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Abstract

In a previous paper [gr-qc/0707.2775] we showed that statipasymptotically flat
vacuum black hole solutions in 5 dimensions with two comnguixial Killing fields
can be completely characterized by their mass, angular miomme a set of real mod-
uli, and a set of winding numbers. In this paper we generaireanalysis to include
Maxwell fields.

1 Introduction

In n = 4 spacetime dimensions, asymptotically flat, stationaguuan or electrovac black
hole solutions are completely characterized by their asgtigicharges—mass, angular mo-
mentum, and electric charge [3, 17, 14, 2]. The completesifieation of stationary black
holes in more than = 4 spacetime dimensions is at present an open problem. Hovireze
recent paper of ours [12], a partial classification was agudor vacuum solutions under the
assumption that the number of commuting axHlling fields is sufficiently large. The par-
ticular case considered there was- 5, and the number of axial Killing fields required was
two?. Under this hypothesis, we showed how to construct from thengsolution a certain
set of invariants consisting of a set of real numbers ("migahd a collection of integer-
valued vectors ("winding numbers"). These data were cdahled'interval structure” of the

*HollandsS@Cardiff.ac.uk

Tyazadj@theorie.physik.uni—goe.de

1By this we mean a Killing field whose orbits are periodic.

2The higher dimensional rigidity theorem [11] only gives anxra axial Killing field. This is presumably
the generic situation.
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solution. It determines in particular the horizon topolpghich could be eitheg?, St x &
or a Lens-spack(p,q). We then demonstrated that the interval structure togetitarthe
asymptotic charges gives a complete set of invariants cdahgions, i.e., if these data coin-
cide for two given solutions, then the solutions are isoroetr

In this paper, we generalize the analysis of our previougipH®] to include Maxwell
fields. We show that, if certain restrictive additional citimths are imposed upon the
Maxwell field and the axial Killing fields, then a similar unigness theorem as in the vac-
uum case can be proven. Namely, we find that the solution iscoompletely characterized
by the interval structure, the magnetic charges, as welastass and angular momentum.
The extra assumptions placed upon the Killing fields impbt the electric charge (but not
the magnetic charges), and one of the angular momenta eanigihey also imply that the
possible interval structures are limited. In particulag horizon topology can only be either
S or & x S, but notL(p, q).

Non-trivial Einstein-Maxwell black rings (horizo@! x S°) satisfying our assumptiops
have been found by [5] (see also [22] ).

2 Stationary Einstein-M axwell black holesin n dimensions

Let (M, gan, Fap) be ann-dimensional, analytic, asymptotically flat, stationatgdk hole
spacetime satisfying the Einstein-Maxwell equations

_ :_L ¢ Yab cd
Rab = 2 (Fach 2(n— 2) FeaF ) ) (1)

0aF? = 0= OpgFpe- (2)

Lett? be the asymptotically timelike Killing fieldgap = 0, which we assume is normalized
so that limgast?P = —1 near infinity. We assume that also the Maxwell tensor isriawa
undert?, in the sense thdiF,, = 0. We denote byd = 0B the horizon of the black hole,
where the black hol8 is defined as usual = M\ | ~(J%), with 7% the null-infinities of
the spacetime. It is assumed that the latter has topdtogy.., whereZ,, is metrically and
topologically an(n — 2)-dimensional spheré.We assume thatl is “non-degenerate” and
that the horizon cross section is a compact connected na@mifaimensionn — 2. Under
these conditions, one of the following 2 statements is tiijetf t2 is tangent to the null
generators oH then the spacetime must be static [18]. (iix3fis not tangent to the null
generators oH, then the higher dimensional rigidity theorem [11] statest there exist
N > 1 additional linear independent, mutually commuting Kiifieldsyg,..., g, such
that£y, Fap. . ., £yyFab = 0. These Killing fields generate periodic, commuting flowstifw
period 21), and there exists a linear combination

KE=t24+ Qi +---+ QuUf, QeR (3)

3Note that the Einstein-Maxwell black ring found in [4] hasaeanishing electric charge and hence does
not fall into the class studied in the present paper.

