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GLUING CONSTRUCTIONS FOR ASYMPTOTICALLY

HYPERBOLIC MANIFOLDS WITH CONSTANT SCALAR

CURVATURE

PIOTR T. CHRUŚCIEL AND ERWANN DELAY

Abstract. We show that asymptotically hyperbolic initial data satis-
fying smallness conditions in dimensions n ≥ 3, or fast decay conditions
in n ≥ 5, or a genericity condition in n ≥ 9, can be deformed, by a de-
formation which is supported arbitrarily far in the asymptotic region, to
ones which are exactly Kottler (“Schwarzschild- adS”) in the asymptotic
region.
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1. Introduction

One of the key problems in mathematical general relativity is the under-
standing of the space of solutions of the vacuum constraint equations. In
this context an important gluing method has been introduced by Corvino
and Schoen [12, 13] for vacuum data with vanishing cosmological constant.
The object of this paper is to present related gluing results when the cosmo-
logical constant Λ is negative. The question we address is the possibility of
deforming an asymptotically hyperbolic Riemannian manifold of constant
scalar curvature, and hence a time-symmetric vacuum initial data set, to
one with a Kottler metric (sometimes known as Schwarzschild – anti de Sit-
ter metric) outside of a compact set. We establish deformation or extension
theorems in dimensions n ≥ 3 under a smallness condition for metrics suffi-
ciently close to (generalized) Kottler metrics, or under smallness and parity
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2 P.T. CHRUŚCIEL AND E. DELAY

conditions for metrics close to a standard hyperbolic metric, or assuming a
rapid decay condition in dimensions n ≥ 5.

More precisely, we consider n-dimensional manifolds containing asymp-
totic ends

(1.1) Mext := (r0,∞)×N ,

where N is a compact manifold. We are interested in constant scalar curva-
ture metrics which asymptote, as r goes to infinity, to a background metric
b of the form1

(1.2) b =
dr2

r2 + k
+ r2b̂ ,

where k ∈ {0,±1}, and where b̂ is a (r–independent) metric on N satisfying

Ric(̂b) = k(n − 2)̂b. A family of examples is provided by the (generalized)
Kottler metrics,

(1.3) bm =
dr2

r2 + k − 2m
rn−2

+ r2b̂ .

Note that b0 = b, with b as in (1.2).
For the purpose of the next theorem define the manifold M to be

M = (r0, r2]×N ,

and suppose that g is a constant negative scalar curvature metric onM close
to b, or to bm. There are two natural questions:

First, choose r1 satisfying r0 < r1 < r2, can one deform g, keeping
the scalar curvature fixed, so that the resulting metric coincides with g
on (r0, r1] × N , and with bm, for some m, near {r2} × N? In this case we
set M ′ = (r0, r1] × N , M ′′ = [r2,∞) × N , and we refer to this case as the
deformation problem.

Next, let r3 > r2, can one extend g to a new metric of constant scalar
curvature on (r0,∞)×N so that the extended metric coincides with bm, for
somem, on [r3,∞)×N? In this case we setM ′ =M ,M ′′ = [r3,∞)×N , and
we refer to this case as the extension problem. It is shown in [8, Section 8.6]
how to reduce this problem to the deformation one.

Our aim here is to show that those problems can always be solved when

g is sufficiently close to b, except perhaps when (N, b̂) is a round sphere
and m = 0, in which case we need to impose a restrictive condition: For
(r, q) ∈M let ψ(r, q) = (r, φ(q)), where φ is the antipodal map of the sphere.
A metric g on M will be said to be parity-symmetric if ψ∗g = g. At the end
of Section 5 we prove:

Theorem 1.1. Let n ≥ 3, N ∋ ℓ > ⌊n2 ⌋+4, λ ∈ (0, 1), m ∈ R. If (N, b̂) is a
round sphere and m = 0, we suppose moreover that g is parity-symmetric.
There exists ε > 0 such that if ‖g−bm‖Cℓ,λ(M) < ε, then there exists on Mext

a Cℓ,λ metric of constant negative scalar curvature which coincides with g
on M ′, and which is a Kottler metric on M ′′. If g is smooth, then so is the
solution of the deformation problem.

1The constant k in (1.2)-(1.3) is of course unrelated to the order of differentiability k
used elsewhere, we hope that this will not confuse the reader.
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We emphasize that g and bm are only required to be close to each other
on an “annulus” as above, and in fact bm is not even defined throughout the
original manifold.

We can also prove a result without smallness assumptions which, however,
excludes dimensions three and four. Moreover the decay rates are undesir-
ably restrictive in dimensions five, six and seven; they are satisfactory, but
not as weak as one would wish, in higher dimensions.

Let g be an asymptotically hyperbolic metric as defined in Section 2, and
let p0(µ) be the momentum vector of g, obtained by passing to the limit as r

goes to infinity of the integral (5.1) below over submanifolds r = const. Let
bp(µ) denote a (generalized, boosted) Kottler metric with momentum vector
p(µ). Suppose that

(1.4) n ≥ 5 , α >

{
8 , n = 5, 6, 7,

8+n
2 , n ≥ 8.

(This can be compared with the conditions α > n/2, n ≥ 3, needed for p0(µ)
to be well-defined, or α = n, which holds for Kottler metrics.) For α ≤ n
we assume that g has the following asymptotic behaviour

(1.5) |g − b|b + |D̊(g − b)|b + . . . + |D̊(k+2)(g − b)|b = O(ρα) ,

where D̊ is the covariant derivative operator of b. For α > n, if (N, b̂) is a
round sphere, we assume that the momentum vector p0(µ) of g is timelike,2 so

that an associated (perhaps boosted) Kottler metric bp0
(µ)

exists. Whether

or not (N, b̂) is a round sphere, for α > n instead of (1.5) we suppose that

(1.6) |g − bp0
(µ)
|b + |D̊(g − bp0

(µ)
)|b + . . . + |D̊(k+2)(g − bp0

(µ)
)|b = O(ρα) ;

in fact, (1.6) is equivalent to (1.5) if α ≤ n.
Letting Mδ be as in (2.1), and Aδ,4δ as in (2.2), in Section 4 we prove:

Theorem 1.2. Let n ≥ 5, N ∋ ℓ > ⌊n2 ⌋ + 4, λ ∈ (0, 1), and let α > 0

satisfy (1.4). Let g be a Cℓ,λ asymptotically hyperbolic metric with constant
negative scalar curvature satisfying (1.6) with k = ℓ − 4. We furthermore
assume that (1.6) holds with k = ℓ − 2 and α = 0, and that the energy-

momentum vector is timelike if (N, b̂) is a round sphere. There exists δ0 > 0
such that for all 0 < δ ≤ δ0 the metric g can be deformed across an annulus
Aδ,4δ to a constant scalar curvature metric, of Cℓ,λ differentiability class,
which coincides with g on M\M4δ and with a Kottler metric bp(µ) on Mδ.
The solution is smooth if g is.

A key role in our analysis is played by the kernel of the operator P ∗
g given

by (2.6) below; it is known that this kernel is trivial for any open subset of
M for generic metrics [4]. Deforming first the metric as in Section 6, and
applying Theorem 1.2 to the new metric one concludes:

Corollary 1.3. Let n ≥ 9. Under the remaining hypotheses of Theo-
rem 1.2, suppose instead of (1.4) that α > n/2. If there are no neighbour-
hoods of the conformal boundary at infinity on which P ∗

g has a kernel, then
the conclusions of Theorem 1.2 hold.

2Both past and future pointing p0(µ) are allowed.
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It might be helpful to the reader to recall briefly the Corvino-Schoen
method, as adapted to our setting. We work on an end (r0,+∞) × N ,
where we have a metric g asymptotic to a background metric b. We also
have a d-parameter family of references metrics bp, all asymptotic to b, all
having the same, constant scalar curvature. The gluing is performed on an
annulus AR = {R < r < 4R}, with R≫ 1, in four steps:

Step 1): Do a scaling in order to work on a fixed annulus A1,

Step 2): Establish a weighted estimate of the form |P ∗u|L2 ≥ c|u|H2 ,
where P ∗ is the adjoint of the linearized scalar curvature operator P and
u is orthogonal to the d-dimensional kernel K of P ∗. The constant c has
to be uniform in the family of metrics under consideration, with controlled
dependence upon R. In fact, in previous applications c was R–independent.

Step 3): By step 2), and up to weighting functions, the operator L = PP ∗

is an isomorphism modulo projections onto K⊥. By the inverse function
theorem, for R ≫ 1, the gluing of g with any bp can be done modulo

weighted L2-projection onto K⊥.

Step 4): Estimate the projection onto K and show that you can adjust
the parameter p to obtain a solution.

So, the overall strategy is the same as in [8, 12,13]. However, in our case
essential new difficulties arise: the scaling transformation in the asymptoti-
cally flat case leads to a family of uniformly equivalent operators on a fixed
annulus, while this is not the case anymore for negative Λ. To handle this we
prove a sharp estimate on the family of operators which arise in our context;
unfortunately the estimate degenerates as the gluing annuli recede to infin-
ity, as the sharp constant c in step 2) above goes to zero. This results in the
undesirable restrictions described above. A possible approach to improve
this state of affairs could be to devise a method which, first, deforms any
asymptotically hyperbolic metric to one for which our Theorem 1.2 (or some
variation thereof) applies. Alternatively, a completely different method of
approaching the problem is needed.

Our work has been largely motivated by [1], to remove the sign condition
on the mass aspect function imposed there. Our deformation produces a
metric with a constant mass aspect without a priori assuming such a sign in
dimensions larger than eight; our result is, however, irrelevant for the main
result in [1], which has only been proved so far for n ≤ 7.

