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Black holes are popping up all over the place: in compact binary X-ray sources and GRBs,
in quasars, AGNs and the cores of all bulge galaxies, in binary black holes and binary black
hole-neutron stars, and maybe even in the LHC! Black holes are strong-field objects governed
by Einstein’s equations of general relativity. Hence general relativistic, numerical simulations
of dynamical phenomena involving black holes may help reveal ways in which black holes can
form, grow and be detected in the universe. To convey the state-of-the art, we summarize several
representative simulations here, including the collapse of a hypermassive neutron star to a black
hole following the merger of a binary neutron star, the magnetorotational collapse of a massive
star to a black hole, and the formation and growth of supermassive black hole seeds by relativistic
MHD accretion in the early universe.

1. Introduction

Black holes are ‘sighted’ everywhere in the universe these days. Originally located
in compact binary X-ray sources in the 1970’s, the cosmic presence of black holes has
expanded considerably in recent decades. They now are believed to be the central engines
that power quasars, active galactic nuclei (AGNs) and gamma-ray bursts (GRBs). They
are identified in the cores of all bulge galaxies. They are presumed to form signficant
populations of compact binaries, including black hole-black hole binaries (BHBHs) and
black hole-neutron star binaries (BHNSs). Black holes may even show up soon in the
Large Hadron Collider!

Gravitationally, black holes are strong-field objects whose properties are governed by
Einstein’s theory of relativistic gravitation — general relativity. General relativistic sim-
ulations of gravitational collapse to black holes, BHBH mergers and recoil, black hole
accretion, and other astrophysical phenomena involving black holes may help reveal how,
when and where black holes form, grow and interact in the physical universe. As a con-
sequence, such simulations can help identify the ways in which black holes can best be
detected.

To illustrate how our understanding of black hole phenomena is sharpend by large-
scale simulations in general relativity, we summarize in this paper the results of several
recent computational investigations. The first few involve the formation of black holes
from stellar collapse, while the last one concerns supermassive black hole growth via
disk accretion. Most of these simulations utilize the tools of numerical relativity to solve
Einstein’s field equations of general relativity. So we shall begin with a brief overview of
this important, rapidly maturing field.

2. Numerical Relativity and the 3 + 1 Formalism

Most current work in numerical relativity is performed within the framework of the
3 4 1 decomposition of Einstein’s field equations using some adaptation of the standard
ADM equations (Arnowitt, Deser & Misner 1962)). In this framework spacetime is sliced
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FIGURE 1. 341 decomposition of spacetime.

up into a sequence of spacelike hypersurfaces of constant time ¢, appropriate for solving
an initial-value problem. Consider two such time slices separated by an infinitesimal
interval dt as shown in Fig [[I The spacetime metric measures the invariant interval
between neighboring points A and B on the two slices according to

ds® = —a?dt* + v;;(da’ + Bidt)(da? + pdt) , (2.1)

where ;; is the spatial 3-metric on a time slice, o is the lapse function determining the
proper time between the slices as measured by a time-like normal observer n® at rest in
the slice, and 3¢ is the shift vector, a spatial 3-vector that describes the relabeling of the
spatial coordinates of points in the slice. The gravitational field satisfies the Hamiltonian
and momentum constraint equations on each time slice, including the initial slice at ¢t = 0:

R+ K? - K;j; K" = 16mp (Hamiltonian) , (2.2)
D;(KY —4"K) = 8rS" (momentum) .

Here R = R’; is the scalar curvature on the slice, R;; is the 3-Ricci tensor, K;; is the
extrinsic curvature, K is its trace, and D; is the covariant derivative operator on the slice.
The quantities p and S? are the mass and momentum densities of the matter, respectively;
such matter source terms are formed by taking suitable projections of the matter stress-
energy tensor 7% with respect to the normal observer. Included in this stress-energy
tensor are contributions from all the nongravitational sources of mass-energy, which we
are simply calling the “matter” (e.g., baryons, electromagnetic fields, neutrinos, etc.).

