derivative of ν and
R. However, in general, it is also possible to give coordinate system invariant meaning to these conditions.
The invariant mass function in spherically symmetric cosmological spacetimes can be defined as

m =
R

2
(1− gabR,aR,b)−

Λ

6
R3. (16)

For vanishing cosmological constant this gives back the usual mass definition given in [39]. For the metric form (13)
we get

m =
R

2

[

1− y2
(

dR

dr

)2
]

− Λ

6
R3. (17)

From this we can see that if m agrees on the two matching surfaces of equal area then y dR
dr must also be the same.

The other invariant quantity is the pressure at the matching surface, which for the metric (13) takes the form

p =
y2

R

dR

dr

(

2
dν

dr
+

1

R

dR

dr

)

+ Λ. (18)

It is apparent that if R and y dR
dr both agree on the matching surfaces and dR

dr 6= 0 then y dν
dr will be the same if and

only if the pressures are the same. Consequently, if dR
dr 6= 0, the matching of two static perfect fluid solutions can be

done at two chosen spherical surfaces if and only if the surfaces has the same area, the mass function has the same
value, and the pressures agrees as well. Obviously, if the exterior domain is a vacuum, then the fluid pressure at the
surface must vanish. It is interesting that in case of a Nariai exterior dR

dr = 0 and the p = 0 condition is not enough

to ensure the continuity of y dR
dr .

The quantity y dν
dr is closely related to the acceleration of static non-rotating observers staying at constant radius r.

In the coordinate system xa = (t, r, θ, φ) used in (13) these observers have the velocity vector va = (e−ν , 0, 0, 0). The
only non-vanishing component of their acceleration vector aa = ub∇bu

a is ar = y2 dν
dr . The norm of the acceleration

is |a| = √
aaaa = y

∣

∣

dν
dr

∣

∣. This shows that apart from a possible signature change the continuity of the magnitude of

the acceleration implies the continuity of y dν
dr in the matching condition.

C. Joining interior and exterior solution

For cosmological constants satisfying Λ < ΛN the area of the group orbits at the p = 0 surface is increasing and we
join the Schwarzschild-de Sitter (or Schwarzschild anti-de Sitter for Λ < 0) metric on as the exterior vacuum spacetime.
Since the cosmological constant is fixed by the specific solution it remains to choose the mass appropriately. In the

Schwarzschild area coordinate R the mass is defined by M =
∫ Rs

0
4πR2ρ(R)dR, where Rs is defined by p(Rs) = 0.

By using Gauss coordinates relative to the r = const. hypersurfaces the metric is C1 at the boundary. If the energy
density is non-vanishing at the boundary this cannot be improved. After placing one object in the Schwarzschild-de
Sitter spacetime, it still contains an infinite series of singularities. However, by placing a second object appropriately
in that spacetime, it is possible to construct a singularity-free spacetime, see Fig. 1. This possibility has been discussed
earlier in greater detail in [2, 3].
For Λ = ΛN we explicitely show the matching of the interior perfect fluid spacetime with the exterior Nariai

spacetime. We follow the generic discussion of matching two static and spherically symmetric regions presented in
the previous subsection. We read off and compare at the matching surface the corresponding functions ν, y and R in
the general form of the line element (13).
Recall that the static form of the Nariai metric is given by [7]

ds2 = − cos2 χdt2 +
1

Λ

(

dχ2 + dΩ2
)

. (19)

We note that this form of the metric is not homogeneous, since the static observers described by constant (χ, θ, φ)

are not equivalent. The magnitude of their acceleration is |a| =
√
Λ tanχ. Somewhat surprisingly, this acceleration
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r = ∞, I−

r +
+

r
+
+

r = ∞, I +

r
=

R r
=

R

FIG. 1: Penrose-Carter diagram with two stellar objects separated by a Schwarzschild-de Sitter vacuum domain. The radii R
of the stellar objects is between the radii of the black hole and cosmological horizons. Since the group orbits are increasing up
to R the vacuum part contains the cosmological event horizon r++.