2. Definitions, notations and conventions

Let M be a smooth, compact n-dimensional manifold with boundary
∂M . Let M := M\∂M , a non-compact manifold without boundary. In
our context the boundary ∂M will play the role of a conformal boundary
at infinity of M . We will choose a defining function ρ for ∂M , that is a
non-negative smooth function on M , vanishing precisely on ∂M , with dρ
never vanishing there.
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We will work near the infinity ofM , so it is convenient to define, for small
ε > 0, the manifold

(2.1) Mε = {x ∈M,ρ(x) < ε}.
We also define for small ε > δ > 0, the “annulus”

(2.2) Aδ,ε :=Mε\Mδ.

We continue by defining a class of background metrics of interest. For k

equal to −1, 0 or 1, let b̂ be a metric on ∂M satisfying Ric(̂b) = k(n − 2)̂b.
For ρ0 such that 1− k(ρ2 )2 has no zeros on (0, ρ0), consider the metric

(2.3) b = ρ−2

(
dρ2 +

(4− kρ2)2
16

b̂

)
=: ρ−2b

defined on (0, ρ0)×∂M . Then b is Einstein, Ric(b) = −(n−1)b, in particular
it has constant scalar curvature R(b) = −n(n − 1), and in fact provides
initial data for a static solution of the vacuum Einstein equations with a
negative cosmological constant. These are of course identical to (1.2) (use
r = ρ−1[1−k(ρ2 )2]). The basic example of such a background is the standard
hyperbolic metric. In that case M is the unit ball of Rn, with

(2.4) b = ω−2δ ,

δ is the Euclidean metric, ω(x) = 1
2(1− |x|2δ).

A metric g will be called asymptotically hyperbolic if g tends to a back-
ground metric as in (2.3) when approaching ∂M . The precise decay rates
will be indicated whenever needed. The terminology is motivated by the
fact that the sectional curvatures of g tend to −1 as ρ approaches zero; cf.,
e.g., [17]. One should, however, keep in mind that b does not necessarily
have constant sectional curvature in space-time dimension other than four.
Moreover, metrics which asymptote to hyperbolic metrics in cuspidal ends
do not necessarily belong to our class.

An important class of asymptotically hyperbolic metrics is given by the
(generalized) Kottler metrics [14] (compare [5]) as given by (1.3). In the
coordinate system of (2.3) they read

bm = ρ−2
{[

1− 2mρn
(
1− k(ρ

2
)2
)2−n (

1 + k(
ρ

2
)2
)−2

]−1

dρ2(2.5)

+(1− k(ρ
2
)2)2b̂

}

= ρ−2
[
b+ 2mρn(1 +O(ρ2))dρ2

]
,

where, as before, b̂ is a fixed metric on the boundary at infinity N satisfying

Ric(̂b) = k(n − 2)̂b. Those metrics satisfy R(bm) = −n(n − 1), and again
provide initial data for static Einstein metrics.

If b̂ is not the round metric on a sphere, the only energy-like Hamiltonian
invariant of bm is m, see e.g. [6] and references therein. Otherwise b is the
standard hyperbolic metric, and the energy-momentum vector of bm, say
p(µ) (as defined in [10] or [22], see (4.18) with r → +∞)), is proportional to

(m,~0). Under isometries of hyperbolic space, p(µ) transforms as a Lorentz
vector, and a metric with any timelike p(µ) can be obtained by applying such
an isometry to some bm.
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In this way we generate a family of metrics with any timelike p(µ), as
needed for the Brouwer fixed point argument when compensating for the
cokernel below. (On the other hand we are not aware of existence of such
metrics with non-timelike non-zero p(µ), whence the restriction of timelike-

ness in our results when (N, b̂) is a round sphere.) We denote by bp(µ) the
resulting metrics, and we will refer to them as Kottler metrics, or boosted
Kottler metrics when ambiguities are likely to occur.

Recall that the linearized scalar curvature operator P = Pg is

Pgh := DR(g)h = −∇k∇k(trg h) +∇k∇lhkl −Rklhkl ,
so that its L2 formal adjoint reads

(2.6) P ∗
g f = [DR(g)]∗f = −∇k∇kfg +∇∇f − f Ric(g) .

(We use the summation convention, indices are lowered with gij and raised
with its inverse gij .) We note that

TrP ∗
g f = (n− 1)∇∗∇f −Rf .

Let

(2.7) bδ := z−2
(
dz2 + δ−2b̂(δz)

)

be a hyperbolic metric scaled up in ρ from Aδ,4δ to

(2.8) A ≡ A(1,4) := (1, 4) × ∂M .

We have Ric(bδ) = −(n− 1)bδ , thus

(2.9) P ∗
bδ
u := ∇∇u+

(
(n− 1)u−∇k∇ku

)
bδ ,

where ∇ is associated with the metric bδ.
It is well known that the kernel of P ∗ has dimension at most n + 1,

see [12] for instance. For the hyperbolic metric b on the unit n-dimensional
ball Bn(1) ⊂ R

n, in the representation (2.4), the kernel of P ∗
b is spanned by

the following functions,
which are the restrictions to the hyperboloid H

n of the coordinates func-
tions in Minkowski Rn,1:

V(0) :=
1 + |x|2
1− |x|2 = ρ−1

(
1 +

(ρ
2

)2)
,(2.10)

V(k) := − 2xk

1− |x|2 = −ρ−1

(
1−

(ρ
2

)2) xk

|x| ,(2.11)

with ρ = 2(1 − |x|)/(1 + |x|). We can also rewrite (2.4) as

(2.12) b = ρ−2(dρ2 + b̂(ρ)) ,

with b̂(ρ) =
(
1−

(ρ
2

)2)2
b̂(0), where b̂(0) is the round unit metric on Sn.

Setting ρ = δz, defining

(2.13) Vδ,(µ)(z, θ) = V(µ)(δz, θ) ,

and letting δ tend to zero, the functions δVδ,(µ) tend to

u(0) := z−1 , u(k) := −z−1 x
k

|x| .(2.14)
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For nonspherical boundary metrics b̂ ≡ b̂(0) we still write {V(µ)} for any
basis of KerP ∗

b , and then Vδ,(µ) is defined by (2.13). By hypothesis the scalar

curvature of b̂ is constant, so that we can invoke a theorem of Obata [20]
(see also [15] Theorem 24) to conclude that the only Riemannian manifold

(M̂, b̂) of dimension n − 1 with non-constant solutions v to the equation

DDv + D∗Dv
n−1 b̂ = 0 is a round sphere. For metrics of the form (2.3) with

b̂ different from a round sphere, this implies (compare appendix A) that
dimKerP ∗ = 1, and V(0) = V(0)(ρ), with the u(µ)’s proportional to u(0) =

z−1 (compare (3.19) and (3.20)).

Definition 2.1. Let k ∈ N, C, σ ≥ 0. Let b be a of the form (2.3), with b̂ an
Einstein metric on ∂M with scalar curvature (n − 1)(n − 2)κ, κ ∈ {0,±1},
and with ρ ∈ (0, 2ρ0]. We will say that g is (C, k, σ)-asymptotically hyperbolic
if we have

(2.15) |g − b|b + |∇g|b + ...+ |∇(k)g|b ≤ Cρσ ,
where the norm and covariant derivatives are defined by b. For α ∈ (0, 1)
we will say that g is (C, k+α, σ)-asymptotically hyperbolic if the derivatives
of order k of g− b further satisfy a weighted Hölder condition of order α, as
in [16].

Let g be a Riemannian metric on M , recall that (M,g) is conformally
compact if there exists on M a smooth defining function ρ for ∂M (that is
ρ ∈ C∞(M ), ρ > 0 on M , ρ = 0 on ∂M and dρ nowhere vanishing on ∂M ;
the symbol ρ will be used throughout this work to denote such a function)
such that g := ρ2g is a Riemannian metric on M , we will denote by ĝ the
metric induced on ∂M . The background metrics b considered above are
conformally compact in this sense.

It is well know that, near infinity, for any sufficiently differentiable con-
formally compact metric g we may choose the defining function ρ to be the
g-distance to the boundary. Thus, if ε is small enough, Mε can be identified
with (0, ε) × ∂M equipped with the metric

(2.16) g = ρ−2(dρ2 + ĝ(ρ)) = ρ−2(dρ2 + ĝAB(ρ)dθ
AdθB),

where {ĝ(ρ)}ρ∈(0,ε) is a family of smooth, uniformly equivalent, metrics on
∂M , with ĝ(0) = ĝ. However, the introduction of this system of coordinates
might lead to a loss of up to two derivatives of the metric. This can be
circumvented for (C, k, σ)-asymptotically hyperbolic metrics by introducing
a coordinate system as in [2, Appendix B] in which g takes the form

(2.17) g = ρ−2
(
(1 +O(ρk+σ))dρ2 + ĝAB(ρ)dθ

AdθB +O(ρk+σ)Adρdθ
A
)
,

with all metric coefficients of original differentiability class.
If g is (C, k, σ)-asymptotically hyperbolic with k ≥ 2 and σ > 0, we have

(2.18)

P ∗
g u := ∇∇u−∇k∇ku g−uRic(g) = ∇∇u+

(
(n−1)u−∇k∇ku

)
g+O(ρσ)u ,

where the covariant derivatives are related to g, and the O(ρσ) term is
bounded (in b-norm) together with its b-derivatives up to order k− 2, by ρσ

times a constant depending on C and k.
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3. A uniform estimate for P ∗

Let y be the function on A defined by:

(3.1)
y : (1, 4) × ∂M −→ R ,

(z, θ) 7→ 4
3 (1− z

4)(z − 1) .