4In 4 dimensionsE., may beshownto be anS’ under suitably strong additional hypothesis. A discussion
of the structure of null-infinity in higher dimensions is givin [10].



so that the Killing fieldK2 is tangent and normal to the null generators of the horizpand
Kap?=0 onH. 4)

Thus, in case (ii), the spacetime is axisymmetric, with isogngroupG = R x U (1)N.
FromK2, one may define the surface gravity of the black holeby= limy (0, )02 /1,
with f = (0%KP)0,K} the norm, and it may be shown thats constant orH [19]. In fact,
the non-degeneracy condition implies> O.

In case (i), one can prove that the spacetime is actuallyuenignd in fact isometric to
the Reissner-Nordstrom-Tangherlini spacetime [13], ighér dimensions see [8]. In this
paper, we will be concerned with case (ii).

Similar to 4 dimensions, the mass and angular momenta ofdlaéi@n associated with
the Killing fields are given, up to irrelevant numerical fat, by the Komar expressions

m:—n;z/ Datbdsab, Ji:/ Datpibds"‘b (5)
n—3Js, o

and we define the electric and magnetic charges of the soltio
Qelz.) = | FadS®, Qull - /q #Fapy S, (6)

whereC,| =1,2,... runs through all the topologically inequivalent, non-gautible, closed
2-surfaces in the exterior of the spacetime. These numberms\ariants of the solution, and
in 4 dimensions in fact characterize the solution uniquélgwever, in higher dimensions
this is no longer the case. In fact, we will see that furthearrants must be taken into
account as well.

We now restrict attention to the exterior of the black hotg,7 "), which we shall again
denote byM for simplicity. We assume that the exterilgr is globally hyperbolic. By the
topological censorship theorem [7], the exterdris a simply connected manifold (with
boundaryoM = H). To understand better the nature of the solutions, it ifulisefirst elim-
inate the coordinates corresponding to the symmetriesed$ppacetime. More precisely, one
considers the factor spabk= M/ G, whereg is the isometry group of the spacetime gener-
ated by the Killing fields. Since the Killing fieldg® in general have zeros, the factor space
M = M/G will normally have singularities and is difficult to analyzelowever, when the
number of axial Killing fields is equal thi = n— 3, and if there are no points in the exterior
M whose isotropy subgroup is discrete, then the factor spatée analyzed by elementary
means. This analysis was carried out in [12] for the case-0b, and a very similar analysis
also applies to general Since we are assuming that the spacetime is asymptotitaily
in the standard sense with spherical infirfity =2 S"~2, the group of asymptotic symmetries
with compact orbits must be isomorphic to a subgrou@ofn — 1), whose maximal torus
has dimensiofi(n— 1) /2]. Thusn— 3 axial Killing fields are only possible if either= 4,
or if n=5. From now on, we focus on the latter case.

Thus, from now on we assume that the isometry group of theesipae isG = K x
R, whereX =U(1) x U(1), and we also assume that the action of the isometry g&gup
generated by the axial symmetries is so that there are ntéspwiti discrete isotropy group.
We denote the Killing vector fields generatiggby Wf, 5, and we denote the factor space
M = M/G. The nature of the factor space is described by the follownogosition [12]:
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Proposition 1: Let (M,gqp) be the exterior of a stationary, asymptotically flat, Eiiste
Maxwell black hole spacetime with 2 mutually commuting ipdadent axial Killing fields
g3, Ws. Then the orbit spachl = M/G by the isometry group is a simply connected, 2-
dimensional manifold with boundaries and corners. Poimthé interior ofM correspond
to points inM where all Killing fieldst?, y, 3 are linearly independent. Points on thih
1-dimensional boundary segment@¥ correspond to either the horizon bf, or points
where a linear combinatiof} (3 +v2y3 = 0, wherev; = (v, ?) is a vector of integers that
is constant on each such segment. Points in the corneisl aforrespond to points iV
wherey§ = 0= (3. The boundary oM is connected.