is towards the χ = 0 surface, since the non-vanishing component of their acceleration, given by ar = −Λ tanχ, is
negative for χ > 0.
The metric functions of the Nariai spacetime in the coordinate system (13) are given by

e2νN = cos2 χ, y2N = Λ, R2
N =

1

Λ
. (20)

The corresponding functions in the Whittaker fluid region are

e2νW = c2f, y2W = a2f, R2
W =

sin2 α

a2
, (21)

where f is given by (3). The agreement of the induced metric, i.e. the matching of R and ν implies

1

Λ
=

sin2 α

a2
, cos2 χ = c2f. (22)

The condition yN
dRN

dχ = yW
dRW

dα implies α = π/2 for the matching surface in the fluid region. From this it follows

that Λ = a2, which is just the condition of vanishing pressure at the equator of the Whittaker solution. The remaining
matching condition yN

dνN
dχ = yW

dνW
dα yields

tanχ = − πB

4
√
1 +B

=
π

4

(

1− 4πρ0
Λ

)

√

Λ

4πρ0
. (23)

So if Gauss coordinates are used, i.e. y = 1, we explicitly showed the matching of the interior and the exterior metric
to be of degree C1 (ν, R, ν′ and R′ all agree on the zero pressure surface). This differentiability condition cannot be
improved when the equation of state of the fluid constrains the energy density at the boundary to be positive. In this
case the energy-momentum tensor jumps at the boundary and the metric is at most C1. Figure 2 shows the Penrose
diagram of this spacetime.
Lastly, for cosmological constants satisfying Λ > ΛN the group orbits at the p = 0 surfaces are decreasing and

we join the Schwarzschild-de Sitter metric on as the exterior vacuum spacetime. Since the cosmological constant is
fixed by the specific solution it remains to choose the mass appropriately, see the discussion above. By using Gauss
coordinates the metric is C1 at the boundary. If the energy density is non-vanishing at the boundary this cannot
be improved. It is important to note that the vacuum part of this spacetime contains the singularity at the origin
r = 0 and that the matter occupies the ’outer’ region of the spacetime, see Penrose diagram 3, where a second object
was inserted in the spacetime to remove the infinite sequence of singularities present in the Schwarzschild-de Sitter
diagram.

D. Cosmological Tolman solutions

In principle, the above discussion can now be repeated for all the 127 candidate solutions presented in [40] (of
which only 60% are isotropic and regular at the center). For all those one could check whether the inclusion of
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r
=

R r
=

R

I−

I +

FIG. 2: Penrose-Carter diagram with two stellar objects having radii R which require the Nariai spacetime to be the vacuum
part of the global solution. The solid and dashed lines represent the future and past event horizon, respectively.

r +

r = 0

r = 0

r
+

r
=

Rr
=

R
FIG. 3: Penrose-Carter diagram with two stellar objects connected by a Schwarzschild-de Sitter vacuum domain. Since the
group orbits are decreasing at the matching surface the vacuum part contains the black hole horizon and the r = 0 singularity.

the cosmological constant can pull the matter up to or beyond the equator of the corresponding ellipsoid. We will,
however, only repeat this analysis for the Tolman IV solution. This particular choice is motivated by the simplicity
of the solution which also allows to analytically express its equation of state.
We now take a fresh look at the Tolman IV solution [35]. Its metric reads

ds2 = −B2
(

1 + r2/A2)dt2 +
1 + 2r2/A2

(1− r2/R2)(1 + r2/A2)
dr2 + r2dΩ2, (24)

where A and R are positive constants. Introducing the third angle by r = R sinα yields

ds2 = −B2
(

1 + (R2/A2) sin2α)dt2 +R2
[1 + 2(R2/A2) sin2α

1 + (R2/A2) sin2α
dα2 + sin2αdΩ2

]

. (25)

Pressure and energy density respectively are given by

8πp(α) =
R2 − 3R2 sin2α−A2

R2(A2 + 2R2 sin2α)
+ Λ, (26)

8πρ(α) =
R2 + 3R2 sin2α+ 3A2

R2(A2 + 2R2 sin2α)
+

2A2 cos2α

(A2 + 2R2 sin2α)2
− Λ. (27)