We claim that:

Proposition 3.1. Let c0, σ > 0 and s ≥ 0. There exist constants
c1 = c1(n, s, c0, σ) > 0 and δ0 = δ0(n, s, c0, σ) > 0 such that for all (c0, 4, σ)-
asymptotically hyperbolic metrics g, for all 0 < δ ≤ δ0, and for all u satis-
fying

(3.2) ∀ µ = 0, . . . , k

∫

A
e−s/yuu(µ)dµbδ = 0 ,

where k = n if b is the standard hyperbolic metric, and k = 0 otherwise, we
have
(3.3)∫

A
e−s/yy8|P ∗

gδ
u|2gδdµgδ ≥ c1δ

4

∫

A
e−s/y(y8|∇∇u|2gδ + y4|∇u|2gδ + u2)dµgδ ,

provided that the right-hand-side is finite. Similarly (3.3) holds (with perhaps
a different constant c1) if

(3.4) ∀ µ = 0, . . . , k

∫

A
e−s/yuVδ,(µ)dµgδ = 0 ,

or if in (3.2) the measure z−ndz dµbb(0)
is used.

Remark 3.2. There is little doubt that the result remains valid for (c0, 2, σ)
asymptotically hyperbolic metrics, or for those conformally compact metrics
which are C2 up-to-boundary after the conformal rescaling, by using coor-
dinates as in (2.17). For simplicity of calculations we assume (2.16), since
our main gluing results require (c0, 4, σ) asymptotically hyperbolic metrics
anyway.

Remark 3.3. The power of δ in (3.3) cannot be improved, which can be seen
by considering a function of the form u(z, θ) = v(θ)/z, with a nontrivial v

of vanishing integral on ∂M , such that DDv + D∗Dv
n−1 b̂(0) 6= 0, where D is

the covariant derivative operator of b̂(0), and such that v is L2(∂M, b̂(0))-
orthogonal to the kernel of P ∗

bb(0)
(see (3.15) below).

Proof: In some of the calculations of this proof the reader might find it
convenient to use the coordinate system of (2.16). Without loss of generality
we can assume that σ ≤ 1. Let us define dνgδ = δn−1dµgδ , and note that
the measure dµgδ can be replaced by dνgδ in (3.2)-(3.4); e.g., (3.2) can be
replaced by

(3.5) ∀ µ = 0, . . . , k

∫

A
e−s/yuu(µ)dνgδ = 0 .

Suppose that (3.3) with dµgδ there replaced by dνgδ does not hold, then there

exist sequences δn → 0, g(n) and un satisfying (3.2) (respectively (3.4)) such
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that the right-hand-side equals one, while the reverse inequality to (3.3)
holds with c1 replaced by 1/n:

∫

A
e−s/yy8|P ∗

δnun|
2
gndνgn ≤

δ4n
n
,(3.6)

∫

A
e−s/y(y8|∇∇un|2gn + y4|∇un|2gn + u2n)dνgn = 1 ,(3.7)

where we have set
gn := g

(n)
δn

and P ∗
δn ≡ P

∗
gn .

Let y be the function on A defined in (3.1). Using (2.18) to express ∇∇un
in terms of P ∗

gnun and un one obtains (compare (3.22) below)
∫

A
e−s/yy8|∇∇un|2gndνgn ≤ C

∫

A
e−s/y

(
y8|P ∗

δn |
2
gn + u2n

)
dνgn

≤ C

(
δ4n
n

+

∫

A
e−s/yu2n

)
dνgn ,(3.8)

which together with (3.7) implies that there exists c > 0 such that∫

A
e−s/y(y4|∇un|2gn + u2n)dνgn ≥ c .(3.9)

Now,

|∇un|2gn = z2
(
|∂zun|2 + δ2n|∂θun|2bgn

)
,(3.10)

where | · |bgn denotes the norm of a tensor field on ∂M with respect to the
metric

ĝn(z) := ĝ(n)(δnz) .

Note that, decreasing the constant ρ0 of Definition 2.1 if necessary, all the

ĝn’s are uniformly equivalent to b̂(0). From (3.9) we obtain∫

A
e−s/y(y4|∂zun|2 + u2n)dνgn ≥ c ,(3.11)

for some c > 0.
Clearly the trace of P ∗

gnu satisfies an estimate of the form (3.6) (compare
Appendix A)

∫

A
e−s/yy8|∆gnun − nun +O(δσn)un|2dνgn ≤ C

δ4n
n
.(3.12)

Let

E := ∇∇un −
∆gnun
n

gn = ∇∇un − un gn + error ,

where the error term is bounded, after integration, as in (3.12). From (3.6)
and (3.12) we conclude that

∫

A
e−s/yy8|E +O(δσn)un|2gndνgn ≤ C

δ4n
n
.(3.13)

Since E is trace-free we have Ezz = −δ−2
n ĝCDn ECD, so that

(3.14)

|E|2gn = z4
(
(1 +

δ4n
n− 1

)|Ezz|2 + 2δ2n|EzA|2bgn + δ4n|EAB − ĝCDn ECD ĝnAB|2bgn
)
,
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which together with the formulae in Appendix A (recall we have assumed
σ < 1) leads to

(3.15)∫

A
e−s/yy8

(
|∂2zun + z−1∂zun − z−2un +O(δσn)un|2

+δ2n|∂z∂Aun + z−1∂Aun +O(δn∂θun) +O(δσn)un|2bgn

+δ4n|DADBun − ĝ(n)(δn)CDDCDDun(ĝn)AB +O(δσn)un|2bgn
)
dνgn ≤ C

δ4n
n
.

Next, (3.6) together with the formula for (P ∗
gδ
u)zz in Appendix A gives

(3.16)∫

A
e−s/yy8

∣∣∣ [(n− 1)z +O(δσn)] ∂zun + [(n − 1) +O(δσn)] un

−δ2n∆bgδn
un

∣∣∣
2
dνgn ≤ C

δ4n
n
.

Choose δn0 6= 0 and let H1 and H2 be the Hilbert spaces with norms defined
by the left-hand-sides of (3.9) and (3.7) with n = n0, and norms, covariant
derivatives and measures related to bδn0

:

‖u‖H1 :=

∫

A
e−s/y(y4|∇u|2bδn0

+ u2)dνbδn0
,(3.17)

‖u‖H2 :=

∫

A
e−s/y(y8|∇∇u|2bδn0

+ y4|∇u|2bδn0
+ u2)dνbδn0

.(3.18)

Now, (3.7) shows that un and y2∂zun are bounded in L2 =

L2(A, e−s/ydνbδn0
). Equation (3.12) proves that y4 times the Laplacian of

un is bounded in L2. Further, (3.15) establishes that y4∂2zun is bounded
in L2. Simple algebra gives then that y4 times the tangential Laplacian of
un is bounded in L2. Coming back to (3.15) we obtain that all tangential
derivatives of un are L2-bounded, when multiplied by relevant powers of
y. Standard interpolation gives an L2-bound for y2 times the first tangen-
tial derivatives of un. But (3.15) shows now that the functions y4∂z∂Aun
are L2-bounded. Finally, an interpolation will bound every (weighted) first
derivatives of un.

So, the sequence un is bounded in H2, therefore there exists a subse-
quence, still denoted by un, which converges strongly in H1. But (3.8) with
un replaced by un − um shows that un is Cauchy in H2, hence there exists
u ∈ H2 such that un converges to u in H2. From (3.15) we infer that

|∂2zu+ z−1∂zu− z−2u|2 + |∂z∂Au+ z−1∂Au|2bδn0

+|DADBu− b̂(0)CDDCDDu b̂(0)AB |2bδn0
= 0 ,(3.19)

while (3.16) implies

(3.20) z∂zu+ u = 0.

Solving (3.19)-(3.20), we conclude that u is a linear combination of the
u(µ)’s as given by (2.14) for a standard hyperbolic metric, while u = const/z

otherwise. But the integral in (3.5) is continuous on H2, which implies
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that (3.2) is satisfied in the limit. Similarly, δn times the integral (3.4)
is continuous on H2. Recalling that the family {u(µ)} is orthogonal with
respect to the scalar product defined by the integral in (3.2), we obtain
u = 0. This contradicts (3.9), and proves the result. �

Let ψ = e−s/2y, φ = y2. We will use spaces Hk
δ ≡ Hk

gδ
of tensor fields on

A (compare [8]) for which the norms

(3.21) ‖u‖Hk
δ
:=

(∫

A
(
k∑

i=0

φ2i|∇(i)u|2gδ)ψ
2δ(n−1)dµgδ

) 1
2

are finite, where ∇(i) stands for the tensor ∇...∇︸ ︷︷ ︸
i times

u, with ∇ — the Levi-

Civita covariant derivative of gδ; we assume throughout that the metric is
at least W 1,∞

loc ; higher differentiability will be usually indicated whenever

needed. The factor δ(n−1) in front of the measure dµgδ has been included

so that δ(n−1)dµgδ is equivalent to the Lebesgue coordinate measure dzdθ,
uniformly in δ.

Note that H0
gδ

involves weights, but L2 does not.
An equivalent norm, and therefore the same space, is obtained if gδ in

(3.21) is replaced by bδ.
We will need the following:

Lemma 3.4. Let c0, σ > 0 and s ≥ 0. There exist constants C =
C(n, ℓ, s, c0, σ) > 0 and δ0 = δ0(n, ℓ, s, c0, σ) > 0 such that for all
(c0, ℓ + 2, σ)-asymptotically hyperbolic metrics g and for all 0 < δ ≤ δ0

‖u‖Hℓ+2
gδ

≤ C
(
‖φ2P ∗

gδ
u‖Hℓ

gδ
+ ‖u‖H0

gδ

)
.