A gravitational field satisfying the constraint equations on the initial slice can be
determined at future times by integrating the evolution equations,

Orvij = —20K;; + Dif; + D;fi (2.4)
0y Kij = o(Rij — 2Ky K*; + KKi;) — DiDja (2.5)
+ BP0 Iy + K0 8" + Ki0ift — 8ma(Sy; — %%‘j(s =),

where S and S;; are additional matter source terms. The evolution equations guarantee

that the field equations will automatically satisfy the constraints on all future time slices

identically, provided they satisfy them on the initial slice. Of course, this statement ap-

plies to the analytic set of equations and not necessarily to their numerical counterparts.

Note that the 341 formalism prescribes no equations for  and 3*. These four functions

embody the four-fold gauge (coordinate) freedom inherent in general relativity. Choosing

them judiciously, especially in the presence of black holes, is one of the main challenges
of numerical relativity.
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2.1. The BSSN Scheme

During the past decade, significant improvement in our ability to numerically integrate
Einstein’s equations stably in full 3 + 1 dimensions has been achieved by recasting the
original ADM system of equations. One such reformulation is the so-called BSSN scheme
(Shibata & Nakamura 1995} [Baumgarte & Shapiro 1999)). In this scheme, the physical
metric and extrinsic curvature variables are replaced in favor of the conformal metric and
extrinsic curvature, in the spirit of the “York-Lichnerowicz” split (Lichnerowicz 1944}
York 1971J):

Fij = e 4y, where e =413 (2.6)
_ - 1.
Aij = Kij - g’}/”K . (27)

Here a tilde~denotes a conformal quantity and - is the determinant of v;;. At the same
time, a connection function I'? is introduced according to

I =470, = —9,77 . (2.8)

The quantities that are independently evolved in this scheme are now 7;;, /L-j, ¢, K and

I'". The advantage is that the Riemann operator appearing in the evolution equations
(cf. eqn. ([2.3])) takes on the form,

~ 1. B ~ ~
Rij =—5 F"OmOFi + ATt (2.9)
N——— N—_———
‘Laplactan' remaining 2nd derivs

Thus the principal part of this operator, 79,,0,7;; is that of a Laplacian acting on the
components of the metric 4;;. All the other second derivatives of the metric have been
absorbed in the derivatives of the connection functions. The coupled evolution equations
for 7;; and A;; (cf. eqns. [4) and (23H) then reduce essentially to a wave equation,

Oij ~ 0, Aij ~ Rij ~ V?3;; . (2.10)

Wave equations not only reflect the hyperbolic nature of general relativity, but can be
implemented numerically in a straight-forward and stable manner. By now, numerous
simulations have demonstrated the dramatically improved stability achieved in the BSSN
scheme over the standard ADM equations, and considerable effort has gone into explain-
ing the improvement on theoretical grounds [see, e.g., [Baumgarte & Shapiro 2003| for
discussion and references]. Many of the recent BHBH merger calculations have been per-
formed using this scheme, beginning with |(Campanelli et al. (2006) and [Baker et al. (2006)
(but see[Pretorius 2005/for an alternative approach). The same is true for the simulations
described below.

3. Binary Neutron Star Mergers and Hypermassive Stars

The protagonist of several different astrophysical scenarios probed by recent numerical
simulations is a hypermassive star, typically a hypermassive neutron star (HMNS). A
hypermassive star is an equilibrium fluid configuration that supports itself against grav-
itational collapse by differential rotation. Uniform rotation can increase the maximum
mass of a nonrotating, spherical equilibrium star by at most ~ 20%, but differential rota-
tion can achieve a much higher increase (Baumgarte, Shapiro & Shibata 2000; Morrison,
Baumgarte & Shapiro 2004). Dynamical simulations using the BSSN scheme demonstrate
(Baumgarte, Shapiro & Shibata 2000|) that hypermassive stars can be constructed that
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are dynamically stable, provided the ratio of rotational kinetic to gravitational potential
energy, 3, is not too large; for 8 2 0.24 the configuration is subject to a nonaxisymmetric
dynamical bar instability (Shibata, Baumgarte & Shapiro 2000; [Saijo et al. 2001)). How-
ever, all hypermassive stars are secularly unstable to the redistribution of angular angular
momentum by viscosity, magnetic braking, gravitational radiation, or any other agent
that dissipates internal shear. Such a redistribution tends to drive a hypermassive star to
uniform rotation, which cannot support the mass against collapse. Hence hypermassive
stars are transient phenomena. Their formation following, for example, a NSNS merger,
or core collapse in a massive, rotating star, may ultimately lead to a ‘delayed’ collapse
to a black hole on secular (dissipative) timescales. Such a collapse will be accompanied
inevitably by a delayed gravitional wave burst (Baumgarte, Shapiro & Shibata 2000}
Shapiro 2000).

