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ABSTRACT

If a class of stars orbits the central black hole in our galaxy in short period (∼ 0.1 year), high
eccentricity (∼ 0.9) orbits, they will experience precessions of their orbital planes induced by
both relativistic frame-dragging and the quadrupolar gravity of the hole, at levels that could be
as large as 10 µarcseconds per year, if the black hole is rotating faster than 1/2 of its maximum
rotation rate. Astrometric observations of the orbits of at least two such stars can in principle
lead to a determination of the angular momentum vector J of the black hole and its quadrupole
moment Q2. This could lead to a test of the general relativistic no-hair theorems, which demand
that Q2 = −J2/M . Future high-precision adaptive infrared optics instruments may make such a
fundamental test of the black-hole paradigm possible.

Subject headings: galactic center, black hole, general relativity, no-hair theorem

1. Introduction

The discovery, using infrared telescopes, of stars
orbiting within an arcsecond of the central object
SgrA∗ in our galaxy, together with accurate de-
terminations of their orbits, has provided strong
evidence for the existence there of a massive black
hole (MBH) of around 3.6×106M⊙ (see Alexander
(2005) for a review). In addition to opening a win-
dow on the innermost region of the galactic center,
the discovery of these stars has made it possible to
contemplate using orbital dynamics to probe the
curved spacetime of a rotating black hole.

The orbital periods of these stars are on the
scale of tens of years, and thus most relativis-
tic effects, such as the advance of the pericen-
ter, are too small to be observed at present
(see, however Zucker et al. (2006)). Neverthe-
less, there seems to be every expectation that,
with improved observing capabilities, a popu-
lation of stars significantly closer to the hole
will eventually be discovered, making orbital
relativistic effects detectable (Jaroszyński 1998;
Fragile & Mathews 2000; Rubilar & Eckart 2001;
Weinberg et al. 2005; Kraniotis 2007). Further-

more, plans are being developed to achieve in-
frared astrometry on such objects at the level of
10 µarcseconds (Eisenhauer et al. 2008). High-
precision Doppler measurements may also be pos-
sible (Zucker et al. 2006).

This makes it possible to consider doing more
than merely detect relativistic effects, but rather
to provide the first test of the black hole “no-hair”
or uniqueness theorems of general relativity. Ac-
cording to those theorems, an electrically neutral
black hole is completely characterized by its mass
M and angular momentum J . As a consequence,
all the multipole moments of its external space-
time are functions of M and J , specifically, the
quadrupole moment Q2 = −J2/M (in units where
G = c = 1).

If the black hole were non-rotating (J =
0), then its exterior metric would be that of
Schwarzschild, and the most important relativis-
tic effect would be the advance of the pericen-
ter. If it is rotating, then two new phenomena
occur, the dragging of inertial frames and the ef-
fects of the hole’s quadrupole moment, leading
not only to an additional pericenter precession,
but also to a precession of the orbital plane of
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Fig. 1.— Orbital periods vs. eccentricity required
to give measurable relativistic precession rates.
Dotted curves show minimum periods vs. e that
avoid tidal disruption, for various stellar masses.

the star. These precessions are smaller than the
Schwarzschild effect in magnitude because they
depend on the dimensionless angular momentum
parameter χ ≡ J/M2, which is always less than
one, and because they fall off faster with distance
from the black hole. However, accumulating evi-
dence suggests that MBH should be rather rapidly
rotating, with χ larger than 0.5 and possibly as
large as 0.9, so these effects could be significant.

The purpose of this paper is to point out that,
if a class of stars were to be found with orbital
periods of fractions of a year, and with sufficiently
large orbital eccentricities, then the quadrupole-
induced precessions could be as large as 10 µas per
year. Figure 1 illustrates this: assuming a black
hole with χ = 0.7, it shows the orbital period re-
quired as a function of eccentricity, for the rates
of precessions due to Schwarzschild (S), frame-
dragging (J) and quadrupole (Q2) terms to be as
large as 10, 5, and 1 µas per year.

Figure 2 shows the effect of black hole spin on
the amplitudes of the relativistic effects. For orbits
with eccentricity 0.9 and periods of one year and
0.1 years, the amplitudes of the three effects are
plotted in µas per year.

The precession of the orbital plane is the most
important effect here, because it depends only on
J and Q2; the Schwarzschild part of the metric
affects only the pericenter advance. The orbital
plane is determined by its inclination angle i rel-
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Fig. 2.— Relativistic precession amplitudes vs.
black hole spin parameter χ.

ative to the plane of the sky and by the angle of
nodes Ω between a reference direction and the in-
tersection of the two planes. Standard astrometric
and Doppler observations can determine Ω, i, the
pericenter angle ω, the semimajor axis a and the
orbital eccentricity e, and, given sufficient observa-
tion time, the secular rates of change dΩ/dt, di/dt,
and dω/dt.