Since all quantities depend on α only through sin2 α and cos2 α, the solution is symmetric to the equator α = π/2.
Eliminating the variable α from Eqs. (26) and (27) leads to the following equation of state

ρ = c0 + c1p+ c2p
2, (28)

where the three constants ci are given by

c0 =
(3− 2ΛR2)(R2 +A2(2 − ΛR2))

4πR2(A2 + 2R2)
, c1 =

2R2 + A2(13− 8ΛR2)

A2 + 2R2
, c2 =

32πA2R2

A2 + 2R2
. (29)
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As in the previous discussion let us now compute the value of the pressure and density at the first center (α = 0),
at the equator of the ellipsoid (α = π/2) and at the second possible center (α = π), which yields

8πp(0) =
1

A2
− 1

R2
+ Λ, 8πρ(0) =

3

A2
+

3

R2
− Λ, (30)

8πp(π/2) = − 1

R2
+ Λ, 8πρ(π/2) =

3A2 + 4R2

R2(A2 + 2R2)
− Λ, (31)

8πp(π) =
1

A2
− 1

R2
+ Λ, 8πρ(π) =

3

A2
+

3

R2
− Λ. (32)

Similarly to the Whittaker case there exists a cosmological constant such that the pressure vanishes at the equator

Λ =
1

R2
=: ΛN , (33)

where the energy density is positive. In this case one has to match the Nariai metric. For smaller cosmological
constants, i.e. Λ < ΛN , the pressure vanishes before the equator and one has to join on the Schwarzschild-de Sitter (or
Schwarzschild anti-de Sitter) metric as the exterior vacuum spacetime. However, the pressure cannot vanish after the
equator, as can be seen from the mirror symmetry to the equator of the solution. Therefore, solutions with Λ > ΛN

have two centers. One easily verifies that both centers are regular by checking that the derivatives of pressure and
energy density vanish at both centers. Hence, as a side result we already found a new generalization of the Einstein
static universe.
The Einstein universe is characterized by its constant energy energy and constant pressure (originally Einstein

assumed a pressure-less universe) throughout the three-sphere. By a generalization of the Einstein static universe we
mean a globally regular solution of the field equations with cosmological constant where the spatial part of the metric
is a closed three-space and where either the energy density or the pressure, or both are varying.
It is expected that other known perfect fluid solutions, e.g. those given in Ref. [40], will show similar properties.

Therefore, following the above procedure, we can explicitely show the existence of a wide class of generalized Einstein
static universes and an even wider class of static and spherically symmetric perfect fluid solutions, for which the
pressure vanishes in regions where the group orbits are decreasing.

III. ANALYTIC CONSIDERATIONS

In the previous sections we analyzed perfect fluid solutions which may extend through the equator of the ellipsoid
that describes the global geometry of the spatial hypersurfaces. The present section supplements the explicit and
later numerical results by presenting some general statements. It should also be mentioned that the existence and
uniqueness of perfect fluid solutions was proved in [41]. The restrictions on the equations of state could be weakened
in Refs. [42, 43]. The existence and uniqueness proof of [41] could be extended to include cosmological constants
satisfying Λ < 4πρ(p = 0) in [2, 44]. Let us now consider the static and spherically symmetric line element in Gauss
coordinates relative to the r = const. hypersurfaces

ds2 = −e2ν(r)dt2 + dr2 +R2(r)dΩ2, (34)

the resulting field equations Gab + Λgab = 8πTab are given by

1−R′2 − 2RR′′

R2
− Λ = 8πρ, (35)

R′2 − 1 + 2RR′ν′

R2
+ Λ = 8πp, (36)

ν′R′ +R(ν′2 + ν′′) +R′′

R
+ Λ = 8πp, (37)

that imply the conservation of the energy-momentum tensor

p′ + ν′(p+ ρ) = 0, (38)

where the prime denotes differentiation with respect to r. The maximum of the area of the group orbits is located at
the maximum of the function R(r), which means R′(rm) = 0, where rm is the location of the maximum. We henceforth
assume that such a maximum exists (To be precise we only assume that the function R(r) has an extremum and it
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will turn out that this extremum is a maximum if we require the energy density to be positive at rm. For r = rm the
mass definition (17) implies 1− 2m(rm)/R(rm)− Λ/3R(rm)3 = 0).
Note that mass (17) and energy density ρ are related by

dm

dR
=

m′

R′
= 4πρR2. (39)

