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Abstract

A nonstationary spherically symmetric problem for conformal geometro-
dynamics equations is considered and general exact solutions in quadratures
are obtained. Involvement of Weyl degrees of freedom allows us to consider
the problem with arbitrary initial data, as for the conformal geometrody-
namics equations the Cauchy problem is set up without connections to initial
data. The results of this paper are not confined with the framework of the
perturbation theory and open up new avenues for study of the process of
space-time singularity evolution in time.

1. Introduction. CGD equations

It is well known that the general relativity equations for the empty Rieman-
nian space can be used to describe dynamic evolution only of those spaces,
which on the initial space-like hypersurface satisfy four connections. Given a
spherically symmetric (SphS) problem, because of the connections the gen-
eral relativity equations cannot be used to consider the space evolution with
arbitrary spherically symmetric distribution of the metric tensor components
at the initial time.
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A way out of this situation is sought for by different investigators in differ-
ent directions: some of them through inclusion of Riemann-tensor quadratic
terms in the general relativity equations (see, e.g., [1]) while the others
through inclusion of field fluctuations breaking the spherical symmetry and
carrying away particle multipole moments near the event horizon in the form
of Hawking heat emission (see, e.g., [2]). The typically used method for
studying field configurations (including the singular ones) therewith involves
the notion of the observer, which is a trial material body fit out with frame
attributes and moving freely in a space under consideration. That is the
method is used in which the field configuration is considered as the one that
has already appeared, its appearance history is not taken into account. One
more way-out direction is pursued through the search for the exact general
relativity equation solution for the body generating the Schwarzschild field
and the particle perturbing the field irrespective of how small the difference
from the sphericity would be (see, e.g., [3]).

It may turn out that all or some field configurations considered in all
these approaches can never be realized in principle. This can happen, for
example, when the dynamic equations lead to appearance and development of
discontinuity surfaces near potential points of appearance of the singularities.
In these cases the discontinuity surfaces in essence can play the role of field
configuration regularizers impeding the singularity formation.

However, the mentioned mechanism of counteraction to the appearance
of singularities a fortiori cannot appear when the general relativity equations
for empty space are used for the dynamics equations. These equations are
known to admit only weak discontinuities (discontinuities only of second
normal derivatives of the metric component) and only on light-like surfaces.

As a candidate for more general dynamic equation of particular interest
are the conformal geometrodynamics (CGD) equations derived in [4] (without
lambda term) and in [5] (with lambda term). The CGD equations describe
Weyl empty space dynamics and, as shown in [6], admit setting up the Cauchy
problem without connections to initial data. It is this property of the CGD
equations that allows us to consider the time evolution of Riemannian space
with arbitrary initial data.

In this paper, for simplicity we restrict our consideration to the CGD
equations without lambda term. According to [4], in this case the CGD
equations are given by
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Rαβ −
1

2
gαβR = Tαβ , (1)

where

Tαβ = −2AαAβ − gαβA
2 − 2gαβA

ν
;ν + Aα;β + Aβ;α. (2)

As it follows from (2), alongside metric tensor gαβ vector Aαappears in
Tαβ. CGD equations (1) with tensor Tαβof form (2) differ from the general
relativity equations for empty space

Rαβ −
1

2
gαβR = 0 (3)

in two points: first, in the presence of the nonzero energy-momentum tensor
Tαβ in the right-hand side; second, in a specific structure of the tensor. As
a consequence of the structure the CGD equations possess invariance under
conformal transformations

gαβ → g′αβ = gαβ · e2σ
Aα → A′

α = Aα − σ,α

}

. (4)

Here σ is an arbitrary scalar function.
The first difference (Tαβ 6= 0) leads to the fact that the dynamic equations

begin to admit existence of space-like discontinuity surfaces, for example, in
the form of shock waves. At the same time, the dynamic equations used by
us describe Weyl empty space dynamics. Thus, the CGD equations are in
essence the implementation of Wheeler’s idea about the purely geometrody-
namic description of matter, but in the Weyl rather than Riemannian space.
The second difference (the invariance under conformal transformations) leads
to uniqueness of the structure of the tensor Tαβ.

We now turn to the discussion of the SphS problem.
First of all recall that in the general relativity the statement known as

Israel’s theorem (see [7]) has been proved, according to which (see, e.g.,
[8]-[10]) the solution to the SphS problem in flat asymptotics at infinity is
automatically static. Besides, in this problem nothing except Schwarzschild
solution or its equivalent (with an accuracy to coordinate transformation on
some map) can be obtained whatsoever.