Proof: For ℓ = 0 the result has been established in the course of the proof of
Proposition 3.1, see the first line of (3.8). For ℓ = 1 we start the calculation
that follows with k = 2 and we stop at the second line, invoking weighted
interpolation and the result for ℓ = 0 to conclude. Otherwise, suppose that
the result is true for k − 1 ≤ ℓ0 with ℓ0 ≥ 1. Using [8, Equation (A.4)]

(one can check that the constants in equations (A.2) and (A.3) there, thus
also in (A.4), do not depend on δ) to control the first term when passing
from the second to the third line below, we find for 2 ≤ k − 1 + 2 ≤ ℓ0 + 2

‖φk+1∇(k−1)(∇(2)u−∆ugδ)‖H0
gδ

= ‖φk+1∇(k−1)(P ∗u− (n− 1)u+O(δσ)u)‖H0
gδ

≤ ‖φk+1∇(k−1)P ∗u‖H0
gδ

+C1‖ φ2︸︷︷︸
≤C

φk−1∇(k−1)[(1 +O(δσ))u]‖H0
gδ

≤ C
(
‖φ2P ∗u‖Hk−1

gδ

+ C2 ‖u‖Hk−1
gδ︸ ︷︷ ︸

≤C(‖φ2P ∗u‖
H

k−3
gδ

+‖u‖
H0

gδ

)

)

≤ C (1 + CC2) ‖φ2P ∗u‖Hk−1
gδ

+C2C2‖u‖H0
gδ
.
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This is the desired inequality, to see this set

T := ∇(k+1)u , S := ∇(k−1)(∇2u−∆ugδ) ,

or, in index notation,

Ti1...ik−1jk := ∇i1 · · · ∇ik−1
∇j∇ku

Si1...ik−1jk := ∇i1 · · · ∇ik−1
∇j∇ku−∇i1 · · · ∇ik−1

∇ℓ∇ℓu (gδ)jk ,

straightforward algebra shows that

(3.22) |T |2gδ ≤ |S|
2
gδ
,

and the Lemma follows. �

As in [8] we set

(3.23) Lgδ := ψ−2Pgδφ
4ψ2P ∗

gδ
,

and

(3.24) Kbδ = kerP ∗
bδ
.

The proof of [8, Theorem 3.6] shows that

L−1
gδ

: Hk
gδ
∩K

⊥
H0

gδ

δ → Hk+4
gδ

exists for δ small enough. However, uniform boundedness in δ of L−1
gδ

does
not hold in our case, instead we have:

Corollary 3.5. Let k ∈ N, c0, σ > 0 and s ≥ 0. There exist constants
C = C(n, k, s, c0, σ) > 0 and δ0 = δ0(n, k, s, c0, σ) > 0 such that for all
(c0, k+4, σ)-asymptotically hyperbolic metrics g, for all 0 < δ ≤ δ0, and for
all u satisfying (3.2) or (3.4)

‖L−1
gδ
u‖Hk+4

gδ

≤ C
(
‖u‖Hk

gδ
+ δ−4‖u‖H0

gδ

)
.

Proof: By Proposition 3.1 we have (recall that H0 is weighted but L2 is
not)

cδ4‖u‖2H2
gδ

≤ ‖φ2P ∗
gδ
u‖2H0

gδ

= 〈ψ2φ2P ∗
gδ
u, φ2P ∗

gδ
u〉L2

gδ
= 〈ψ2u, ψ−2Pgδφ

4ψ2P ∗
gδ︸ ︷︷ ︸

Lgδ

u〉L2
gδ

= 〈ψu,ψLgδu〉L2
gδ
≤ ‖ψLgδu‖L2

gδ
‖ψu‖L2

gδ
= ‖Lgδu‖H0

gδ
‖u‖H0

gδ
.

Replacing u by L−1
gδ
u we conclude that

(3.25) cδ4‖L−1
gδ
u‖H2

gδ
≤ ‖u‖H0

gδ
.

In order to finish the proof we will use the following elliptic estimate, which
is standard except for the uniformity in δ; the proof can be found in Appen-
dix B:

Lemma 3.6. Under the conditions of Corollary 3.5, there exists a constant
C, independent of g and δ, such that for δ small

(3.26) ‖u‖Hk+4
gδ

≤ C
(
‖Lgδu‖Hk

gδ
+ ‖u‖H0

gδ

)
.

�
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Returning to the proof of Corollary 3.5, we replace u by L−1
gδ
u in (3.26)

to obtain

(3.27) ‖L−1
gδ
u‖Hk+4

gδ

≤ C
(
‖u‖Hk

gδ
+ ‖L−1

gδ
u‖H0

gδ

)
,

and the Corollary follows from (3.25). �

Summarizing, we have proved:

Theorem 3.7. Let k ∈ N, σ > 0, c0 > 0 and s ≥ 0. There exist constants
C = C(n, s, σ, c0) > 0 and δ0 = δ0(n, s, σ, c0) > 0 such that for all (c0, k +
4, σ)-asymptotically hyperbolic metrics g, for all 0 < δ ≤ δ0 and for any

u ∈ Hk+4
gδ
∩K⊥gδ

bδ
,

Cδ4||u||Hk+4
gδ

≤ ||Lgδu||Hk
gδ
.

In particular the operator Π
K

⊥gδ
bδ

Lgδ , where Π
K

⊥gδ
bδ

denotes orthogonal pro-

jection on K
⊥gδ

bδ
in H0

gδ
, is an isomorphism from Hk+4

gδ
∩K⊥gδ

bδ
to Hk

gδ
∩K⊥gδ

bδ

such that the norm of its inverse is bounded by C−1δ−4.

�

At this point, we have established Step 2) of the Introduction, as well as
some elements of Step 3). We continue with further details of Step 3).

4. The gluing construction on a moving annulus

In this section we prove Theorem 1.2. We set k = ℓ − 4. We consider
conformally compact asymptotically hyperbolic metrics g which asymptote,
with k+2 derivatives, to a fixed AH metric b. We fix a small δ0 > 0 and define

the space W k+4,∞
b (M4δ0) of symmetric two tensors with k + 4 b-covariant

derivatives bounded on M4δ0 , relatively to the norm of b. Following [8], we

assume that g − b is close to zero in W k+4,∞
b (M4δ0).

Similarly to (2.7), we denote by gδ the metric on A1,4 obtained by re-
stricting g to Aδ,4δ, and rescaling the ρ coordinate to A1,4. Unless explicitly
specified otherwise, covariant derivatives on A1,4 are related to gδ .

As in [8], consider the map

fgδ : ψ2φ2Hk+2
δ −→ Hk

δ ∩K⊥
bδ

h 7−→ Π{ψ−2[R(gδ + h)−R(gδ)]},
where Kbδ = KerP ∗

bδ
, where P ∗

bδ
is as in (2.9), and Π is the H0

δ projection

onto K⊥
bδ
, the H0

δ -orthogonal of Kbδ ; all the spaces here are spaces of tensors
on A1,4.

One should keep in mind that we are interested in h’s of the form h =
ψ2φ4P ∗u, u ∈ Hk+4

δ ∩K⊥
bδ
, with u small in the last space.

Near h = 0 the map fgδ is a smooth map between Hilbert spaces. We
consider now [8, Proposition G.1] with x = gδ so that fx there equals fgδ
here. One checks that f satisfies conditions (2) and (3) of [8, Proposition
G.1] with the set A there being

(4.1) A = {gδ , 0 < δ ≤ δ0 , (g − b) sufficiently small in W k+4,∞
b (M4δ0)} .

Furthermore,
Vx = ψ2φ2Hk+2

δ , Wx = Hk
δ ∩K⊥

bδ
.



14 P.T. CHRUŚCIEL AND E. DELAY

Now, fgδ satisfies a modified version of condition (1) there: here, by The-
orem 3.7, we have that Dfx(0) has a right inverse ψ2φ4P ∗

gδ
L−1
gδ

bounded

by C1δ
−4, where C1 does not depend upon x ∈ A. For the sake of nota-

tional legibility we present the argument without using the smoothing oper-
ators of [9]; the latter provide what is needed to obtain the differentiability
claimed. Note that we haven’t assumed any uniformity in δ on the modu-
lus of the Hölder continuity of g, as the solution will exist, and will have
Hölder regularity, without any such assumptions. Any further hypotheses
about uniformity of that modulus would be reflected in associated unifor-
mity for the metrics obtained by the gluing procedure, but such uniformity
is irrelevant for our purposes.

A repetition of the proof of Proposition G.1 of [8] with C1 there replaced
with C1δ

−4 yields:

Theorem 4.1. There exist constants ε > 0 and C > 0 such that for all δ
sufficiently small and for all functions f ∈ Hk

δ with

||f ||Hk
δ
≤ εδ4,

there exists a unique h = ψ2φ4P ∗
gδ
u, with ||ψ−2φ−2h||Hk+2

δ
close to zero,

satisfying fgδ(h) = Πf and

||ψ−2φ−2h||Hk+2
δ
≤ C ′||u||Hk+4

δ
≤ Cδ−4||f ||Hk

δ
≤ Cε.

We will use Theorem 4.1 to glue an AH metric g, with timelike energy-
momentum vector, with a Kottler one bp(µ) , on an annulus Aδ,4δ. Let χ be
a cutoff function equal to zero on A1,2 and to one on A3,4. We define a first
glued metric on A1,4 as

(4.2) gδ,p(µ) := χgδ + (1− χ)bδ,p(µ) .
It is clear that the metric gδ,p(µ) belongs to the set A of (4.1). Set

(4.3) f := ψ−2[R(bδ)−R(gδ,p(µ))] = ψ−2[R(bδ,p(µ))−R(gδ,p(µ))] .
Let p0(µ) be the momentum vector of g. We will assume that g has the

following asymptotic behaviour

(4.4) |g − bp0
(µ)
|b + |D̊(g − bp0

(µ)
)|b + . . . + |D̊(k+2)(g − bp0

(µ)
)|b = O(ρα) ,

for some α > 0, to be restricted shortly; here D̊ is the covariant derivative
of b. Recall that

(4.5) |bp(µ) − b|b + |D̊bp(µ) |b + . . .+ |D̊(k+2)bp(µ) |b = O(ρn).