Away from the boundary o1, we can define a metrigy; by identifying the tangent space
Tn(x)l\7| with the subspackly of TyM spanned by the vectors orthogonatto)3, w3, where
m:M — M = M/ is the projection. We denote this metric g,.” It has signaturé++).
We denote the derivative operator associated with thisime}rf)a. If one defines the & 3
Gram matrix of the Killing fields by

2 ifl =0,

Pe ifl=12, (7

Giy = gaXPXy, X2 = {
then the Gram determinant
r? = |detG| (8)

defines a scalar functionon M which is harmonicD2Dar = 0, as a consequence of the
Einstein-Maxwell equations. Using this, one can show that0, Dar £ 0 on the interior of
M, and one can also show that 0 ondM. A conjugate harmonic scalar fiefomay then
be defined oM by the equatio,z = €P,Dyr. The functions, z define global coordinates
on M, thus identifying this space with the complex upper hargl

M={l=z+ireC: r>0},

with the boundary segments corresponding to intervals@rethl axis. The length—z1 =
li of each segment is an invariant of the solution. The inducettiogy, is given in these
coordinates by

d& = k(r,2)2(dr? +dZ) (9)

with k? a conformal factor.

The set of real "moduli{l;}, and and of the "winding number" vectofs; } are global
parameters that can be defined in an invariant way for thenggedution in addition to the
massm, the two angular moments, Jo, and the electric and magnetic charges. We refer to
these data as the “interval structure” of the solution. Asaghin [12], the interval structure
determines the structure & as a fibered space with an action of the torus gr@upThe
winding numbergv;} characterize the structure of this fibration near the axgsnemts. It
follows from our analysis in [12] that near such an akislocally has the structure @2 x
Seifferfv,v?), i.e., it is a cartesian product &2 with a Seiffert torus, i.e., a 3-torus with
a twisting characterized by the two winding numbers. Thedivig numbers on segments
adjacent on a corner, respectively adjacent on the horiave to satisfy the constraint [12]

det(vj,vj+1) = +1 | if (zj_1,7) and(zj,zj;1) are not the horizon
det(Vh—1,Vhi1) =P \ if (zn,2n+1) is the horizon
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Furthermore, we have the following theorem about the hartepology [12]:

Proposition 2: In a black hole spacetime of dimension 5 with 2 commutingepehdent
axial Killing fields, the horizon cross sectiot must be topologically either a rirgt x $,
a spheres®, or a Lens-spack(p,q), with p,q € Z, andp as in eq. (2).

Remark: The Lens-spacels(p,q) (see e.g. [1, Paragraph 9.2]) are the spaces obtained by
gluing the boundaries of two solid tori together in such a Waat the meridian of the first
goes to a curve on the second which wraps around the longguiees and which wraps
around the meridiag-times. A Lens-space may also be obtained as the quotieSitiof a
discrete group of isometries.

For illustrative purposes, we list the interval structumedome known solutions [15, 6, 4, 16]:

Moduli [; Vectorsv; Horizon Topology
Myers-Perry BH| oo,lq,00 (1,0),(0,0),(0,1) S
Black Ring ,11,l2,00 | (1,0),(0,0),(1,0),(0,1) xS
Flat Spacetime| oo, 00 (1,0),(0,1) —

Here we are using the convention that the integer vegi@ssociated with the horizon is
taken to bg0,0). Even for a fixed set of of asymptotic charges);, J, the invariant lengths
I1,1> may be different for the different Black Ring solutions, m@ponding to the fact that
there exist non-isometric Black Ring solutions with equajiraptotic charges.



3 Moduli space of Einstein-M axwell black holes

We would now like to see to what extent the interval structed the global charges
m,J1,Jo, Qe, Qu determine a given black hole solution of the Einstein-Makwaquations
in 5 dimensions. We were not able to analyze this questiorirerality but only in a sim-
plified case. The simplifying assumptions that we will makéhis section in addition to the
general hypothesis stated above are the following:

1. About thespacetime metriae assume that one of the axial Killing fields, sy is or-
thogonal to the other Killing fieldgapWdW = 0 = gapnt®y?, and that it is hypersurface
orthogonalfp;aUpW1g = 0.

2. About theMaxwell fieldwe assume that there is a 1-foégorthogonal to the Killing
fields such thaEap = §;aP1y . It can easily be shown that, if the Maxwell field arises
from a vector potentidkap = 20;Ay Which is invariant under the Killing fields, then
this will be the case if and only A% is proportional tap$ at each point irM. Note,
however that we dootassume the existence of such a vector potential here.