Eliminating the function ν′ from the first two field equations (35)–(36) and the conservation equation (38) yields
the Tolman-Oppenheimer-Volkoff (TOV) [35, 45] equation

dp

dR
= −R

(p+ ρ)(4πp+m/R3 − Λ/3)

1− 2m
R − Λ

3R
3

, (40)

where we used that dp/dr = (dp/dR)R′. At the maximum rm the TOV equation is ill-defined since the denominator
tends to zero. However, this is not a physical singularity, as can easily be seen by considering the derivative of the
second field equation (36) evaluated at R′ = 0 which reads

8πp′(rm) = 2ν′(rm)
R′′(rm)

R(rm)
, (41)

and moreover all Riemann tensor components (A1) are well defined at r = rm. Furthermore one can the express
energy density plus the pressure function in terms of the Riemann tensor,

4π(ρ+ p) = Rrθ
rθ −Rθt

θt = Rrφ
rφ −Rφt

φt, (42)

so that this sum is well defined if the spacetime is non-singular. Let us furthermore evaluate the field equations at
rm which yields

1− 2R(rm)R′′(rm)

R2(rm)
− Λ = 8πρ(rm), (43)

−1

R2(rm)
+ Λ = 8πp(rm), (44)

R(rm)(ν′(rm)2 + ν′′(rm)) +R′′(rm)

R(rm)
+ Λ = 8πp(rm). (45)

Next, from equation (44) we find that the pressure is positive at the equator if the cosmological constant is large
enough, this means if

Λ >
1

R2(rm)
=: ΛN . (46)

For the special case Λ = ΛN the pressure vanishes at the equator, i.e. the maximum of the area of the group orbits.
Putting this particular value of the cosmological constant into the first field equations yields

1− 2R(rm)R′′(rm)

R2(rm)
− ΛN = −2

R′′(rm)

R(rm)
= 8πρ(rm), (47)

from which we conclude that R′′(rm) < 0 to have a physically meaningful perfect fluid solution. Indeed, this condition
simply states that the equator is a local maximum of the group orbits’ area. This fact was not assumed explicitely
and is a direct consequence of assuming physical solutions: positivity of the energy density.
The above analysis clarifies under which conditions static and spherically symmetric perfect fluid ellipsoids may

extend through the equator and have a zero pressure surface in regions where the area of the group orbits is decreasing.
However, condition (46) depends on the function R(r) and therefore essentially depends on the solution. Given an
equation of state, a central pressure and a cosmological constant, such that the pressure (and by the equation of state
the energy density) is decreasing near the center, the above considerations are not sufficient to decide whether the
pressure vanishes before the equator or not. Therefore one should find a condition depending solely on the equation
of state and on the initial conditions (pressure at the center and the cosmological constant) so that one controls the
location of the zero pressure surface.
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The TOV equation (40) seems to be ill-defined at rm, since its denominator vanishes. On the other hand, the
field equations imply that the spacetime is regular where R′(rm) = 0. Therefore we can conclude that the limit
limr→rm p′(r) must exist, so that we write limr→rm p′(r) = a. Existence of p′(rm) can be put back into (40) and yields

a =
p(rm) + ρ(rm)

R(rm)2
lim

r→rm

(4πp(r)R(r)3 +m(r) − Λ/3R(r)3)

R′(r)
. (48)

Since limr→rm R′(r) = 0, the numerator also must vanish as r → rm,

lim
r→rm

(4πp(r) +m(r)/R(r)3 − Λ/3) = 4πp(rm) +m(rm)/R(rm)3 − Λ/3 = 0, (49)

which can be written more conveniently (for the present purpose)

4πp(rm) =
1

R(rm)3

(

Λ

3
R(rm)3 −m(rm)

)

. (50)