The above scenario has become very relevant in light of the most recent and detailed
simulations in full general relativity of NSNS mergers. State-of-the-art, fully relativistic
simulations of NSNSs have been performed by Shibata and his collaborators (Shibata,
Taniguchi & Urya 2003,2005; [Shibata 2005; [Shibata & Taniguchi 2006)). They consider
mergers of n = 1 polytropes, as well as configurations obeying a more realistic nuclear
equation of state (EOS). They treat mass ratios @y in the range 0.9 < Qu < 1,
consistent with the range of Q)s in observed binary pulsars with accurately determined
masses (Thorsett & Chakrabarty 1999; [Stairs 2004). The key result is that there exists
a critical mass M,y ~ 2.5 — 2.7Mg of the binary system above which the merger leads
to prompt collapse to a black hole, and below which the merger forms a hypermassive
remnant. With the adopted EOS, the HMNS remnant undergoes delayed collapse in
about ~ 100 ms and emits a delayed gravitational wave burst. Most interesting, prior to
collapse, the remnant forms a triaxial bar when a realistic EOS is adopted (see Fig. )
and the bar emits quasiperiodic gravitational waves at a frequency f ~ 3 —4 kHz. Such a
signal may be detectable by Advanced LIGO. It is interesting that for the adopted EOS,
the mass M., is close to the value of the total mass found in each of the observed binary
pulsars. Given that the masses of the individual stars in a binary can be determined
by measuring the gravitational wave signal emitted during the adiabatic, inspiral epoch
prior to plunge and merger, the detection (or absence) of any quasiperiodic emission from
the hypermassive remnant prior to delayed collapse may significantly constrain models
of the nuclear EOS.

The possibility that a HMNS remnant forms following a NSNS merger had been fore-
shadowed in earlier Newtonian simulations (Rasio & Shapiro 1994,1999; Zhuge, Centrella
& McMillan 1996), in post-Newtonian simulations (Faber & Rasio 2000,2002) and in con-
formally flat general relativistic simulations (Faber, Grandclément & Rasio 2004). How-
ever, the recent fully relativistic simulations by Shibata, Taniguchi & Uryt (2003,2005),
Shibata (2005) and Shibata & Taniguchi (2006) provide the strongest theoretical evidence
of this phenomenon to date, although the details undoubtedly depend on the adopted
EOS. Triaxial equilibria can arise only in stars that can support sufficiently high values
of B exceeding the classical bifurcation point at 8 ~ 0.14; reaching such high values
requires EOSs with adiabatic indicies exceeding I' ~ 2.25 in Newtonian configurations,
and comparable values in relativistic stars. It is not yet known whether the true nuclear
EOS in neutron stars is this stiff, or what agent for redistributing angular momentum in
a hypermassive star dominates (e.g., magnetic fields, turbulent viscosity or gravitational
radiation). But it is already evident that hypermassive stars are likely to form from some
mergers and that they will survive many dynamical timescales before undergoing de-
layed collapse. The recent measurement (Nice et al. 2005) of the mass of a neutron star
in a neutron star-white dwarf binary of M = 2.1My establishes an observational lower
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FIGURE 2. Formation of triaxial HMNS remnant following NSNS merger in 2.7My system.
Snapshots of density contours are shown in the equatorial plane. The number in the upper
left-hand corner denotes the elapsed time in ms; the initial orbital period is 2.11 ms. Vectors
indicate the local velocity field. [From Shibata, Taniguchi and Urya 2005.]

limit for the maximum mass of a neutron star; such a high value suggests that merg-
ers in typical NSNSs may form hypermassive stars more often than undergoing prompt
collapse.