Let us first point out some simplifications which follow fromsaimptions 1) and 2). The
first immediate consequence of 1) is tldat= 0. Secondly, because the Killing fielpg
is demanded to be orthogonalgg, if Vg2 +v23 = 0 at a point in spacetime, then either
v=(V},v?) =(0,0), orv = (0,1), (1,0), or both axial Killing fields vanish. Thus, the interval
structure (see Prop. 1) of any solution satisfying asswomgt) can only be of the following
possibilities (i)—(iv):

Moduli I \Vectorsy;
(i) | o,lg,...,1p,% | (1,0),(0,1),...(1,0),(0,0),(1,0),(0,1)...,(0,1)
(ii) | oo,lg,...,1p, | (1,0),(0,1),...(0,1),(0,0),(0,1),(1,0)...,(0,1)
(iii) | oo,lq,...,1p,0 | (1,0),(0,1),...(0,1),(0,0),(1,0),(0,1)...,(0,1)
(iv) | o,lq,...,1p,0 | (1,0),(0,1),...(1,0),(0,0),(0,1),(1,0)...,(0,1)

Thus, the possible interval structures are severely ogstriby 1). By Prop. 2, it then
follows that the only possible horizon topologies are

H>2S xS (blackring) #H =S (black hole), (10)

with the first case realized when the vectors to the left agiut 0f the horizorvy,_1,vn. 1 are
equal [i.e., for the interval structures (i) and (ii)] an@ tbecond case realized when they are
different [i.e., for the interval structures (iii) and (v)n particular, the Lens-spacésp,q)
are excluded as possible horizon topologies by 1).

From 2), the electric charge vanish€g = 0, and the Maxwell field is completely char-
acterized by the 1-form

fa = Fabl-l-j?v (11)



which is closed by the equations of motion for the Maxwelldjélj, f;; = 0. We define the
twist 1-form by

1
Wy = ésabcdem?q’gmdtpg (12)

Using thaty§ and g are commuting Killing fields, we find thdfl 40y, is proportional to

sabcdépgw‘iRdftbzf. If we now substitute the Einstein-Maxwell equation for Rieci tensor,
and use assumptions 1) and 2), then we seelihat; = 0. By definition,w, and f, are

invariant under the symmetries, so they induce correspondliforms, and f, on the
factor spacéM, which are still closed. Since the factor space is the uppHrgiane {{ =
z+ir 1 r >0}, i.e. isin particular simply connected, we can define glqizentials for
these quantltlei)ax G, andD,a = f,. If the Maxwell field arises from a globally defined
vector potentialFy, = 20 aPp] —which we donotassume—then = Aqy4.

Using the potentials(, X, we can now write down the reduced Einstein-Maxwell equestio
on the orbit spac#1. Letv,w,u be the functions oM be defined by

e = gl e UV — g dyl, e UV — (O,r) 7. (13)

Then the complete Einstein-Maxwell equations are equntatethe following set of equa-
tions on the upper complex half plaMe[22] :

6a(rq>;1f>aq>1) — 0,

B° (r@;'0a®,) = O, (14)
together with
—r 1D )Dv = [gTr <f)a¢1f)b¢51> + %Tr ([A)aqnzﬁbqazl)} - [Gab— 2(Daz) D7
BBy — BTr(f)adalf)bqnll)+%Tr(f>a¢2f)bd>21ﬂ (Ba)Doz,  (15)

where the matrix fields are defined in termsuglv, o, x by

e+ levg2 LeUg
o ( ise*“a \/ée*u ) (16)
V3
and
[V axPe N 2xe W
®2 = ( 2xe2" e ) ' a7)

The first two equations state that the matrix fiefelsand®, each satisfy the equations of a
2-dimensional sigma-model. The matrix fields are real, swtniay with determinant equal
to 1 on the interior oM. We may view them as taking values in the hyperbolic sfiac&he
matrix fields®;, ®, determine the functions,x,w,u. The second and third equations (15)
are decoupled from the sigma-model equations and detetherfenctionv.
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Using this formulation of the reduced Einstein-Maxwell atians, we will now prove
the main result of this paper:

Theorem: Consider two stationary, asymptotically flat, EinsteinXvall black hole space-
time of dimension 5, having one time-translation Killingldiend two axial Killing fields.
We also assume that there are no points with discrete isosopgroup under the action
of the isometry group in the exterior of the black hole, andassume that the Killing and
Maxwell fields satisfy the assumptions 1) and 2) above, iinglyhatv; = (1,0) or (0,1),
and# = S or S x &, andQg = 0= J; for the solutions. If the two solutions have the same
interval structures, the same values of the nmassame angular momentudg, and same
magnetic charge®y [C] for all 2-cyclesC;, then they are isometric.