Before exploiting the latter equation (50), we note that it is easy to show that the pressure in the TOV equation (40)
is decreasing near the center if

Λ < 4πρ(pc) + 12πpc, (51)

a condition that only depends on the initial values and the equation of state.
According to equation (50) the signature of the pressure at the equator is determined by the signature of the

quantity

Λ

3
R3

m −m(Rm) =

∫ Rm

0

[Λ − 4πρ(R)]R2dR, (52)

where we used the definition of mass, see (39). Since pressure and by a monotonic equation of state also the energy
density are decreasing functions, ρ(p = pc) ≥ ρ(rm), and a sufficient condition to satisfy the inequality p(rm) > 0 is

4πρ(p = pc) < Λ. (53)

Hence, if we the cosmological term is large enough, compared to the central density, then the pressure does not vanish
before the equator of the interior spacetime.
Next we find a necessary condition for a positive pressure at the equator. Let us assume p(rm) ≥ 0. Then the

integral of Λ − 4πρ(R) is non negative. Since going outwards p and ρ are monotonically decreasing it follows that
Λ− 4πρ(Rm) ≥ 0. But because the zero pressure surface is after the equator, by the monotonicity condition we have
ρ(Rm) ≥ ρ(p = 0), and consequently Λ ≥ 4πρ(p = 0). On the other hand, this means that if

Λ < 4πρ(p = 0) (54)

then necessarily p(rm) < 0. This condition is in agreement with previous results, see e.g. [2, 3]. Hence, if the given
equation of state and the cosmological constant satisfy the condition (54), then the pressure vanishes before the
equator of the ellipsoid.
Next, let us assume that the pressure vanishes at the maximum of the area of the group orbits, so that the equator

is also the zero pressure surface. In this case, as we already showed in the previous sections, one has to join on the
Nariai metric. Putting p(rm) = p(rb) = 0 into (50) leads to

m(rb) = M =
Λ

3
R3

b ,

∫ Rb

0

4πρ(R)dR =
Λ

3
R3

b (55)

which relates the mass of the solution to the cosmological constant. Unfortunately this condition cannot be written
in a form such that the equation of state suffices to choose the initial values for such a solution.
These three observations can be summarized as follows

Λ < 4πρ(p = 0) pressure vanishes before the equator,

4πρ(p = 0) < Λ < 4πρ(p = pc) no analytical control,

4πρ(p = pc) < Λ pressure can vanish only after the equator,
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which only depend on the equation of state and the initial conditions. However, these conditions only yield quite
general conclusions. They do not suffice to decide whether the solution can have a second regular center, i.e. perfect
fluid solutions which occupy the whole ellipsoid. From equation (51) we can conclude that the pressure is increasing
near the first regular center if we assume Λ > 4πρ(pc)+12πpc, however, we cannot control the further behavior of the
solution and may obtain a singular solution where the pressure diverges, or a solution with a second center having a
conical singularity.
Let us furthermore discuss the consequences of having a regular center. Regularity of the solution at the center

in particular fixes some of the coefficients in the power series expansion of the function R(r), see e.g. [46], which are
given by

R(rc) = 0, R′(rc) = 1, R′′(rc) = 0. (56)

However, the part R′′′(rc) is also determined by the initial conditions, as can be seen from the first field equation (35)

8πρ(pc) + Λ = lim
r→rc

1−R′2

R2
− lim

r→rc

2R′′

R
. (57)

After applying the rule of L’Hopital and using the relations (56) we arrive at

8πρ(pc) + Λ = −3R′′′(rc), (58)

so that also the third derivative is fixed by the initial conditions. In case there exists a second regular center rc2 we
have

R(rc2) = 0, R′(rc2) = −1, R′′(rc2) = 0 (59)

so that R′′′(rc2) is given by

8πρ(pc2) + Λ = 3R′′′(rc2). (60)

The conditions (56), (58) and also (59), (60) must be satisfied independently by any solution admitting two regular
centers. While one prescribes initial conditions at the first center, the regularity of the second center is by no means
warranted since it actually depends on the solution of the function R together with the equation of state that also
enter (60).
In the next section we will analyze the field equations numerically for given equations of state. It will turn out

that none of the equations of state considered allows a second regular center. Therefore, all solutions that have
an increasing pressure near the first center will have either a divergent pressure, or a second center with a conical
singularity, and are hence not of physical interest in general.