However, in order to test the no-hair theorems,
one must determine five parameters: the mass of
the black hole, the magnitude and two angles of
its spin, and the value of the quadrupole moment.
The “Kepler-measured” mass is determined from
the orbital periods of stars, but may require data
from a number of stars to fix it separately from any
extended distribution of mass. Then, to measure
J and Q2, it is necessary and sufficient to measure
dΩ/dt and di/dt for two stars in non-degenerate
orbits. A test of the no-hairness of the central
object in our galaxy would be compelling evidence
that it is truly a black hole of general relativity.

2. Orbit perturbations in the field of a ro-

tating black hole

For the purpose of this rough analysis, it suffices
to work in the post-Newtonian limit. The equation
of motion of a body of negligible mass in the field
of a body with mass M , angular momentum J and
quadrupole moment Q2 is given by

a = −Mx

r3
+

Mx

r3

(

4
M

r
− v2

)

+ 4
Mṙ

r2
v
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−2J

r3
[2v × Ĵ− 3ṙn× Ĵ− 3n(h · Ĵ)/r]

+
3

2

Q2

r4
[5n(n · Ĵ)2 − 2(n · Ĵ)Ĵ− n] , (1)

where x and v are the position and velocity of
the body, n = x/r, ṙ = n · v, h = x × v,
and Ĵ = J/|J | (see, eg. Will (1993)). The first
line of Eq. (1) corresponds to the Schwarzschild
part of the metric (at post-Newtonian order), the
second line is the frame-dragging effect, and the
third line is the effect of the quadrupole moment
(formally a Newtonian-order effect). For an ax-
isymmetric black hole, the symmetry axis of the
hole’s quadrupole moment coincides with its rota-
tion axis, given by the unit vector Ĵ. The magni-
tude of the quadrupole moment will be left free.

Using standard orbital perturbation theory, we
find that the precessions per orbit of the orienta-
tion variables are given by

∆̟ = AS − 2AJ cosα

−1

2
AQ2

(1− 3 cos2 α) , (2a)

sin i∆Ω = sinα sinβ(AJ −AQ2
cosα) ,(2b)

∆i = sinα cosβ(AJ −AQ2
cosα) ,(2c)

where

AS = 6πM/p , (3a)

AJ = 4πJ/(mp3)1/2 , (3b)

AQ2
= 3πQ2/mp2 , (3c)

where ∆̟ = ∆ω + cos i∆Ω is the precession of
pericenter relative to the fixed reference direction,
and p = a(1 − e2) is the semilatus rectum. The
quantities α and β are the polar angles of the black
hole’s angular momentum vector with respect the
star’s orbital plane defined by the line of nodes ep,
and the vector in the orbital plane eq orthogonal
to ep and h.

The structure of Eqs. (2b) and (2c) can be
understood as follows: Eq. (1) implies that the
orbital angular momentum h precesses according
to dh/dt = ω × h, where the orbit-averaged ω is
given by ω = Ĵ(AJ − AQ2

cosα); the orbit ele-
ment variations are given by di/dt = ω · ep and
sin idΩ/dt = ω · eq. As a consequence, we have
the purely geometric relationship,

sin idΩ/dt

di/dt
= tanβ . (4)

To get an idea of the astrometric size of these
precessions, we define an angular precession rate
amplitude Θ̇i = (a/D)Ai/P , where D is the dis-
tance to the galactic center and P = 2π(a3/M)1/2

is the orbital period. Using M = 3.6 × 106M⊙,
D = 8kpc, we obtain the rates, in microarcsec-
onds per year

Θ̇S ≈ 13.3P−1(1− e2)−1 , (5)

Θ̇J ≈ 0.847χP−4/3(1− e2)−3/2 , (6)

Θ̇Q2
≈ 9.68× 10−3 χ2P−5/3(1− e2)−2 , (7)

where we have assumed |Q2| = M3χ2. The
observable precessions will be reduced somewhat
from these raw rates because the orbit must be
projected onto the plane of the sky. For example,
the contributions to ∆i and sin i∆Ω are reduced
by a factor sin i; for an orbit in the plane of the
sky, the plane precessions are unmeasurable.

For the quadrupole precessions to be observ-
able, it is clear that the black hole must have a
decent angular momentum (χ > 0.5) and that the
star must be in a short period high-eccentricity
orbit. Figures 1 and 2 show the quantitive re-
quirements, based on these rate amplitudes.