3.0.1. Collapse of a Magnetized HMNS

The HMNSs found above may survive for many rotation periods. However, as we
stated, on longer timescales magnetic fields will transport angular momentum and this
will trigger gravitational collapse. Two important magnetohydrodynamic (MHD) mech-
anisms which transport angular momentum are magnetic braking (Baumgarte, Shapiro
& Shibata 2000, |Shapiro 2000, |(Cook, Shapiro & Stephens 2003| [Liu & Shapiro 2003))
and the magnetorotational instability (MRI; [Velikhov 1959 [Chandrasekhar 1960l Balbus
& Hawley 1991,1998). Magnetic breaking transports angular momentum on the Alfvén
time scale, 74 ~ R/va ~ 1(B/10'* G)~! s, where R is the radius of the HMNS. MRI
occurs wherever angular velocity (2 decreases with cylindrical radius w. This instability
grows exponentially with an e-folding time of myrr &~ 4 (8/dInw) ", independent of
the field strength. For typical HMNSs considered here, myrr ~ 1 ms. The length scale
of the fastest growing unstable MRI modes, A\\igi, does depend on the field strength:
AMR1 ~ 3 m (©/4000s71)7! (B/10'G) < R. When the MRI saturates, turbulence con-
sisting of small-scale eddies often develops, leading to angular momentum transport on
a timescale much longer than mygr. The computational challenge of evolving an HMNS
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is having sufficient spatial grid to resolve the MRI wavelength and sufficient integration
time to follow the evolution on the long Alfvén timescale.

To determine the final fate of the HMNS, it is necessary to carry out MHD simulations
in full general relativity. Such simulations have only recently become possible. Duez et al.
(2005) and Shibata & Sekiguchi (2005) have developed new codes to evolve the coupled
set of Einstein-Maxwell-MHD equations self-consistently. Our two codes have since been
used to simulate the evolution of magnetized HMNSs (Duez et al. 2006a,2006b), and
implications for short GRBs have been investigated (Shibata et al. 2006)). Both codes
give very similar results.

We assume axisymmetry and equatorial symmetry in all of these simulations. We
use uniform computational grids with sizes up to 500x500 spatial zones in cylindrical
coordinates. To model the remnant formed in binary merger simulations, we use as our
initial data an equilibrium HMNS constructed from a I' = 2 polytrope with mass M 1.7
times the spherical mass limit, or 1.5 times the limit for a uniformly rotating star built
out of the same EOS. These are the typical values expected for a HMNS formed from a
NSNS merger, for which M ~ 2 x 1.4Mg = 2.8 M. The differential rotation profile is
chosen so that the ratio of equatorial to central €2 is ~ 1/3, comparable to what is found
in simulations of NSNS mergers. (We find that an HMNS with a more realistic hybrid
EOS rather than a polytrope evolves similarly; [Duez et al. 2006b} [Shibata et al. 2006]) We
add a seed poloidal magnetic field with strength proportional to the gas pressure. The
initial magnetic pressure is set much smaller than the gas pressure, but not so small that
AMmri cannot be resolved. Therefore, we set Ayr1 &~ R/10, corresponding to B = 1016
G and max(B?/P) ~ 1073. The resulting Alfvén timescale is about 16 central rotation
periods, or 6001 .

In our evolutions, the effects of magnetic winding are reflected in the generation of a
toroidal B field which grows linearly with time during the early phase of the evolution,
and saturates on the Alfvén timescale. The effects of MRI are observed in an exponential
growth of the poloidal field on the Ayrr scale, a growth which saturates after a few rota-
tion periods. The magnetic fields cause angular momentum to be transported outward, so
that the core of the star contracts while the outer layers expand. After about 66 rotation
periods, the core collapses to a black hole. Using the technique of black hole excision (see
Duez, Shapiro & Yo 2004/ and references therein) to remove the interior of the black hole,
with its nasty spacetime singularity, and replace it with suitable boundary conditions on
all the variables just inside the horizon, we continue the evolution to a quasi-stationary
state. The final state consists of a black hole of irreducible mass ~ 0.9M surrounded by
a hot accreting torus with rest mass ~ 0.1M and a magnetic field collimated along the
rotation axis; see Fig. [3l At its final accretion rate, the torus should survive for ~10ms.
The torus is optically thick to neutrinos, and we estimate that it will emit ~ 10%ergs in
neutrinos before being accreted. We also find that the cone outside the black hole cen-
tered along the rotation axis is very baryon-poor. All these properties make this system
a promising central engine for a short-hard GRB.