Proof: Consider two solutionfM, gap, Fap) and(l\?l,gab, Ifab) as in the statement of the the-
orem. As argued in [12], since the interval structures ohlsmlutions are the samkel and

M can be identified as manifolds, and the actions of the isghgetup G are conjugate to
each other. Thus, we may assume fflat M, and thaf® = t2, {2 = . Furthermore, since
the quotient space by the isometries is the upper half plam®tih cases, we may assume
thatr’=r,% = z as functions oM = M. We now define the 2 by 2 matrix fields as above,
which we denoteb; and®;, i = 1,2. These functions are mappings— H from the upper
complex half plane into the 2-dimensional hyperbolic sp&de next consider the functions

(M—eMH2 1(a—a)?

o1 =Tr [CDIl&Dl — 1] = —gd T3 ag (18)
and P 22 N )
0p = Tr[®; 1%, — 1] = ( eZV;eNR +4(‘)3(2V;e>§v>~v . (19)

The quantityo, is a function of the point wise geodesic distance betweemtesd, and®;
in the target spacH], ando, similarly betweertb, and®,. By a straightforward calculation
using the equations (14), one finds that the functmrsatisfy the differential inequality

D3(rDa0i) >0, fori=1,2. (20)

It is now convenient to view the mas not as functions on the complex upper half plane
M = {{=2z+ir € C: r > 0}, but as axially symmetric functions dk®\ {z— axis}, by
writing points X = (X1, X, X3) € R3 in cylindrical coordinates aX = (r cosp, r sing, z).
Egs. (20) may then be written as

{ 02 92 @2

ox2 + ox2 + ox2 } gi(X) >0,
By a general arguments based on the maximum principle, geR6, 21], ifo; are globally
bounded above on the entik€ including thez-axis and infinity, then they vanish identically.
Assuming this has been shown, it follows that the matrix §efdist be equal for both solu-
tions®; = ®; for i = 1,2. This may then be used to prove tha} = gap andFap = Fap as fol-
lows. First, the equality of the matrix fields immediatelyples) = x,0 = o, 0= u,Ww = w.
If B = e"'~2¥g,tP3, then we hav — 0 at infinity and

fori=1,2. (21)

DaB = 2re gL Dpx ., (22)
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and similarly for the tilda solution. Thus, we haBe= B. Finally, the norm of the time-like
Killing field N = gapt?P (and similarly for the tilda solution) satisfies

N=e¢e" u+2WBZ —u 2Wr2 (23)

from which it follows thatN = N. Sincey§ is orthogonal to the other two Killing fields
by assumption, we also ha%blui‘lpg =0= gabtaw‘i, and likewise for the tilda solution.
Hence, the inner products between all Killing fields are ¢furaboth solutions. Finally, it
follows from the equations eq. (15) that afée= v, and it follows fromFapW§ = Oa0 and
our assumptions about the Maxwell field tiag = F.p,. Altogether, this implies that the two
solutions coincide, as we desired to show. In fact, the matrd Maxwell field may locally
be written as

d$ = —e " 22+ e U2 (dgp + Bdt)® + e U (dr? - d2) + eMdg?
F = dandg (24)
in local coordinates such thgt= (9/0t)2,y? = (/0@ )2

Thus, what remains is to be shown is tb*ais bounded. It is at this stage that we must use
our assumption that the interval structures and asymptbgaicges of both solutions agree.
We must consider the behavior of : R®\ {z— axis} — H on (a) near infinity (b) on the
horizon, and (c) on the-axis for bothi = 1,2. We will consider these cases separately.

(a) In order to show that; are bounded near infinity, one uses that both megdgsidgan
are asymptotically flat near infinity (iM), with the same asymptotic charges="m, J =
J1 =0, = J,, and the same electric charg@g Qg = 0. This can be used to show
boundedness af; near infinity inM.

(b) On the open segment corresponding to the horizon, medtheor € vanish, since both
Killing fields lJJ;"‘ are non-vanishing by Prop. 2. Thus,i = 1,2 are bounded on the boundary
segment 0BM corresponding to the horizon.