Under (4.4) we have
(4.6)

|gδ,p(µ)−bδ,p0(µ)|bδ+|∇(gδ,p(µ)−bδ,p0(µ))|bδ+. . .+|∇
(k+2)(gδ,p(µ)−bδ,p0(µ))|bδ = O(δα) ,

where the norm and covariant derivatives are defined by bδ. This implies

|gδ,p(µ) − bδ,p(µ)|bδ ≤ |gδ,p(µ) − bδ,p0(µ)|bδ + |bδ,p(µ) − bδ,p0(µ) |bδ(4.7)

= O(δα) +O(|p(µ) − p0(µ)|δn)
= O(δα) +O(δβ+n) ,
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provided that p(µ) is assumed to satisfy

(4.8) |p(µ) − p0(µ)| = O(δβ) ,

for some β > 0. An inequality similar to (4.7) holds for derivatives of order
up to k + 2. It follows that the function f defined in (4.3) satisfies

||f ||Hk
δ
= O(δα) +O(δβ+n) .

By Theorem 4.1 if

(4.9) α > 4 , β + n > 4 ,

then for all δ small enough there exists a solution hδ,p(µ) to the equation

fgδ,p(µ)
(hδ,p(µ)) = Πf ,

with

(4.10) ||ψ−2φ−2hδ,p(µ) ||Hk+2
δ

= O(δα−4) +O(δβ+n−4) .

Summarizing, for all p(µ), we have constructed a solution hδ,p(µ) , modulo
kernel, to the equation

R(gδ,p(µ) + hδ,p(µ))−R(b) = 0 ,

satisfying (4.10). This finishes Step 3) of the Introduction.
We now proceed to Step 4). Set

g̃δ,p(µ) = gδ,p(µ) + hδ,p(µ) .

We consider now the projection onto the kernel as follows. For all δ small,
and for all p(µ) satisfying (4.8), we define

(4.11) Iδ(p(µ)) =
1

δn
π[ψ−2(R(g̃δ,p(µ))−R(bδ))] ,

where π is the H0
δ orthogonal projection onto Kbδ . We want to show that

we can choose p(µ) such that Iδ(p(µ)) = 0. We need the following identity,
from [10]:

√
det g N̊(Rg −Rb) = ∂i

(
Ui(N̊ )

)
+
√
det g (ρ+Q) ,(4.12)

where

Ui(N̊) := 2
√
det g

(
N̊gi[kgj]lD̊jgkl +D[iN̊gj]kejk

)
,(4.13)

ρ := (−N̊ Ric(b)ij + D̊iD̊jN̊ −∆bN̊bij)g
ikgjℓekℓ ,(4.14)

Q := N̊(gij − bij + gikgjℓekℓ)Ric(b)ij +Q′ .(4.15)

Brackets over a symbol denote anti-symmetrisation, with an appropriate
numerical factor (1/2 in the case of two indices), and D̊ denotes the covariant
derivative operator of the metric b; note that ρ here should not be confused
with the defining function of the boundary. Here Q′ denotes an expression
which is bilinear in

e ≡ eijdxidxj := (gij − bij)dxidxj ,
and in D̊keij , linear in N̊ , dN̊ and HessN̊ , with coefficients which are con-

stants in any ON frame for b. The key is that ρ vanishes when N̊ is in the
kernel of P ∗

b , and then Q is at least quadratic in e near e = 0. Indeed, the
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first term at the right-hand-side of (4.15) does not contain any terms linear
in eij when Taylor expanded at gij = bij.

The integral of U at the boundary at infinity provides the momentum
vector, and we need to know how fast the limit is approached. The simplest
case arises when g is a Kottler metric bm with mass parameter m, so that
(see (1.2) and (1.3))

(4.16) bm =
dr2

W 2
+ r2h̊ , b =

dr2

W̊ 2
+ r2h̊ ,

where h̊ is the unit round metric on the sphere S
n−1. If {r} × S

n−1 is
positively oriented, a calculation gives
(4.17)∫

{r}×Sn−1

U
idSi = 2ωn−1(n− 1)W̊W−1m = 2ωn−1(n− 1)m+O(r−n) ,

where ωn−1 is the volume of Sn−1. An identical formula, with ωn−1 replaced

by the b̂–volume of N , holds for the non-spherical Kottler metrics (2.5).
Next, assume that |g−b|b = O(r−α), where r is a coordinate for b as in (4.16),

and h̊ is an (r–independent) metric on the compact conformal boundary
N , with the same decay rate for first derivatives, and with R(g) = R(b).
Integrating (4.12) over [r,∞) ×N one finds, for α > n/2,

(4.18)

∫

{r}×N
U
i(V(µ))dSi = p(µ) +O(rn−2α) ,

which coincides of course with (4.17) if α = n; we note that α = n is the
appropriate rate for Kottler metrics, whether boosted or not.

To calculate (4.11) explicitly, let Vδ,(µ) be a basis of Kbδ , the vanishing
of (4.11) is then equivalent to the vanishing of the collection of integrals
Jδ(p) = (Jδ,(ν)), where p = (p(µ)) and

Jδ,(ν) :=

∫

A1,4

ψ2ψ−2(R(g̃δ,p(µ))−R(bδ))Vδ,(ν)dµbδ .

In order to use (4.12) we need to change the measure dµbδ to dµegδ,p(µ)
, the

following estimates are useful for that:

R(g̃δ,p(µ))−R(bδ) = O(δα) +O(δn+β) ,

dµbδ =
(
1 +O(δα−4) +O(δn+β−4) +O(δn)

)
dµegδ,p(µ)

.

Keeping in mind that Vδ,(ν) behaves as δ
−1, and that the volume form grows

as δ1−n, this leads to

Jδ,(ν) =

∫

A1,4

ψ2ψ−2(R(g̃δ,p(µ))−R(bδ))Vδ,(ν)dµegδ,p(µ)

+O(δ2α−4−n) +O(δ2(β+n)−4−n) +O(δα) +O(δn+β)

= p0(ν) − p(ν) +O(δ2(α−4)−n) +O(δ2(β+n−4)−n) +O(δn) +O(δ2α−n)

= δβ
(p0(ν) − p(ν)

δβ
+O(δ2α−8−n−β) +O(δβ+n−8) +O(δn−β) +O(δ2α−β−n)

)
.
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Here the terms O(δ2(α−4)−n) and O(δ2(β+n−4)−n) in the third line arise from
the terms quadratic in (4.12) and from the first two terms in the second line,
while the terms O(δn) and O(δ2α−n) arise from the difference between the
boundary term and its limit (namely p0(µ)−p(µ)) when δ goes to zero, compare

(4.17) and (4.18), and also contain the last two terms in the second line. To
close the argument all error terms should go to zero as δ tends to zero, thus

(4.19) 2α− 8− n− β > 0 , β + n− 8 > 0 , n− β > 0 .

(Note that (4.9) does not impose any further restrictions.) This is equivalent
to

(4.20) n ≥ 5 , α >
8 + n+ β

2
, max(8− n, 0) < β < n .

So β can be chosen consistently with those bounds provided that (1.4) holds.
If the kernel of P ∗

b is one-dimensional, with p0(µ) = m0, then for δ small,

using the intermediate value theorem, there exists p(0) = m in an interval
[−m0, 2m0] such that Jδ(m) = 0 = Iδ(m), proving existence of a solution.

Otherwise, under (4.20), we can use a Brouwer fixed point theorem as in
Lemma 3.18 of [8] with:

• U : a bounded open ball of centre 0 in Rn+1;
• G = Id: q(µ) 7→ q(µ),
• V = U ,
• λ = 1/δ and Gλ = G1/δ = δ−βJδ(p

0
(µ) + δβq(µ)),

• y = 0.

This shows that for small δ, we can choose p(µ) so that Iδ(p(µ)) = 0, which
again proves existence of a solution.

Regularity follows from [9, Theorem 4.9]. This completes the proof of
Theorem 1.2. �

5. The gluing construction on a fixed annulus

The question addressed in Theorem 1.1 is a special case of the following:
In dimension n ≥ 3, consider an n-dimensional submanifold M ⊂ Mext,
where Mext has been defined in (1.1), with compact, connected, nonempty
boundary ∂M which separates Mext into two components, one of which is
bounded. We further suppose thatM is included in the bounded component,
and that M is equipped with a metric g ∈ Cℓ,λ, ℓ > ⌊n2 ⌋ + 4, λ ∈ (0, 1), of
constant negative scalar curvature.

LetM1 ⊂M be a one-sided collar neighbourhood of ∂M contained in M ,
we will refer to M1 as the interior collar.

Let M2 ⊂Mext be a one-sided collar neighbourhood of ∂M which lies in
the unbounded component of Mext, we refer to M2 as the exterior collar.

The extension problem is to find a constant scalar curvature metric on
M ∪M2 which coincides with g on M , and which coincides with a Kottler
metric near ∂M2r ∂M . In this case we set M ′ =M and M ′′ =M ∪M2. In
this problem one would presumably want M2 to be small: a solution with a
small M2 provides a solution for any bigger one.

The deformation problem is to find a constant scalar curvature metric on
M which coincides with g on M rM1, and which coincides with a Kottler
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metric near ∂M . In this case we set M ′ =M rM1 and M ′′ =M . Similarly
to the previous problem, one would presumably want M1 to be small.

Let p0(µ) denote the energy-momentum vector of ∂M ,

defined as:

(5.1) p0(µ) =

∫

∂M
U
i(V(µ))dSi ,

with U as in (4.13), and V(µ) defined in Section 2. If (N, b̂) is the round

sphere, then p0(µ) is a vector in R
n+1. Otherwise p0(µ) is simply a number,

say m0.
Denote by

ψ∂M : bp(µ) 7→
∫

∂M
U
i(V(µ))dSi ,

the map which to a Kottler metric bp(µ) associates the energy-moment vector

of ∂M , where U
i is calculated using (4.13) with g there replaced by bp(µ) .

Remark 5.1. As an illustration, assume that ∂M = {r} × N for some

r. Suppose that (N, b̂) is not a round sphere, then ψ−1
∂M is a smooth dif-

feomorphism between an interval of masses around m0 and its image; this
follows immediately from the (non-spherical equivalent of the) first equality
in (4.17). The result remains true in the spherical case when one restricts
ψ∂M to the standard, unboosted Kottler metrics bm as given by (1.2).