In the case of the CGD equations the SphS problem possesses a great
variety of solutions. The static SphS solutions to the CGD equations com-
plemented with a so-called lambda term are discussed in detail in ref. [11].
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The solutions are shown to include three branches, each of which is de-
termined by five integration constants. In this paper we will take up the
research into another wide class of the SphS solutions to the CGD equations,
i.e. the nonstationary SphS solutions. For the general relativity analogs of
the nonstationary SphS solutions can be obtained only with nonzero energy-
momentum tensors over the entire space. From the standpoint of the general
relativity CGD equations (1) are an alternative of the general relativity equa-
tions with the energy-momentum tensor of some matter.

2. The spherically symmetric problem for the

CGD equations

2.1. The general form of the metric and Weyl vector in
the SphS problem

Here we will not derive the spherically symmetric metric. The derivations
can be found in many general relativity monographs, see, e.g., [8]. The metric
that will be hereinafter referred to as spherically symmetric is given by

ds2 = −eγ · dt2 + eα · dx2 + eβ ·
[

dθ2 + sin2θ · dϕ2
]

. (5)

Besides assumptions of the metric, certain assumptions of the structure
of vector Aαshould be made when solving the CGD equations. We assume
that of 4 independent components of vector Aα in case of SphS as few as two
remain, i.e.

Aα = (A0, A1, A2, A3) → Aα = (ϕ, f, 0, 0) . (6)

All the five introduced functions α, β, γ, ϕ, f are functions of time t

and radial variable x. The metric in form (5) is considered in detail in ref.
[8], which also presents expressions for Christoffel symbols that will be used
in what follows as well as for Riemann tensor components.

When reasoning from the metric in form (5), it can be noticed that the
radial variable is determined not uniquely by this form. Performing the
transformation of the radial variable, we notice that the metric form remains
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unchanged, but relations between components g11 and g22 do change. The
radial variable can be selected so, that functions α and β coincide,

α = β. (7)

In what follows as assume that the choice of the radial variable is made
just in this way, i.e. so that relation (7) hold.

The coordinate transformation spoken about above can be performed
both in the general relativity and in CGD. But in the case of the CGD
equations the “freedom” of transformation of functions α, β, γ, ϕ, f is not
limited to the possibility to attain the fulfillment of relation (7). One more
transformation can be performed, viz. the conformal transformation with
function σ [see (4)]

σ = −1

2
β. (8)

Upon the two above transformations for the CGD equations the metric
form will include only one function γ,

ds2 = −eγ · dt2 + dx2 +
[

dθ2 + sin2θ · dϕ2
]

, (9)

with the form of vector Aα (6) remaining unchanged.
Thus, in what follows we take α = 0, β = 0 in CGD equations, so that

of five functions α, β, γ, ϕ, f only three remain: γ, ϕ, f . After that the
CGD equations for the three functions are written in the following form:

− 1 = e−γ · 3ϕ2 − f 2 − 2f ′, (10)

− 1 = e−γ ·
[

ϕ2 + 2ϕ̇− γ̇ϕ
]

− 3f 2 − γ′f, (11)

0 = −2ϕf + ϕ′ + ḟ − γ′ϕ, (12)

γ′′

2
+

γ′2

4
= e−γ ·

[

ϕ2 + 2ϕ̇− γ̇ϕ
]

− f 2 − 2f ′ − γ′f. (13)

Instead of function γ it is convenient to introduce a new function C

defined as

C =
√
−g =

√
eγ = eγ/2. (14)
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We obtain equations (10)-(13) in the new form:

− 1 = 3
ϕ2

C2
− f 2 − 2f ′ (15)

− 1 =
1

C2
·
[

ϕ2 + 2ϕ̇− 2ϕ
Ċ

C

]

− 3f 2 − 2f
C ′

C
(16)

0 = −2ϕf + ϕ′ + ḟ − 2ϕ
C ′

C
(17)

C ′′

C
=

1

C2
·
[

ϕ2 + 2ϕ̇− 2ϕ
Ċ

C

]

− f 2 − 2f ′ − 2f
C ′

C
(18)

Having extracted (15) and (16) from (18), we arrive at:

C ′′

C
= −2 − 3

ϕ2

C2
+ 3f 2. (19)

Thus, equation (19) can be considered instead of (18) in what follows.
Ref. [12] shows that from the CGD equations of form (1) with energy-

momentum tensor (2) equation

F ασ
;σ =

1√−g

∂

∂xσ

(√
−g F ασ

)

= 0. (20)

From (20) it follows that

ḟ = ϕ′ − C · φ0. (21)

Emphasize that relation (21) follows from CGD equations (15)-(17), (19).
The particular attention paid to relation (21) is due to its simplicity.