IV. NUMERICAL CONSIDERATIONS

In sections II A and IID we generalized two known solutions to include the cosmological constant. For large
cosmological constant we found that new properties arise like the possibility of having a second regular center. In
the previous analytic section we presented some arguments in favor of the existence of solutions with cosmological
constant that may occupy more than ‘half’ the three space. This result can also be read in the flowing way: For
sufficiently large cosmological constants the pressure cannot vanish before the equator of the three space, so that some
new physical properties may arise. However, it was also argued that in general a second regular center does not exist.
It is the aim of the present section to solve the field equations (35)–(37) numerically for a given equation of state

ρ = ρ(p). In particular we are interested in solutions where the pressure vanishes after the group orbit’s maximum
of the three space and in solutions that possibly have two regular centers. We concentrate on these two classes of
solutions, since the others are well known already.
The most natural starting point for the numerical analysis are the polytropic equations of state

p(ρ) = Kρ
n+1

n , ρ(p) =
( p

K

)
n

n+1

, (61)

where K is some constant and n is the polytropic index. In the Newtonian case stellar models are finite if 1 < n < 5
and do not have a finite radius for n ≥ 5, where also Λ = 0 is assumed. We slightly modify the polytropic equations
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of state, in order to allow a non-vanishing boundary density ρb = ρ(p = 0). Hence, we consider the following equation
of state

ρ(p) =
( p

K

)
n

n+1

+ ρb, (62)

where the boundary density is a new free parameter that we must specify. We chose K = 1, the polytropic index
n = 3 and ρb = 0.5. For two different cosmological constant (‘small’ and ‘large’) we obtain the two following solutions,
Fig. 4a and Fig. 4b.
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FIG. 4: Pressure function and radius for the polytropic equations of state, with K = 1, n = 3 and ρb = 0.5. Initial conditions
are pc = 1.0 (ρc = 1.5) and Λ = π/2 (left), Λ = 4.3π (right).

As expected, for small cosmological constant, see Fig. 4a, the pressure vanishes before the maximum of the group
orbits. At the vanishing pressure surface one can join on the Schwarzschild-de Sitter metric C1 as the exterior
spacetime, with the methods described in subsection II B. These solutions are represented by the Carter-Penrose
diagram 1 discussed earlier. For large cosmological constant however, see Fig 4b, the pressure vanishes after the
maximum, in a region where the group orbits are decreasing. This would necessarily yield a global solution represented
by the Carter-Penrose diagram 3, where the exterior spacetime contains the singularity. Since the numerical solutions
vary smoothly in the cosmological constant, it is evident that a fine tuned cosmological constant can be chosen such
that the pressure vanishes exactly at the maximum of the group orbits, in which case one has to join the Nariai metric
as the exterior spacetime.
Next, let us analyze the solutions for the stiff matter equation of state (the n → ∞ limit of the polytropic equation

of state)

ρ(p) = p+ ρb, (63)

which we, as before, supplemented by a boundary density term ρb. For the stiff matter case we again take two different
values of the cosmological constant. The results are similar to those discussed already, see Fig. 5a and Fig. 5b.
Finally let us consider the Hagedorn equation of state

ρ(p) = ρ∗ exp
( p

ρ∗
− 1

)

, (64)

where the free parameter ρ∗ is related to the boundary density by ρb = ρ(p = 0) = ρ∗/e. As in the previously discussed
cases, we find that for ‘small’ cosmological constants the pressure vanishes before the maximum of the group orbits,
whereas ‘large’ values of the cosmological constant allow the pressure to vanish after the maximum, see Fig. 6a and
Fig. 6b.
Apart from the incompressible perfect fluid case we could not find numerically any other configuration with a

second regular center. This indicates that the existence of the second center requires a very specific choice of the
fluid’s equation of state and carefully chosen initial conditions.