4. Black Holes as Central Engines for GRBs

The combined observations of BATSE, Swift, HETE-2, Chandra and the HST indi-
cate that GRBs comprise at least two classes: long-soft and short-hard. Long-soft GRBs
have characteristic timescales 7 in the range 7 ~ 2 — 103s. They are found in star-
forming regions (spirals) and some are observed to be associated with supernovae. The
favored model for the progenitor of a long-soft GRB is the collapse of a massive, rotating,
magnetized star to a black hole (’collapsar’; MacFadyen & Woosley 1999)). By contrast,
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FicUre 3. Collapse of a magnetized HMNS to a black hole. The upper 3 panels show
snapshots of the rest-mass density contours and velocity vectors on the meridional plane.
The lower panels show the field lines (lines of constant vector potential Ag) for the
poloidal magnetic field at the same times as the upper panels. The density contours
are drawn for p/pmaxo = 10~0-3¢-0.09 (i = 0-12). The field lines are drawn for
Ap = Apmin + (Agmax — Apmin)i/20 (i = 1-19), where Ay max and Ag min are the maxi-
mum and minimum value of Ay respectively at the given time. The thick solid curves in the
lower left corner denote the apparent horizon. [From [Duez et al. 2006al]

short-hard GRBs have characteristic timescales in the range 7 ~ 10ms —2s. They are
identified in low star-forming regions (ellipticals) where associations with supernovae can
be excluded. The favored model for their progenitors are either NSNS or BHNS mergers.
Alternative routes by which NSNS mergers can result in the generation of a short-hard
GRB are traced in Fig. 4l These alternatives have emerged from detailed simulations in
general relativity. The HMNS route has already been summarized in Section B

The inspiral and merger of NSNSs and BHNSs have important implications for the de-
tection of gravitational waves with Advanced LIGO. Recent estimates for the rates for de-
tectable NSNS mergers are promising, in the neighborhood of 20—30yr~—! (O’Shaughnessy
et al. 2006). Simulations in general relativity now underway should be helpful in prepar-
ing for the exciting possibility of the simultaneous detection of a gravitational wave and
GRB from the same source in the near future.

5. Magnetorotational Collapse of Massive Stars to Black Holes

Recently, we performed simulations in axisymmetry of the magnetorotational collapse
of very massive stars in full general relativity (Liu, Shapiro & Stephens 2007). Our
simulations are directly applicable to the collapse of supermassive stars with masses
M > 103M, and to very massive Population III stars. They are also relevant for core
collapse in massive Population I stars, since in all of these cases the governing EOS
up to the appearance of a black hole can be approximated by an adiabatic T' = 4/3
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FIGURE 4. Plausible routes for the formation of a short-hard gamma-ray burst (SGRB) central
engine following the merger of a binary neutron star. Here “GW” (“B-field J-transport”) denotes
angular momentum dissipation dominated by gravitational wave emission (magnetic fields).
[From [Shibata & Taniguchi 2006}

law (although its physical origin is different). These simulations may help explain the
formation of the central engine in the collapsar model of long-soft GRBs (MacFadyen
& Woosley 1999). Moreover, some long-soft GRBs observed at very high redshift might
be related to the gravitational collapse of very massive Pop III stars (Schneider, Guetta
& Ferrara 2002, Bromm & Loeb 2006)). Hence these simulations may also provide direct
insights into the formation of GRB central engines arising from first-generation stars.
The simulations of Liu, Shapiro & Stephens (2007) model the initial configurations
by n = 3 polytropes, uniformly rotating near the mass-shedding limit and at the onset
of radial instability to collapse. These simulations extend the earlier results of Shibata
& Shapiro 2002 by incorporating the effects of a magnetic field and by tracking the
evolution for a much longer time after the appearance of a central black hole. The ratio
of magnetic to rotational kinetic energy in the initial stars is chosen to be small (1% and
10%). We find that such magnetic fields do not affect the initial collapse significantly.
The core collapses to a black hole, after which black hole excision is employed to continue
the evolution long enough for the hole reach a quasi-stationary state. We find that the
black hole mass is M), = 0.95M and its spin parameter is J,/M? = 0.7, with the
remaining matter forming a torus around the black hole. The subsequent evolution of
the torus does depend on the strength of the magnetic field. We freeze the spacetime
metric (“Cowling approximation”) and continue to follow the evolution of the torus after
the black hole has relaxed to quasi-stationary equilibrium. In the absence of magnetic
fields, the torus settles down following ejection of a small amount of matter due to shock
heating. When magnetic fields are present, the field lines gradually collimate along the
hole’s rotation axis. MHD shocks and the MRI generate MHD turbulence in the the torus
and stochastic accretion onto the central black hole (see Fig.Bl). When the magnetic field
is strong, a wind is generated in the torus, and the torus undergoes radial oscillations
that drive episodic accretion onto the hole. These oscillations produce long-wavelength
gravitational waves potentially detectable by LISA. The final state of magnetorotational
collapse always consists of a central black hole surrounded by a collimated magnetic field
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FIGURE 5. Magnetoroational collapse of a massive star to a black hole. Snapshots of meridional
rest-mass density contours, velocity vectors and poloidal magnetic field lines for the initial and
endpoint configurations for n = 3 collapse. Field lines coincide with contours of vector potential
A, and are drawn for Ay, = Ay max(5/20) with j = 1,2,---,19 where Ay, max is the maximum
value of A,. In the final, post-excision model (tex = 29150M ), the density levels are drawn for
po = 100p:(0)107°% (j = 0-10). The thick arc near the lower left corner of the right-hand
frame denotes the apparent horizon and the shaded region the excision domain. [Adapted from
Liu, Shapiro & Stephens 2007]]