Similarly, consider ∂M = {r} × N for some r, with (N, b̂) — a round
sphere, and assume moreover that p0(µ) lies in the image of ψ∂M . It is then

easily seen from (4.18) that ψ−1
∂M provides a smooth diffeomorphism between

a neighbourhood of p0(µ) and its image provided that r is large enough.

We have the following:

Theorem 5.2. Let n ≥ 3, N ∋ ℓ > ⌊n2 ⌋+4, λ ∈ (0, 1). Assume that the map

ψ−1
∂M is a homeomorphism of a neighbourhood of p0(µ) and its image. There

exists ε > 0 such that if

‖g − bψ−1(p0
(µ)

)‖Cℓ,λ(M) < ε ,

then there exists a Cℓ,λ metric of constant negative scalar curvature which
coincides with g on M ′, and which is a Kottler metric on the unbounded
component of Mext r ∂M away from M ′′. If g is smooth, then so is the
solution of the deformation problem.

Proof: We proceed as in [8, Section 8.6] but we use the refined versions of
Theorem 5.6 and Proposition 5.7 of [8] used there, as given by Theorems 3.1
and 4.9 of [9] (compare Section 6.3 of [9]). The gluing is done on the collar
neighbourhood [0, 1] × ∂M , with g0 there being bp(µ) , K = δJ = 0, g there

equal to χg + (1 − χ)bp(µ) where χ is a cutoff function which vanishes near

∂M , which we identify with {1} × ∂M ; finally, p(µ) is close to ψ−1
∂M (p0(µ)).

One thus obtains a solution modulo kernel (note that for the estimates on
pp. 53-54 of [8], we have to replace ρ there with R+n(n−1)). For the kernel
projection (see [8, Equation (8.24), p. 55]) we proceed as in [8], p. 55, where
Q there is replaced by p here. By [11, Lemma 3.3] the kernel at bψ−1(p0

(µ)
) is
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one-dimensional except in the spherical case with bψ−1(p0
(µ)

) = b, so except

for this last case this is a straightforward continuity argument by varying
masses in an interval around m0. The Hölder regularity of the final metric
follows from Theorem 4.9 of [9]. �

Proof of Theorem 1.1: The result follows immediately from Theorem 5.2
and Remark 5.1 except in the spherical case with bψ−1(p0

(µ)
) = b. In this last

situation, the supplementary hypothesis of parity insures that all construc-
tions can be made within the class of parity symmetric metrics. The kernel
within this class is one-dimensional, and the solution can be adjusted by
changing bm in the exterior region within the family of unboosted Kottler
metrics; compare the proof of Theorem 2.1 in [7]. �

6. b-conformal deformations near infinity

Let M be a compact manifold with boundary, set M = M r ∂M , and
let ρ be a defining function for ∂M . Let b̄ be a Ck+2,α metric on M . Let
h be covariant symmetric two tensor field such that g = b + h is positive

definite, and for functions v > −1 set u = 1 + v. For δ > 0 and h ∈ Ck+2,α
δ

we consider the function Fg defined on a neighbourhood of zero in Ck+2,α
δ

to Ck,αδ as

Fg(v) = −4
n− 1

n− 2
∇k∇ku+R(g)u + n(n− 1)u

n+2
n−2 ,

where covariant derivatives are related to g = b + h, with the spaces Ck,αδ
of tensors fields or functions as in [16]. Note that Fg(v) = 0 if and only if

the scalar curvature of u
4

n−2 g equals −n(n−1). The map Fg is smooth near
zero and, if R(g) = −n(n− 1), the derivative at v = 0 given by

F ′
g(0)w = 4

n− 1

n− 2
(−∇k∇k + n)w .

The map F ′
g(0) is an isomorphism from Ck+2,α

δ to Ck,αδ when δ ∈ (−1, n) [2,
Theorem 7.2.1], so in particular when δ ∈ (0, n). The implicit function
theorem then shows:

Proposition 6.1. Let k ∈ N, δ ∈ (0, n), α ∈ (0, 1), and for h̊ ∈ Ck+2,α
δ let

g̊ = b+ h̊ be a metric on M as described above with constant scalar curvature

−n(n−1). There exists ε > 0 and a constant C such that for any h ∈ Ck+2,α
δ

with norm less than ε there exists a unique v ∈ Ck+2,α
δ satisfying

Fg̊+h(v) = 0 , v > −1 , ‖v‖
Ck+2,α

δ

≤ C‖h‖
Ck+2,α

δ

,

so that the tensor field u
4

n−2 (̊g + h) defines a Riemannian metric with con-
stant scalar curvature −n(n− 1). The map h 7→ v is smooth near zero.

Given a Riemannian metric g̊ as in the statement of Proposition 6.1, we
will use that Proposition to construct metrics which are arbitrarily close to g̊
on compact sets, and which are conformal to the background b near infinity,
as follows. Let 0 < δ < σ, δ < n, and let ga be the metric interpolating
between g̊ and b on the annulus Aa,4a, as in (4.2). Then ga = g̊ + ha,
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where ha ∈ Ck+2,α
σ ⊂ Ck+2,α

δ , with ‖ha‖Ck+2,α
δ

going to zero when a does.

Proposition 6.1 shows that for all a small enough there exists va ∈ Ck+2,α
δ

satisfying va > −1 such that the metric

(6.1) ĝa := (1 + va)
4

n−2 ga

has scalar curvature −n(n− 1), and va goes to zero in Ck+2,α
δ when a does.

In particular, va goes to zero with (k + 2, α) derivatives uniformly on any
compact subset of M .

The metric ĝa is conformal to b near the conformal boundary at infinity.
If we assume that ρ2b is smooth up to boundary at ∂M , then the conformal
factor u is polyhomogeneous at the conformal boundary [2, 3] . Further [3],
the asymptotic expansion of ua = 1+va is identical to that of the background
metric b up to terms O(ρn). This implies that ua is in fact smooth up to
boundary and, for small ρ,

(6.2) |ĝa − b|b = O(ρn) .

If b has the form (1.2), with b̂ – Einstein, and if σ > n/2, then the energy-
momentum vector p(µ) of g̊ is well defined. We can then choose δ > n/2,
in which case it immediately follows from the definition of p(µ) and from

(4.12)-(4.15) that the energy-momentum vector of (1 + va)
4

n−2 ga tends to
that of g̊ as a goes to zero.

As we have seen, the construction can be done rather generally, resulting
in a small conformal deformation of the metric on compact sets. It turns
out that the deformation can be localized to the asymptotic region if one
supposes, moreover, that g̊ is not static in the asymptotic region; by this
we mean that P ∗

g̊ has no kernel on Mε for all ε small enough. Then the
deformation can be localized to the exterior region, in the sense that for any
ε > 0 we can find a constant scalar curvature metric g̃ε which coincides with
g̊ on M rMε, with Mε as in (2.1), and which is conformal to b near the
conformal boundary. The construction goes as follows: By the arguments
in [4] there exists a sequence of annuli Aai,4ai on which P ∗

g̊ has no kernel.

Choose ai0 < ε/4, for all a < aio small enough let ĝa be as in (6.1), then
ĝa restricted to Aai0 ,4ai0 approaches zero in Ck+2,α. By the gluing results

of [8, 9], for k > ⌊n2 ⌋+ 2 and for a small enough ĝa can be deformed within
Aai0 ,4ai0 to a metric g̃ε with constant scalar curvature which coincides with
g̊ on M rM4ai0

⊂ M rMε, and which coincides with ĝa on Mai0
, hence

is conformal to b near the conformal boundary at infinity. In particular g̃ε
approaches b as O(ρn) by (6.2).

Summarizing, we have proved the following result, somewhat reminiscent
of [21, Proposition 4.1]:

Proposition 6.2. Let dimM = n ≥ 3, C, σ > 0, ℓ ∈ N, ℓ ≥ 2, α ∈ (0, 1)

and suppose that g̊ = b + h̊ is a Riemannian metric with scalar curvature

−n(n− 1) with ρ2b ∈ C l,α(M) and h̊ ∈ C l,ασ . Then:

(1) For all ε > 0 there exists a metric g̊ε with scalar curvature −n(n−1),
conformal to g̊ away from Mε, and conformal to b near the conformal
boundary.
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(2) Furthermore g̊ε converges to g̊ in Cℓ,α(U ) topology on any relatively
compact open subset U of M .

(3) If ρ2b is sufficiently differentiable at the conformal boundary (e.g.,
smooth), then the metrics g̊ε approach b as O(ρn) for small ρ.

(4) If b is of the form (1.2) with b̂ Einstein, and if σ > n/2, then the
energy-momentum of g̊ε approaches that of g̊ as ε tends to zero.

(5) If ℓ > ⌊n2 ⌋+ 4 and if there exists ε0 > 0 such that P ∗
g̊ has no kernel

on Aε0/4,ε0 , then g̊ε can be chosen to coincide with g̊ away from Mε0 ,

but then the convergence of point (2) to g̊ is in Cℓ−2,α(U ) topology
only.

Appendix A. The asymptotics of P ∗

A.1. Conformally compact metrics. In this section, we study the be-
haviour of the operator P ∗

g , when rescaled from Aδ,4δ to A1,4, with δ tending
to zero, for conformally compact metric, asymptotically hyperbolic in the
sense of [18]. We consider on M4δ a metric of the form

(A.1) g = ρ−2(dρ2 + ĝ(ρ)) =: ρ−2g.

This metric is conformally compact and |dρ|g = 1 at infinity, so

Ric(g) = −(n− 1)g +O(ρ),

where O(ρ) is a symmetric covariant two tensor with g-norm of order O(ρ)
(equivalently g-norm of order O(ρ−1)).