3. Testing the no-hair theorems

Although the pericenter advance is the largest
relativistic orbital effect, it is not the most suit-
able effect for testing the no-hair theorems. The
frame-dragging and quadrupole effects are small
corrections of the leading Schwarzschild pericen-
ter precession, and thus one would need to know
M , a and e to sufficient accuracy to be able to
subtract that dominant term to reveal the smaller
effects of interest. Furthermore, the pericenter
advance is affected by a number of complicat-
ing phenomena. (i) For such relativistic orbits,
Schwarzschild contributions to the pericenter pre-
cession at the second post-Newtonian order may
be needed. (ii) Any distribution of mass (such as
dark matter or gas) within the orbit, even if it
is spherically symmetric, will generally contribute
to the pericenter advance. (iii) Tidal distortions
of the stars are likely to occur near the pericenters
of the highly eccentric orbits, leading to additional
contributions to the pericenter advance of the form
30π(M/m)(R/a)5k2(1 + 3e2/2 + e4/8)/(1 − e2)5,
where m, R and k2 are the mass, radius and “apsi-
dal constant”, or Love number of the star, respec-
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tively. Tidal contributions could be significant for
sufficiently close and eccentric orbits.

Of course, if a star gets too close to the black
hole, it could be tidally disrupted. This possibility
sets a lower bound on the orbital period Pmin ∼
2
√
3π(R3/m)1/2(1 − e)−3/2, set by requiring that

the pericenter distance exceed the Roche radius of
the star. This is illustrated by the dotted curves
in Fig. 1.

By contrast, the precessions of the node and
inclination are relatively immune from such ef-
fects. Any spherically symmetric distribution of
mass has no effect on these orbit elements. As
long as any tidal distortion of the star is quasi-
equilibrium with negligible tidal lag, the resulting
perturbing forces are purely radial, and thus have
no effect on the node or inclination.

From the measured orbit elements and their
drifts for a given star, Eq. (4) gives the angle β, in-
dependently of any assumption about the no-hair
theorems. This measurement then fixes the spin
axis of the black hole to lie on a plane perpendicu-
lar to the star’s orbital plane that makes an angle
β relative to the line of nodes. The equivalent de-
termination for another stellar orbit fixes another
plane; as long as the two planes are not degen-
erate, their intersection determines the direction
of the spin axis, modulo a reflection through the
origin.

This information is then sufficient to determine
the angles α and β for each star. Then, from the
magnitude

(

[sin i
dΩ

dt
]2 + [

di

dt
]2
)1/2

= sinα(AJ −AQ2
cosα) ,

(8)
determined for each star, together with the orbit
elements, one can solve for J and Q2.

In practice, of course, the analysis of the astro-
metric data will be carried out in a more sophis-
ticated, if less transparent manner. Using data
from all detected stars, one carries out a multi-
parameter least-squares fit, standard in solar-
system celestial mechanics, to determine their
orbit elements. Their motions would be based
on Eq. (1) but with M , J and Q2 treated as pa-
rameters to be fit along with the orbit elements
of each star. If necessary, the model can be ex-
tended to include effects of an additional matter
distribution, tidal effects, and so on.

4. Concluding remarks

We have shown that a class of stars orbiting a
rotating central black hole in our galaxy in short
period, high eccentricity orbits, will experience
precessions of their orbital planes induced by both
frame dragging and the quadrupolar gravity of
the hole, at levels that could be as large as 10
µarcseconds per year. Observations of the orbits
of at least two such stars can in principle lead to
a determination of the angular momentum vector
J and quadrupole moment Q2 of the black hole,
and could provide a test of the no-hair theorems
of general relativity.

Alternative possibilities for no-hair tests in-
volve timing measurements of pulsars orbiting
black-hole companions (Wex & Kopeikin 1999),
gravitational-wave measurements of compact ob-
jects spiralling into massive black holes (Ryan
1997; Glampedakis & Babak 2006; Hughes 2006),
or detection of quasi-normal “ringdown” gravita-
tional radiation of perturbed black holes (Dreyer, et al.
2004; Berti, et al. 2006).

Detecting such stars so close to the black
hole, and carrying out infrared astrometry to
10µarcsecond accuracy will be a challenge. How-
ever, if this challenge can be met with future
improved adaptive optics systems currently un-
der study, such as GRAVITY (Eisenhauer et al.
2008), it could lead to a powerful test of the black-
hole paradigm.

In future work, we plan to study in detail such
complicating effects as second-post-Newtonian
(2PN) corrections to the Schwarzschild part of
the pericenter advance, tidal effects, effects of un-
seen mass distributions within the observed stellar
orbits, and light deflection and Shapiro time delay
effects (Rubilar & Eckart 2001; Weinberg et al.
2005). For example, a torus of matter of mass
m orbiting the black hole at a distance R will
induce fractional changes in the apparent angu-
lar momentum and quadrupole moment of or-
der δJ/J ∼ (m/M)(R/M)1/2(1/χ) and δQ/Q ∼
(m/M)(R/M)2(1/χ)2, so only a very massive
and/or very distant torus will be relevant. We
also plan to carry out covariance analyses to ob-
tain more realistic estimates of the accuracies that
might be obtained for the no-hair test for given
raw astrometric accuracies, and for a range of
observing schedules.
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