and a hot, thick accretion torus. This system is a viable candidate for the central engine
of a long-soft gamma-ray burst.

6. Cosmological Growth of Supermassive Black Holes

Growing evidence indicates that supermassive black holes (SMBHs) with masses in
the range 10% — 10190, exist and are the engines that power AGNs and quasars. There
is also ample evidence that SMBHs reside at the centers of many, and perhaps most,
galaxies, including the Milky Way. The highest redshift of a quasar discovered to date
is Zgso = 6.43, corresponding to QSO SDSS 114845251 (Fan et al. 2003). Accordingly,
if they are the energy sources in quasars (QSOs), the first SMBHs must have formed
prior to Zgso = 6.43, or within ¢ = 0.87 Gyr after the Big Bang in the concordance
ACDM cosmological model. This requirement sets a significant constraint on black hole
seed formation and growth mechanisms in the early universe. Once formed, black holes
grow by a combination of mergers and gas accretion.

The more massive the initial seed, the less time is required for it to grow to SMBH
scale and the easier it is to have a SMBH in place by Z > 6.43. One possible progenitor
that readily produces a SMBH is a supermassive star (SMS) with M > 103M (Rees
1984, [Shapiro 2004). SMSs can form when gaseous structures build up sufficient radiation
pressure to inhibit fragmentation and prevent normal star formation; plausible cosmolog-
ical scenarios have been proposed that can lead to this situation (Gnedin 2001l Bromm
& Loeb 2003). Alternatively, the seed black holes that later grow to become SMBHs may
originate from the collapse of Pop III stars < 10°M,, (Madau & Rees 2001)). To achieve
the required growth to ~ 10°Mg by Zqgso 2 6.43, it may be necessary for gas accretion,
if restricted by the Eddington limiting luminosity, to occur at relatively low efficiency of
rest-mass to radiation energy conversion (< 0.2;[Shapiro 2005|and references therein), as
we discuss below.

The efficiency of black hole accretion, and the resulting rate of black hole growth, is
significantly affected by the spin of the black hole. The spin evolution of a black hole
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a/M  en Spin Equilibrium? Characterization

0.0 0.057 no standard thin disk; nonspinning BH
0.95 0.19 yes turbulent MHD disk

0.998 0.32 yes standard thin disk; photon recapture
1.0 0.42 yes standard thin disk; max spin BH

TABLE 1. Rest-mass-to-radiation conversion efficiency wvs. black hole spin.