(c) On the boundary segments corresponding to a rotatias) ad must be most careful.
We distinguish boundary segmer(i,z.1) wherey§ = 0,3 # 0 [corresponding to the
vectorv; = (1,0)], boundary segments wheg' # 0,5 = 0 [corresponding to the vector
vi = (0,1)], and corners wherg§ = 0= ()3.

Near points of the axis wherg = 0,3 # 0, we havee® — 0 ande?’ — 0 with e¥-Y
finite and non-zero, as the latter is the normpgf(and likewise for the tilda quantity). We
first focus on this case. We immediately see that we have atwaitproblem in proving the
boundedness afi, see eq. (18), since the second term é¥a in the denominator, with no
compensating factors in the numerator as in the first termrear@f, 01 can only be finite if
and only if(a — &)? goes to zero near such points at least at the same rate"asSimilarly,
we also have a potential problem in proving the boundedniess see eq. (19), since the
second term hag®'e® in the denominator, with no compensating factors in the matoe
as in the first term. Agairg, can only be finite if and only ifx — X )? goes to zero near such
points at least at the same ratee&¥é?”,

We first determine the rate at whied ande" tend to zero near the points whepg =
0,y§ # 0. Sincee® Y is finite and non-zero near such points, it follows tBais finite,
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too. From the finiteness & and eq. (23), it then also follows thett= O(r), and therefore
thate®” = O(r). Thus, in order foio; ando; to be finite near such points, we must have
a =a+0(r) and¥ = x+O(r). We now prove that this is the case using the equality between
the magnetic chargeéM = Qm and the angular momentudp = J,. For this, let{; and>

be points on the boundary of the upper half pl&heorresponding to points in the manifold
wheref = 0. We can calculate the difference betwee(d1) anda({2) by chosing an
arbitrary pathy in the interior of the complex upper half plane starting agnd ending at

(2: Namely, sincefy = [0, we have, in differential forms notation

a(21) —a(Zp) = /y £ (25)

Now, it is possible to lifty: [0,1] — M to a pathy: [0,1] — M, i.e.,y=Toy, wherertis the
projection fromM to the quotient spack!. LetC be the 2-surface iM that is obtained by
acting on points in the image gfwith the isometries generated Ipf, i.e.,

C:={(e™,0)-y(s): ste[0,1]}. (26)

The images of the pointg0) andy(1) under the action of this 1-parameter group isomorphic
toU (1) are again points, becauu$§|y(0) =0= qJ"i‘|y(1). The image of any other poigt),0 <

t < lisacircle. Thus, it follows that the 2-surfaCds topologically a 2-sphere. If we now
pick a local coordinate system néasuch thatp$ = (0/9¢1)?, then we may write

a(zo—a(zz):/yf =5 [ fndew 27)

wherert' f = f, and where we have used in the second stepifydt, = 0. The term on the
right side may now be manipulated using tigat Faqu‘i, showing that

a(Q) ~a(G2) = o [ F = - Quic] (28)

211

We may of course repeat the same argument for the tilda snluBecause the magnetic
charges are the same for the two solutions, it follows th@) = &({) up to a constant
independent of, for eachf corresponding to a point whetg vanishes. Since that constant
vanishes at infinity by asymptotic flatness, it follows tbais finite near such points.

We would next like to show that the same statement holds tuext This will follow if
we can show thaf () = x({) + O(r) for anyZ € M not on the horizon segment. To show
this, we first note that the twist 1-form vanishes on any axis, i.e. any point@¥l not
corresponding to the horizon, by Prop. 1. £gtl» € M, and not on the horizon segment,
and takey to be the curvé(t) = (1—t)Z; +tZz in M. Then we have

X(21) —X(Z2) = /y &, (29)

wherett" @ = w. If {1,{, are both to the same side of the horizon, then the above esxpnes
vanishes, while if they are on different sides, we find, bysame type of argument as above

that
1

X(C) ~X(%2) = G [ (A02). (30
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wherey§ has been identified with a 1-form viap and where# is a horizon cross section
in M. We would like to show that the quantity on the right side isgartional to the angular
momentuml,. For this, we pick a spacelike 4-surfakén spacetime with interior boundary
A and boundan®& at infinity. By Gauss’ theorem, we can then write the quarditythe
right side as