We study the metric on Aδ,4δ, of course this calculation is valid for g = b
with b as is (2.3) or (1.3). This can be pulled-back to A = A1,4 using the
change of variable ρ = δz to

gδ = z−2(dz2 + δ−2 δ ĝ(z)),

where δ ĝ(z) = ĝ(δz). The determinant reads

det(gδ) = z−2nδ−2(n−1) det( δĝ) .

The non-trivial Christoffel symbols of gδ are
δΓzzz = −z−1,

δΓzAB = −z
2

2
(−2z−3δ−2 δ ĝAB + z−2δ−2∂z

δ ĝAB),

δΓCAz =
δΓCzA =

1

2
(−2z−1δCA + δ ĝBC∂z

δĝAB),

δΓCAB = ΓCAB(
δĝ) =: δΓ̂CAB.

We note that ∂z
δ ĝAB(z) = δ∂ρĝAB(δz) = O(δ). The Hessian of a function

u takes the form
δ∇z∂zu = ∂2zu+ z−1∂zu,

δ∇z∂Au = ∂z∂Au+ (z−1δCA +O(δ)CA)∂Cu,
δ∇A∂Bu = δ∇̂A∂Bu− (z−1δ−2 δĝAB +O(δ−1)AB)∂zu,

thus
δ∇k∂ku = z2∂2zu− [(n− 2)z +O(δ)]∂zu+ z2δ2 δ∇̂A∂Au.

This gives

(P ∗
gδ
u)zz = [(n − 1)z−1 +O(δ)]∂zu− uRic(gδ)zz − δ2 δ∇̂A∂Au,
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(P ∗
gδ
u)zA = ∂z∂Au+ (z−1δCA +O(δ)CA)∂Cu− uRic(gδ)zA,

(P ∗
gδ
u)AB = δ∇̂A∂Bu− δ∇̂C∂Cu δ ĝAB − δ−2∂2zu

δ ĝAB

+[(n− 3)z−1δ−2 δĝAB +O(δ−1)AB ]∂zu− uRic(gδ)AB .
Now, recall that Ric(g) = −(n − 1)g + ρ−1T , where T is g bounded. As

g = dρ2 + ĝ(ρ) = δ2dz2 + δĝ(z), we have that Tzz = O(δ2), TzA = O(δ) and
TAB = O(1), thus the coordinate components of P ∗

gδ
u are

(P ∗
gδ
u)zz = [(n− 1)z−1 +O(δ)]∂zu+ [(n − 1)z−2 +O(δ)]u − δ2 δ∇̂A∂Au,

(P ∗
gδ
u)zA = ∂z∂Au+ (z−1δCA +O(δ)CA)∂Cu− uO(1)zA,

(P ∗
gδ
u)AB = δ∇̂A∂Bu− δ∇̂C∂Cu δ ĝAB − δ−2∂2zu

δ ĝAB

+[(n− 3)z−1δ−2 δ ĝAB +O(δ−1)AB ]∂zu

+u(n− 1)(z−2δ−2 δ ĝAB +O(δ−1)AB).

A.2. The (C, k, σ)-asymptotically hyperbolic case. In this section we
compare the behaviour of the operator P ∗

g with that of P ∗
b , when rescaled

from Aδ,4δ to A1,4, for (C, k, σ)-asymptotically hyperbolic metrics of the form
(A.1). We also give an explicit formula for P ∗

b and its kernel for metrics of
the form (2.3).

If k ∈ N, σ > 0, and g is (C, k, σ)-asymptotically hyperbolic with b of the
form (2.3), we have

Ric(g) = Ric(b) +O(ρσ) = −(n− 1)b+O(ρσ) = −(n− 1)g +O(ρσ),

where O(ρσ) is a symmetric covariant two tensor with g-norm (or b-norm)
of order O(ρσ) (equivalently g-norm of order O(ρσ−2)) .

First, we have ĝ(ρ)− b̂(ρ) = O(ρσ) and ∂ρ[ĝ − b̂](ρ) = O(ρσ−1), so that

δĝ(z)− δ b̂(z) = O(δσ) ,

∂z[
δ ĝ − δ b̂ ](z) = δ O(δσ−1) = O(δσ).

The non-trivial Christoffel symbols of gδ are
δΓzzz = −z−1 = δΓzzz(bδ),

δΓzAB = δΓzAB(bδ) +O(δσ−2)AB ,
δΓCAz =

δΓCzA = δΓCAz(bδ) +O(δσ)CA,
δΓCAB = ΓCAB(

δ ĝ) = δΓ̂CAB(
δ b̂) +O(δσ)CAB.

Let ν be a one-form on A. To make things clear, let δ∇̃ denote the covariant
derivative operator of the metric bδ and

δ∇ the one for gδ, we have
δ∇zνz = ∂zνz + z−1νz,

δ∇zνA = δ∇̃zνA +O(δσ)CAνC ,
δ∇Aνz = δ∇̃Aνz +O(δσ)CAνC ,

δ∇AνB = δ∇̃AνB +O(δσ−2)ABνz +O(δσ)CABνC ,

where the error terms are measured with any fixed metric on the compact

set A, e.g. dz2 + b̂(0).
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If ν = du, then

δ∇z∂zu = ∂2zu+ z−1∂zu = δ∇̃z∂zu,
δ∇z∂Au = δ∇̃z∂Au+O(δσ)CA∂Cu,

δ∇A∂Bu = δ∇̃A∂Bu+O(δσ−2)AB∂zu+O(δσ)CAB∂Cu,

thus

δ∇k∂ku = δ∇̃k∂ku+O(δσ)∂zu+O(δσ+2)AB δ ̂̃∇B∂Au+O(δσ+2)C∂Cu.

We obtain for the components of P ∗
gδ
u:

(P ∗
gδ
u)zz = (P ∗

bδ
u)zz+O(δσ)∂zu+O(δσ)u+O(δσ+2)AB δ ̂̃∇B∂Au+O(δσ+2)C∂Cu,

(P ∗
gδ
u)zA = (P ∗

bδ
u)zA +O(δσ)CA∂Cu+O(δσ−1)Au,

(P ∗
gδ
u)AB = (P ∗

bδ
u)AB+O(δσ−2)AB∂zu+O(δσ)CB

δ ̂̃∇C∂Au+O(δσ)CAB∂Cu+O(δσ−2)ABu .

Next, we compute the explicit expression of P ∗
bδ

for a metric of the form

(2.3). In that case we have

δ b̂(z) =

[
1− k

(
δz

2

)2
]2
b̂,

then

∂z(
δ b̂)(z) = −kδ2z

[
1− k

(
δz

2

)2
]
b̂.

The non-trivial Christoffel symbols of bδ are
δΓzzz = −z−1,

δΓzAB = δ−2z−1

[
1− k

(
δz

2

)2
][

1 + k

(
δz

2

)2
]
b̂AB ,

δΓCAz = −z−1

[
1− k

(
δz

2

)2
]−1 [

1 + k

(
δz

2

)2
]
δCA ,

δΓCAB = ΓCAB (̂b).

We thus obtain for the components of the Hessian of u:

δ∇̃z∂zu = ∂2zu+ z−1∂zu,

δ∇̃z∂Au = ∂z∂Au+ z−1

[
1− k

(
δz

2

)2
]−1 [

1 + k

(
δz

2

)2
]
∂Au,

δ∇̃A∂Bu = ∇̂A∂Bu− δ−2z−1

[
1− k

(
δz

2

)2
][

1 + k

(
δz

2

)2
]
b̂AB ∂zu,

thus

δ∇̃k∂ku = z2∂2zu+



1− (n− 1)

[
1− k

(
δz

2

)2
]−1 [

1 + k

(
δz

2

)2
]
 z∂zu

+z2δ2

[
1− k

(
δz

2

)2
]−2

∇̂A∂Au.
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One checks that Ric(b) = −(n− 1)b, which implies

Ric(bδ) = −(n− 1)bδ .

We obtain for the components of P ∗
bδ
u:

(P ∗
bδ
u)zz = (n− 1)

{[
1− k

(
δz

2

)2
]−1 [

1 + k

(
δz

2

)2
]
z−1∂zu+ z−2u

− 1

n− 1
δ2

[
1− k

(
δz

2

)2
]−2

∇̂A∂Au
}
,

(P ∗
bδ
u)zA = ∂z∂Au+ z−1

[
1− k

(
δz

2

)2
]−1 [

1 + k

(
δz

2

)2
]
∂Au,

(P ∗
bδ
u)AB = ∇̂A∂Bu− ∇̂C∂Cu b̂AB − δ−2z−2

[
1− k

(
δz

2

)2
]2{

z2∂2zu

+z

(
1− (n− 2)

1 + k
(
δz
2

)2

1− k
(
δz
2

)2

)
∂zu− (n− 1)u

}
b̂AB.

Now, a function u is in the kernel of P ∗
bδ

if and only if

δ∇∂u = u bδ.

One checks that

u0 = z−1

[
1 + k

(
δz

2

)2
]
,

is indeed in this kernel. Further, if v is a non trivial solution of the Obata-
type equation

∇̂A∂Bv = −kv b̂AB
on the boundary at infinity, then the function

u = vz−1

[
1− k

(
δz

2

)2
]

satisfies (P ∗
bδ
u)zz = (P ∗

bδ
u)zA = 0, with ((P ∗

bδ
u)AB = 0 if and only if k = 1).

Finally, it is an easy exercise to show that these functions generate the
kernel of P ∗

bδ
. Here one can use the well known fact that the kernel of P ∗

has dimension at most n+ 1 (see, e.g., [12]).