begins at birth. If the hole arises from the collapse of a massive or supermassive star,
then it is likely to be born with a spin parmeter in the range 0 < a/M < 0.8. The
lower limit applies if the progenitor star (or core) is nonrotating, the upper limit if it is
spinning uniformly at the mass-shedding limit at the onset of collapse, as found in the
simulations of Shibata & Shapiro and Liu & Shapiro 2007 and discussed in Section
Major mergers with other black holes of comparable mass will cause the black hole to
spin up suddenly to a/m = 0.8 — 0.9, as the merged remnant acquires almost all of
the mass and angular momentum that characterizes a circular orbit, quasistationary
BHBH binary at the innermost stable circular orbit (ISCO). Once secular gravitational
radiation loss drives the binary past the ISCO, the black holes undergo a rapid dynamical
plunge and coalescence, with little additional loss of energy and angular momentum.. This
anticipated behavior has now been confirmed by numerical simulations of BHBH mergers
(see Centrella 2007, This Volume, and references therein). These simulations also show
that gravitational radiation reaction can induce a large kick velocity (2 1000 km/s) in
the remnants following mergers. While in principle these large kick velocities pose a great
hazard for the growth of black hole seeds to SMBHs by Z ~ 6, large kicks are possible
only if the spins of the black hole binary companions are appreciable and their masses
are comparable. In the end, gravitational recoil does not pose a significant threat to
the formation of the SMBH population observed locally, although high mass seeds are
favored (Volonteri 2007).

Minor mergers with many smaller black holes, isotropically distributed, cause the black
hole to spin down: a/m ~ M~7/3 (Hughes & Blandford 2003, Gammie, Shapiro & McK-
inney 2004). The reason is that the ISCO and specific angular momentum of black holes
orbiting counter-clockwise is larger than for holes orbiting clockwise, hence the net effect
of isotropic capture is spindown.

However, it is likely that most of the mass of a supermassive black hole has been
acquired by gas accretion, not mergers. Such a conclusion can be inferred from the
observation that the luminosity density of quasars is roughly 0.1 — 0.2 of the local SMBH
mass density (Soltan 1982] [Yu & Tremaine 2002)), an equality that arises naturally from
growth via gaseous disk accretion. Steady gas accretion will quickly drive the black hole
to spin equilibrium, with a spin parameter that depends on the nature of the flow. If
accretion occurs via a relativistic “standard thin disk”, then the hole will be driven to the
Kerr limiting value, a/M = 1 (Bardeen 1970). Correcting for the recapture of some of the
emitted photons from such a disk reduces the equilibrium spin value to 0.998 (Thorne
1974). If, however, the accretion is driven by MRI turbulence in a relativistic MHD
disk, then recent simulations indicate (McKinney & Gammie 2004, Gammie, Shapiro &
McKinney 2004, [De Villiers et al. 2005]) that the equilibrium spin will fall to ~ 0.95.
The small differences between these equilibrium spin parameters is deceptive, for they
correspond to very different rest-mass-to-radiation conversion efficiencies, as shown in
Table [Tl
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The significance of these different values is that the growth of a black hole with time
via steady accretion depends exponentially, on the rest-mass-to-radiation conversion effi-
ciency, €)s, as we will now recall. Define the rest-mass-to-radiation conversion efficiency
ey and the luminosity efficiency €y, according to

enr = L/Moc® = epr(a/M) e, = L/Lg (6.1)
where M is the black hole mass, Mj is the accreted rest-mass, and Lg is the Eddington
luminosity given by

_ArM pempe

Lg ~ 1.3 x 10%u, Mg erg s—1 . (6.2)

or
Here 7 is the growth timescale,
Mc?

E

T = ~ 0.45u- " Gyr (6.3)
and p. is the mean molecular weight per electron. With the above definitions the growth
rate of a black hole due to accretion is

dM dMO |:6L(1_5M):| M

o (1—enm) - - (6.4)

€M

Integrating equation ([6.4) for steady accretion with constant efficiencies trivially yields
the mass amplification of a black hole with time,

M(£) /M (t;) = exp [GL“ ) (¢ “)] , (6.5)
ENM T
showing the exponential dependence on the efficiency factors.

Now a possible clue to the upper limit of €; is provided by the broad-line quasars
in a Sloan Digital Sky Survey sample of 12,698 nearby quasars in the redshift interval
0.1 < z < 2.1. This survey supports the value €7, ~ 1 as a physical upper limit (McLure
& Dunlop 2004). Hence to maximize mass amplification via steady accretion, one must
accrete with a small value of €); at the Eddington limit, ey, =~ 1.