Rearrange equations (15)-(17), (19), having made one more function sub-
stitution,

z ≡ ϕ

C
, (22)

and using relation (21) to eliminate ḟ . Equation (15) will become

f ′ =
1

2
+

3

2
z2 − 1

2
f 2. (23)

Equation (16) will assume form
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ż

C
= −1

2
− 1

2
z2 +

3

2
f 2 + f ·

(

C ′

C

)

. (24)

Equation (17) will take form

z′ =
φ0

2
+ fz. (25)

Finally, equation (19) will become

C ′′

C
= −2 + 3T, (26)

where

T ≡ f 2 − z2. (27)

Using definition (27) for function T and formula (21) for ḟ , equation (24)
can be written as

Ṫ

C
= (z − φ0f − zT ) . (28)

Equations (21), (23)-(26) [or their equivalent equations (21), (23), (25)-
(28)] just make up the equation system, to the solution of which we will pass
on right now.

2.2. Determination of desired functions

By direct verification we make sure that from equations (23), (25) relation

(z − φ0f − zT )′ = 0. (29)

follows. Thus, there is relation among functions z, f, T :

z − φ0f − zT = F1 (t) , (30)

where F1 (t) is an arbitrary function of time. Relation (30) is in essence the
first integral of equations (23), (25). And it can be used to determine the
entire set of the desired functions. It is convenient to perform the further
manipulations using the above introduced functions z and T .

Substitute (30) into (28).
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Ṫ = F1 (t) · C. (31)

Hence it follows that to obtain the stationary SphS solution function
F1 (t) should be set identically zero. In other words:

Stationary solution → F1 (t) ≡ 0. (32)

We are seeking the nonstationary solution, therefore hereinafter we as-
sume that F1 (t) 6= 0. Under this assumption from equations (31) and (26)
it follows that

Ṫ ′′

Ṫ
= −2 + 3T,

i.e.

Ṫ ′′ + (2− 3T ) Ṫ = 0.

If this equation is written as

∂

∂t

[

T ′′ + 2T − 3

2
T 2

]

= 0,

then it will follow from this that

T ′′ + 2T − 3

2
T 2 = F2 (x) , (33)

where F2 (x) is some function of radial variable. Determine the function.
From the definition of T it follows that

T ′ = 2 (ff ′ − zz′) ,

T ′′ = 2
(

ff ′′ + f ′2 − zz′′ − z′2
)

.

The expressions for f ′ and z′ are determined by equations (23) and (25),
respectively. Second derivatives f ′′, z′′ will be determined from those same
equations by straightforward differentiation. Upon the substitution of the
expressions for derivatives in (33) we obtain:

F2 (x) =
1

2

(

1− φ2
0

)

. (34)
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Here φ0 is the same constant which appeared in relation (21). Substitute
(34) into (33).

T ′′ = −2T +
3

2
T 2 +

1

2

(

1− φ2
0

)

. (35)

Multiply resultant equation (35) by 2T ′.

2T ′′T ′ =
[

−4T + 3T 2 +
(

1− φ2
0

)]

T ′. (36)

Equation (36) can be integrated.

(T ′)
2
= −2T 2 + T 3 +

(

1− φ2
0

)

T + F3 (t) . (37)

Here F3 (t) is some function of time. The function can be determined. To
do this replace T ′ in (37) with expressions in terms of variables f ′ and z′ and
for the derivatives use equations (23), (25). As a result we determine that

F3 (t) = F 2
1 (t) . (38)

Substitute the determined expression for F3 (t) into equation (37) and
arrive at equation

dT
√

−2T 2 + T 3 + (1− φ2
0) T + F3 (t)

= dx. (39)

Integrate.

x+ F4 (t) =
∫

dT
√

T 3 − 2T 2 + (1− φ2
0)T + F3 (t)

. (40)

The integral appearing on the right is expressed in terms of the well-
known doubly periodic Weierstrass function (see, e.g., [13]). In the function
one period is real, while the other is purely imaginary. The periods depend
on F1 (t) and φ0.