V. SUMMARY AND CONCLUSIONS

We have used analytical and numerical techniques to analyze the static and spherically perfect fluid field equations
of general relativity in the presence of a cosmological constant. A positive cosmological term can be viewed as an
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FIG. 5: Pressure function and radius for the stiff matter equation of state, with ρb = 0.5. Initial conditions are pc = 1.0
(ρc = 1.5) and Λ = π (left), Λ = 3.7π (right).
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FIG. 6: Pressure function and radius for the Hagedorn equation of state, with ρ∗ = 2.0. Initial conditions are pc = 1.0
(ρc ≈ 1.21) and Λ = π/8 (left), Λ = 5π (right).

external force having the effect of pulling matter apart. Hence, one can expect that the radial size of matter spheres
is increased due to Λ. This naturally yields questions regarding the physical picture applicable to these solutions. It
turns out that the effects of the cosmological constant lead to various different configurations, many of which have
not been discussed previously.
By using Gauss coordinates relative to the r = constant hypersurfaces, we analyzed geometrically the properties

of the vanishing pressure surface that determines the boundary of the perfect fluid sphere. In the absence of the
cosmological constant, going outwards, the area of the respective group orbits are always increasing close to the zero
pressure surface. This situation changes drastically if Λ is allowed to be relatively large in comparison with the matter
density. It is possible for the pressure to vanish exactly at the maximum of the group orbits or even vanish where the
group orbits are decreasing. In the first case one has to join on the Nariai solution to get the metric C1 at boundary.
In the latter case one matches the part of the Schwarzschild-de Sitter solution containing the black hole horizon and
the singularity. This is in contrast to the the small Λ situation where the vacuum region contains the cosmological
horizon. Lastly, one is lead to ask whether the matter can occupy the whole spacetime resulting in two regular centers
corresponding to a fully generalized Einstein static universe where neither the energy density nor the pressure are
constant.
We showed that the Whittaker solution can have its vanishing pressure surface where the group orbits are decreasing,

however, a second center is not possible. On the other hand, the Tolman IV solution does allow for a second regular
center, a solution that might be named Tolman IV Einstein universe. By numerically integrating the field equations
for physically motivated equations of state we showed that in general the pressure can vanish where the group orbits
are decreasing and consequently at the maximum for sufficiently fine tuned initial conditions. We also obtained
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analytical bounds that the cosmological constant has to satisfy to allow for such situations. However, we were not
able to show, that in general, solutions with two regular centers for a given equation of state exist. This observation
has analytical support since the conditions under which the solutions have two regular centers are very restrictive.
Note however, that the special Tolman IV equation of state (28) admits solutions with a second regular center.
Ever since the first exact matter solutions have been obtained, static and spherically symmetric perfect fluid

spacetimes have remained a subject of great interest. The presence of matter that effectively acts like a perfect fluid
with unusual equations of state, such as p/ρ = −1, drastically changes the geometry of known solutions.
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APPENDIX A: FIELD EQUATIONS AND RIEMANN TENSOR

The non-vanishing Riemann tensor components are

Rrt
rt = −ν′2 − ν′′, Rθφ

θφ =
1−R′2

R2
,

Rrθ
rθ = Rrφ

rφ = −R′′

R
, Rθt

θt = Rφt
φt = −ν′

R′

R
. (A1)

One can rewrite the field equations (35)–(37) to get

R′′

R
= −4πρ− Λ

3
+

m

R3
, (A2)

ν′
R′

R
= 4πp− Λ

3
+

m

R3
, (A3)

ν′2 + ν′′ = 4π(ρ+ p)− 2m

R3
− Λ

3
, (A4)

and hence the Riemann tensor in terms of physical quantities

Rrt
rt = −4π(ρ+ p) +

2m

R3
+

Λ

3
, (A5)

Rθφ
θφ =

2m

R3
+

Λ

3
, (A6)

Rrθ
rθ = Rrφ

rφ = 4πρ+
Λ

3
− m

R3
, (A7)

Rθt
θt = Rφt

φt = −4πp+
Λ

3
− m

R3
. (A8)

[1] H. Weyl, Physikalische Zeitschrift 20, 31 (1919).
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