Fig. [0 evaluates equation (6.5) for black hole seeds that form at redshift Z; from the
collapse of Pop III stars in the range 100 < M/Mgs < 600, and subsequently grow
to 10°Mg by Zgso = 6.43. The ACDM concordance cosmological model is assumed. Of
particular relevance is the case of “merger-assisted” mass amplification, whereby mergers
account for a typical growth of ~ 10% in black hole mass, the remainder being by gas
accretion (see, e.g.,[Yoo & Miralda-Escude 2004)). The figure shows that for Z; 2 40, the
required growth of the seed to SMBH status is easily achieved for a relativistic MHD
accretion disk, but is only marginally possible for a standard thin disk that accounts for
photon recapture, and not at all possible for a standard thin disk that drives the black
hole to maximal spin. However, if the initial black hole seed is less than 6000, accretion
via a standard thin disk appears to be ruled out altogether. The fact that a black hole
driven to spin equilibrium by a turbulent MHD disk accretes with low enough efficiency
to grow to supermassive size by Zgso ~ 6.43 is potentially significant. It points to the
need for further relativistic MHD simulations of black hole accretion with ever greater
physical sophistication, including the full effects of radiation transfer.

These same conclusions also hold if the black hole seed forms much earlier than Z; = 40,
and they may be tightened if the seed forms later. In fact, it may be likely that the
seed forms later, at Z; < 40, given that even 4 — o peaks in the density perturbation

~

spectrum for the progenitor halo of SDSS 114845251 do not collapse until Z ~ 30 in the
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FIGURE 6. Black hole accretion mass amplification My /M; versus redshift Z; of the initial seed.
Here we plot the amplification achieved by redshift Z; = 6.43, the highest known quasar redshift,
corresponding to 1148+5251. Each solid curve is labeled by the adopted constant radiation
efficiency, ear; the luminosity is assumed to be the Eddington value (ez = 1). The horizontal
dashed lines bracket the range of amplification required for accretion alone to grow a seed black
hole of mass 100 < M/Mg < 600 formed from the collapse of a Pop III star to 10°Mg. The
horizontal dotted lines bracket the required accretion amplification range assuming that mergers
account for a growth of 10" in black hole mass, the remainder being by gas accretion. [From
Shapiro 2005]]

ACDM concordance cosmology (see, e.g. Figure 5 in [Barkana & Loeb 2001l) Moreover,
the potential wells of the earliest halos are quite shallow (~ 1 km/s) and may not be able
to retain enough gas to form stars. Nevertheless, the effect of altering the date of birth
of the black hole seed is not very great unless Z; < 20 — 25, as is evident from Fig. 3.

Should a quasar be discoverd at Zqgo substantially above 6.43, it would not be un-
derstood easily in the context of supermassive black hole growth by gas accretion from
a seed arising from the collapse of a stellar-mass, Pop III progenitor.

The analysis presented here is illustrative only; the results may change as the treatment
is refined. The main point of this example is to emphasize that our understanding of
structure formation in the early universe as it pertains to the formation and growth
of supermassive black holes (global physics) depends in part on resolving some of the
important details of relativistic BHBH recoil and relativistic black hole accretion (local
physics). To understand these details, in turn, requires large-scale simulations in full
general relativity, which are now possible and underway.



S. L. Shapiro: Simulations in general relativity 13

7. Conclusions

We have discussed a number of black hole scenarios that require numerical simula-
tions in full general relativity for true understanding. Some of these processes involve
the formation of black holes, others concern their subsequent growth and interactions.
The important point is that numerical relativity is at last mature enough to probe these
issues reliably. Numerical relativity can now serve as an important tool to simulate stellar
collapse to black holes, the inspiral, merger and recoil of BHBHs, NSNSs and BHNSs,
the generation of gravitational waves from stellar collapse and binary mergers, accretion
onto black holes, and countless other phenomena involving black holes and their strong
gravitational fields. With such a tool, these processes now can be investigated at a fun-
damental level without many of the ad hoc assumptions and approximations required in
previous treatments. This should lead to an improved qualitative picture, as well as more
reliable quantitative results.

We are grateful to T. Baumgarte, C. Gammie, Y-T Liu, and M. Shibata for useful
discussions. S.L.S is supported by NSF grants PHY-0205155, PHY-0345151, and PHY-
0650377 and NASA Grants NNG04GK54G and NNX07AG96G to the University of Illi-

nois.
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