If we transfer to integration variable

s = T − 2

3
, (41)

then relation (40) is reduced to form
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x+ F4 (t) = −2

∞
∫

T−
2

3

ds√
4s3 − g2s− g3

. (42)

Here:

g2 =
4

3
+ 4φ2

0; g3 = − 8

27
− 4F 2

1 . (43)

In the standard notation ℘ for the Weierstrass function we have:

T − 2

3
= ℘

(

−x+ F4 (t)

2
; g2; g3

)

. (44)

Function F4 (t) appearing in ℘, as well as function F1 (t) and constant φ0

appearing in the expressions for g2 and g3 are arbitrary.
Formula (44) gives the answer to the question of the general solution for

function T . The expression for function C is determined using formula (31).
It remains to determine functions z and f . For this purpose we consider
relation (27) and first integral relations (30) as two algebraic equations for
determination of functions z and f . Solving these relations, we determine
that:

z =
F1 · (1− T ) + ηφ0 ·

√

T 3 − 2T 2 + (1− φ2
0)T + F 2

1
[

(1− T )2 − φ2
0

] ; (45)

f =
φ0F1 + η (1− T ) ·

√

T 3 − 2T 2 + (1− φ2
0)T + F 2

1
[

(1− T )2 − φ2
0

] . (46)

In these expressions functions z and f are expressed only in terms of T ,
arbitrary time function F1 (t) and some constant φ0. In these expressions η

takes on the values of either η = 1 or η = −1.
Substituting the resultant expressions for functions z and f into the ini-

tial dynamic equations, we can see that these equations get transformed into
identities, if function T is determined by relation (44) and function C is cal-
culated using formula (31). These transformations are quite straightforward,
but cumbersome, therefore we will not present them here.

Thus, we have found the general solutions for all the functions determin-
ing the nonstationary SphS solution.
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3. Discussion

This paper has derived the general expressions for functions T (t, x), C (t, x),
z (t, x), f (t, x) appearing in the consideration of the nonstationary SphS
problem. The expressions for the functions are determined by formulas (44),
(31), (45), (46), respectively.

Two special solutions have been constructed1 . One of them can be
associated with a train of spherically symmetric waves converging to center
or diverging from it. In either case conformal invariant

(

FαβFµνg
αµgβν

)

is
nonsingular and nonzero, so that the solutions a fortiori do not refer to the
category of conformally flat ones. In either solution this invariant has a finite
value.

In connection with the results note that the solutions with spherical sym-
metry for an empty space refer to simplest exact solutions both in the general
relativity and CGD. In the case of the general relativity the SphS solution is
unique and reduces to Schwarzschild solution. In the case of CGD the SphS
solution set consists of two classes: stationary and nonstationary solutions.
The former are analogs of the Schwarzschild solution. As for the nonsta-
tionary solutions studied in this paper, in the general relativity there are no
analogs of them for the case of empty Riemannian spaces. At the same time
it is clear that it is the nonstationary solutions that may be of the greatest
interest for the study of the phenomena, such as supernova explosions, Hawk-
ing vaporization near event horizons, etc. This supposition can prove valid,
if the above phenomena can appear only evolutionarily, i.e. as a result of
completion of some phase of the nonstationary solution evolution. Therefore
the resort to the nonstationary SphS solutions of the CGD equations opens
up new avenues for studying the above-mentioned phenomena.

The appearance of the new class of the nonstationary SphS solutions in
the transition from the general relativity to the CGD equations is not oc-
casional. The reason is that in the case of the CGD equations the Cauchy
problem is set up without connections to Cauchy data on the initial space-
like hypersurface. The disappearance of four connections to Cauchy data
that take place in the case of the general relativity equations unfreezes the
degrees of freedom that just make the nonstationary SphS solution appear-
ance possible. In other words, the CGD equations can be used to numerically
calculate the metric and Weyl vector evolution under arbitrary initial and

1 To be published in VANT-TPF.
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boundary conditions. This CGD equation property seems to us basically
important and serves, in our opinion, a weighty argument in favor of taking
into consideration the Weyl degrees of freedom of space-time in cosmological
studies.

In conclusion note that using the results of this paper one may try to
verify the unbounded energy cumulation instability hypothesis advanced in
ref. [14]. In our dynamic equations the cumulation bounding mechanism is
associated with the Weyl degrees and appearance of a discontinuity surface
in geometrodynamic continuum with the equations of state generated by the
equations themselves.
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