/HD[anZb]dSab:Jer /C 00z IS (31)

The integrand on the right side may be evaluated standantitiés for Killing vectors, the
Einstein-Maxwell equations, as well as our assumptionsd)2). We have

1
0Py = éRaqug

1 a
= Z (FachC - %chFCd> lng
1
- _4_8q-’?¢1bacacw2a =. }\llJZa- (32)

We may choos& to be a surface defined bly = const, whereT is a time function that
is invariant under the axial Killing fieldsi.e. in particulanp3C,T = 0. Choosing now an
integration 4-form orx by €apcde= SUaT €pcdes and lettingdSbe the integration element
on X associated with this 4-form, we see thah,dS* = [ APSH,T dS= 0, as desired.
Since by assumptiod, = J,, we conclude tha(Z) = x({) on any rotation axis, i.e. any
point of M not in the horizon segment. Since the twist poterdialso vanishes oaM
except for the horizon segment, it then follows from eq. (2@} in fact every — X = O(r?)
near any boundary segment corresponding to a rotationBixiss, in summary, we have now
shown that;,i = 1,2 has a finite limit for any poin boundary oM wherey§ = 0,3 # 0.

We must now consider the second case, i.e., points wpgre O, § # 0. For such
points,e®~Y — 0, bute finite and non-zero, se®¥ — 0. From the fact thal is finite and
non-zero near such points and eq. (23) it can furthermorede that, in facte? = O(r?).
Thus, onlyos is potentially unbounded near such points. However, we hready shown
that¥ — x = O(r?) near any point iMM which is not on the horizon segment, so this cannot
happen. Thusg;,i = 1,2 are bounded in that case, too.

Finally, we must consider the corners. Here we may invokerdimmoity argument to
show thato; are bounded. Thus, when viewed as functionsRdn the functionso; are
solutions to eq. (21) that are bounded on the entire sRacéncluding thez-axis. As we
have argued above, this is enough in order to show that thebtaak hole solutions are
identical. O

Remark: The proof shows that the non-trivial 2-cycles [i.e., bagsreents oH(M)] in the
exterior of the spacetime may be obtained as follows. We khathe real axis boundirlg

is divided into intervals, each labeled with an integer 2taev; = (1,0) orv; = (0,1). The
different possibilities are summarized in the above tablew consider all possible curves
Yo, p=1,2,...0in M with the property thafy, starts on an interval labelgd, 0), and ends
on another interval labeled., 0), with no interval with label1,0) in between. If we now

5Such a function can be obtained from an arbitrary time fmcki by averagingl over the compact group
X of axial symmetries.
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lift ¥, to a curvey, in M, and act with all isometries generated b¥ on the image of this
curve, then we generate a closed 2-surf@gen M [see eq. (26)], which is topologically
a 2-sphere for alp. We may repeat this by replacing, p = 1,2,... with a set of curves
each starting on an interval labelg@ 1), and ending on another interval label@d1), with

no interval with label(0,1) in between. If we again lift these curves to curvesMnand
act with all isometries generated k3, then we generate a set of topologically inequivalent
closed 2- surface@q g=1,2,... in M, each of which is topologically a 2-sphere. It may be
seen that the set of 2- surfacgép,ccﬁ forms a basis oH(M), and also oH>(Z), where
the 4-manifoldZ is a spatial slice going from infinity to the horizon (so thapalogically

M =R x Z). In this 4-manifold, we can compute intersection number§a Cq = +1 or

— 0, depending on whether the corresponding curveld imtersect or not. The rank of
Ho(Z) = Ha(M) in the cases (i) through (iv) in the above table, and the $etetion matrix
lnq = Cp : Cq is therefore easily computed. This gives invariants of theahifold = and
hence of the exteridvl of the black hole.

Only the magnetic charg&3u [Cp] enter in the proof of the above theorem. The magnetic
chargeQm [C(ﬂ are not needed and in fact vanish, due to assumptions 1) atdH) begin-
ning of this section. Thus, for the simplest interval stane{0, 1), (0,0), (1,0), there are no
non-trivial magnetic charges, and the unique solution iwithe class studied here is com-
pletely specified byl,, m. In fact, this unique solution is the Myers-Perry black hdlg],
with vanishing Maxwell field.
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