Appendix B. Proof of Lemma 3.6

Throughout this appendix we write Aδ for Aδ,4δ and A for A1,4; we hope
that the clash of notation with the A–spaces occasionally used elsewhere
will not confuse the reader. We start by scaling Aδ to A = (1, 4) × ∂M .
Recall that the weight function φ = y2 on A relevant for the calculation
at hand equals (z − 1)2(z − 4)2/9, where z runs along the (1, 4) factor of
A. The argument that follows actually applies to any non-negative function
φ = φ(z) which vanishes precisely at the boundary of A and satisfies:

φ(1) = φ(4) = φ′(1) = φ′(4) = 0 , φ′′(1) > 0 , φ′′(4) > 0 .
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The idea of the proof is to cover (1, 4) by intervals Ii, with sizes chosen
so that on each interval the ratio supφ/ inf φ is bounded independently of
i. Furthermore, the size of each interval should be of the order of the value
of φ on the interval, to ensure good scaling properties. We then use interior
elliptic estimates after a cube decomposition of Ii × ∂M ; this requires a

second family of thickened intervals Îi, with properties similar to the ones
satisfied by the Ii’s. Summing over the cubes provides the desired estimate,

after having ensured that the Îi’s do not overlap too much. We note that
the scalings in z and θA are different; the former is tailored to account for
the degeneracy in the “radial” z-direction, measured by φ, and the latter
accounting for the φδ-dependent degeneracy in the “angular” θA-direction.

So we divide (1, 4) into intervals

(B.1) Ik ⊂ Îk ⊂ (1, 4) , ∪kIk = (1, 4) ,

as follows: There exists 1 < z1 < 5/2 such that φ : [1, z1] → R+ is strictly
increasing. Choose a > 0 small enough so that

z − 2aφ(z) > 1 on (1, z1] and z1 + a(φ(z1)) ≤ 4 .

Define zi by induction using

zi+1 = zi − aφ(zi) ,
thus 1 < zi+1 < zi, and limi→∞ zi = 1. For any function f ∈ L1(A) we thus
have

(B.2)

∫

[1,z1]×∂M
f =

∑

i

∫

[zi+1,zi]×∂M
f .

We want to show that there exists a constant C such that for all a small
enough and for all positive integrable functions f we have

(B.3)
∑

i

∫

[zi−2aφ(zi),zi+aφ(zi)]×∂M
f ≤ C

∫

[1,4]×∂M
f .

In order to do that we need to count how many of the intervals [zi −
2aφ(zi), zi + aφ(zi)] overlap. Letting b := aφ′′(1)/2, one easily finds

zi − 2aφ(zi)− 1 = (zi − 1)
(
1− 2b(zi − 1)

)
+O

(
(zi − 1)3

)
,

zi+k − 1 = (zi − 1)
(
1− kb(zi − 1)

)
+O

(
(zi − 1)3

)
,

zi+k + aφ(zi+k)− 1 = (zi − 1)
(
1− (k − 1)b(zi − 1)

)
+O

(
(zi − 1)3

)
,

where the error terms in the second and third equation depend upon k.
Choosing k = 4, it follows that

zi+k + aφ(zi+k) < zi − 2aφ(zi)

for all i large enough. So for i large enough [zi − 2aφ(zi), zi + aφ(zi)] will
intersect at most six such other intervals, and (B.3) with a constant C ≥ 6
follows.

An obvious modification of the above construction, decreasing a if neces-
sary, will lead to a sequence z′k → 4 satisfying

5/2 < z′1 ≤ z′i = z′i+1 − aφ(z′i+1) < z′i+1 < 4 ,



26 P.T. CHRUŚCIEL AND E. DELAY

with, for f ∈ L1(A),

(B.4)

∫

[z′1,4]×∂M
f =

∑

i

∫

[z′i,z
′

i+1]×∂M
f ,

and if moreover f is positive then

(B.5)
∑

i

∫

[z′i−2aφ(z′i),z
′

i+aφ(z
′

i)]×∂M
f ≤ C

∫

[1,4]×∂M
f .

Letting {Ik}k∈N be the collection, without repetitions, of the intervals

{[z1, z′1]︸ ︷︷ ︸
=:I1

, [zi+1, zi], [z
′
j , z

′
j+1]}i,j∈N∗ ,

and letting {Îk}k∈N be the collection, without repetitions, of the intervals

{[z1 − aφ(z′1), z′1 + aφ(z′1)]︸ ︷︷ ︸
=:bI1

, [zi−2aφ(zi), zi+aφ(zi)], [z′j−2aφ(z′j), z′j+aφ(z′j)]}i,j∈N∗ ,

we obtain (B.1) together with∫

[1,4]×∂M
f =

∑

k

∫

Ik×∂M
f ,(B.6)

C−1

∫

[1,4]×∂M
f ≤

∑

k

∫

bIk×∂M
f ≤ C

∫

[1,4]×∂M
f ,(B.7)

for positive f ∈ L1(A). We set

z̃k = sup Ik .

The above construction provides a δ-independent decomposition of A into
stripes Ik × ∂M , the size of which in the z-direction is comparable to φ(z)

for any (z, v) ∈ Ik × ∂M ; similarly the sizes of Îk × ∂M are comparable to

φ(z) for any (z, v) ∈ Îk × ∂M . Mapping A to Aδ provides an associated
decomposition of Aδ into stripes Iδk × ∂M with sizes uniformly comparable

to φ(ρ/δ) for any (ρ, v) ∈ Iδk × ∂M ; similarly for Îδk × ∂M .
We continue with a δ–dependent, and stripe dependent, cube decom-

position of ∂M , as follows: Let {(Oi, ψi)}i=1,...,N be a covering of M by

coordinate charts with each coordinate system ψ−1
i mapping Oi smoothly

and diffeomorphically to a neighbourhood of [0, 1]n−1; the local coordinates
on [0, 1]n−1 will be denoted by θA. We further assume that ∪ψi([0, 1]n−1)
covers ∂M as well. Let ϕi be an associated decomposition of unity, thus∑

i ϕi = 1. Setting fi = (ϕif) ◦ ψi, for any integrable function f we have

∫

[1,4]×∂M
f =

N∑

i=1

∫

[1,4]×[0,1]n−1

fi .

Given δ satisfying 0 < δ < 1/ sup[1,4] φ and given an interval Ik define

m = m(k, δ) ∈ N by the inequality

(B.8)
1

m+ 1
≤ φ(z̃k)δ <

1

m
.
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Let {Kj} be the collection of closed (n− 1)-cubes, with pairwise disjoint

interiors, and with edges of size 1/m, covering [0, 1]n−1. For any Kj let K̂j

be the union of those cubes Ki which have non-empty intersection with Kj.

Note that there exists a number N̂(n) such that K̂j is consists of at most

N̂(n) cubes Ki. It follows that for any integrable function fi we have∫

[1,4]×[0,1]n−1

fi =
∑

k

∫

[1,4]×Kk

fi ,

and if fi ≥ 0 then∫

[1,4]×[0,1]n−1

fi ≤
∑

k

∫

[1,4]× bKk

fi ≤ N̂(n)

∫

[1,4]×[0,1]n−1

fi .

We are ready now to pass to the heart of our argument. Let {Uℓ}ℓ∈N be
the collection, without repetitions, of the sets

{Ik × ψi(Kj)}k∈N, i=1,...,N, j=0,...,mn−1 .

Similarly let {Û ℓ}ℓ∈N be the collection, without repetitions, of the sets

{Îk × ψi(K̂j)}k∈N, i=1,...,N, j=0,...,mn−1 .

From what has been said we have, for any positive integrable function f ,∫

[1,4]×∂M
f ≤

∑

ℓ

∫

Uℓ

f ≤ N
∫

[1,4]×∂M
f ,

∫

[1,4]×∂M
f ≤

∑

ℓ

∫

bU ℓ

f ≤ NN̂(n)

∫

[1,4]×∂M
f .

If Uℓ = Ik × ψi(Kj) set φℓ = φ(z̃k). Scale the local coordinates (z, θA) in

Û ℓ as
(z, θA) 7→ (z/φℓ,mθ

A) .

Up to translations, this maps all Uℓ ⊂ Û ℓ’s to fixed cubes

Uℓ −→ [0, a]× [0, 1]n ⊂ [−a, 2a] × [−1, 2]n ←− Û ℓ ,

except for those which correspond to I1 × ψi(Kj), which are mapped to

Uℓ −→ [0, a(z′1−z1)/φ(z′1)]×[0, 1]n ⊂ [−a, a+a(z′1−z1)/φ(z′1)]×[−1, 2]n ←− Û ℓ ,

By construction there exists a constant C > 0, independent of i, such that
we have

sup
Ii×∂M

φ ≤ C inf
Ii×∂M

φ , sup
bIi×∂M

φ ≤ C inf
bIi×∂M

φ ,

hence the same is true on each Uℓ and Û ℓ. Let ψ = e−s/2y; it is shown at
the end of [8, Appendix B] that one also has

sup
Ii×∂M

ψ ≤ C inf
Ii×∂M

ψ , sup
bIi×∂M

ψ ≤ C inf
bIi×∂M

ψ

(with perhaps a different constant C), and again such ℓ-independent in-

equalities hold on the Uℓ’s and Û ℓ’s. At this stage in is important to realize
that

Lgδ = B(φ∂z, φδ∂θA),
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where B is uniformly elliptic of order 4 (see equation (A.4) in [8]) on the
relevant cubes. We can also write

gδ = z−2(dz2 + δ2ĝAB(δz)dθ
AdθB) = z−2(dz2 + ĝAB(δz)d(δθ)

Ad(δθ)B).

It then follows from the usual elliptic interior estimates [19, p. 246] for the
operator B and scaling that (here g = gδ)

∑

i≤k+4

∫

Uℓ

ψ2φ2i|∇(i)u|2g ≤ C
(∑

i≤k

∫

bU ℓ

ψ2φ2i|∇(i)Lu|2g +
∫

bU ℓ

ψ2|u|2
)
,

where C does not depend upon δ nor g close to b. Summing over ℓ,
Lemma 3.6 follows. �

Acknowledgements We are grateful to two anonymous referees for sug-
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