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Abstract

In a previous paper [gr-qc/0707.2775] we showed that stationary asymptotically flat
vacuum black hole solutions in 5 dimensions with two commuting axial Killing fields
can be completely characterized by their mass, angular momentum, a set of real mod-
uli, and a set of winding numbers. In this paper we generalizeour analysis to include
Maxwell fields.

1 Introduction

In n = 4 spacetime dimensions, asymptotically flat, stationary vacuum or electrovac black
hole solutions are completely characterized by their asymptotic charges—mass, angular mo-
mentum, and electric charge [3, 17, 14, 2]. The complete classification of stationary black
holes in more thann= 4 spacetime dimensions is at present an open problem. However, in a
recent paper of ours [12], a partial classification was achieved for vacuum solutions under the
assumption that the number of commuting axial1 Killing fields is sufficiently large. The par-
ticular case considered there wasn= 5, and the number of axial Killing fields required was
two2. Under this hypothesis, we showed how to construct from the given solution a certain
set of invariants consisting of a set of real numbers ("moduli") and a collection of integer-
valued vectors ("winding numbers"). These data were calledthe "interval structure" of the

∗HollandsS@Cardiff.ac.uk
†yazadj@theorie.physik.uni-goe.de
1By this we mean a Killing field whose orbits are periodic.
2The higher dimensional rigidity theorem [11] only gives oneextra axial Killing field. This is presumably

the generic situation.
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solution. It determines in particular the horizon topology, which could be eitherS3,S1×S2

or a Lens-spaceL(p,q). We then demonstrated that the interval structure togetherwith the
asymptotic charges gives a complete set of invariants of thesolutions, i.e., if these data coin-
cide for two given solutions, then the solutions are isometric.

In this paper, we generalize the analysis of our previous paper [12] to include Maxwell
fields. We show that, if certain restrictive additional conditions are imposed upon the
Maxwell field and the axial Killing fields, then a similar uniqueness theorem as in the vac-
uum case can be proven. Namely, we find that the solution is nowcompletely characterized
by the interval structure, the magnetic charges, as well as the mass and angular momentum.
The extra assumptions placed upon the Killing fields imply that the electric charge (but not
the magnetic charges), and one of the angular momenta vanishes. They also imply that the
possible interval structures are limited. In particular, the horizon topology can only be either
S3 or S2×S1, but notL(p,q).

Non-trivial Einstein-Maxwell black rings (horizonS1×S2) satisfying our assumptions3

have been found by [5] (see also [22] ).

2 Stationary Einstein-Maxwell black holes in n dimensions

Let (M,gab,Fab) be ann-dimensional, analytic, asymptotically flat, stationary black hole
spacetime satisfying the Einstein-Maxwell equations

Rab =
1
2

(

FacFb
c− gab

2(n−2)
FcdFcd

)

, (1)

∇aFab = 0= ∇[aFbc]. (2)

Let ta be the asymptotically timelike Killing field,£tgab= 0, which we assume is normalized
so that limgabtatb = −1 near infinity. We assume that also the Maxwell tensor is invariant
underta, in the sense that£tFab = 0. We denote byH = ∂B the horizon of the black hole,
where the black holeB is defined as usual byB= M \ I−(J+), with J± the null-infinities of
the spacetime. It is assumed that the latter has topologyR×Σ∞, whereΣ∞ is metrically and
topologically an(n−2)-dimensional sphere.4 We assume thatH is “non-degenerate” and
that the horizon cross section is a compact connected manifold of dimensionn−2. Under
these conditions, one of the following 2 statements is true:(i) If ta is tangent to the null
generators ofH then the spacetime must be static [18]. (ii) Ifta is not tangent to the null
generators ofH, then the higher dimensional rigidity theorem [11] states that there exist
N ≥ 1 additional linear independent, mutually commuting Killing fieldsψa

1, . . . ,ψ
a
N, such

that£ψ1Fab. . . ,£ψNFab = 0. These Killing fields generate periodic, commuting flows (with
period 2π), and there exists a linear combination

Ka = ta+Ω1ψa
1+ · · ·+ΩNψa

N, Ωi ∈ R (3)

3Note that the Einstein-Maxwell black ring found in [4] has non-vanishing electric charge and hence does
not fall into the class studied in the present paper.

4In 4 dimensions,Σ∞ may beshownto be anS2 under suitably strong additional hypothesis. A discussion
of the structure of null-infinity in higher dimensions is given in [10].
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so that the Killing fieldKa is tangent and normal to the null generators of the horizonH, and

Kaψa
i = 0 onH. (4)

Thus, in case (ii), the spacetime is axisymmetric, with isometry groupG = R×U(1)N.
From Ka, one may define the surface gravity of the black hole byκ2 = limH(∇a f )∇a f/ f ,
with f = (∇aKb)∇aKb the norm, and it may be shown thatκ is constant onH [19]. In fact,
the non-degeneracy condition impliesκ > 0.

In case (i), one can prove that the spacetime is actually unique, and in fact isometric to
the Reissner-Nordström-Tangherlini spacetime [13], for higher dimensions see [8]. In this
paper, we will be concerned with case (ii).

Similar to 4 dimensions, the mass and angular momenta of the solution associated with
the Killing fields are given, up to irrelevant numerical factors, by the Komar expressions

m=−n−2
n−3

Z

Σ∞
∇atbdSab, Ji =

Z

Σ∞
∇aψib dSab (5)

and we define the electric and magnetic charges of the solution by

QE[Σ∞] =

Z

Σ∞
FabdSab, QM[Cl ] =

Z

Cl

∗Fab...cdSab...c , (6)

whereCl , l = 1,2, . . . runs through all the topologically inequivalent, non-contractible, closed
2-surfaces in the exterior of the spacetime. These numbers are invariants of the solution, and
in 4 dimensions in fact characterize the solution uniquely.However, in higher dimensions
this is no longer the case. In fact, we will see that further invariants must be taken into
account as well.

We now restrict attention to the exterior of the black hole,I−(J+), which we shall again
denote byM for simplicity. We assume that the exteriorM is globally hyperbolic. By the
topological censorship theorem [7], the exteriorM is a simply connected manifold (with
boundary∂M = H). To understand better the nature of the solutions, it is useful to first elim-
inate the coordinates corresponding to the symmetries of the spacetime. More precisely, one
considers the factor spacêM = M/G , whereG is the isometry group of the spacetime gener-
ated by the Killing fields. Since the Killing fieldsψa

i in general have zeros, the factor space
M̂ = M/G will normally have singularities and is difficult to analyze. However, when the
number of axial Killing fields is equal toN = n−3, and if there are no points in the exterior
M whose isotropy subgroup is discrete, then the factor space can be analyzed by elementary
means. This analysis was carried out in [12] for the case ofn= 5, and a very similar analysis
also applies to generaln. Since we are assuming that the spacetime is asymptoticallyflat
in the standard sense with spherical infinityΣ∞ ∼= Sn−2, the group of asymptotic symmetries
with compact orbits must be isomorphic to a subgroup ofSO(n−1), whose maximal torus
has dimension[(n−1)/2]. Thusn−3 axial Killing fields are only possible if eithern= 4,
or if n= 5. From now on, we focus on the latter case.

Thus, from now on we assume that the isometry group of the spacetime isG = K ×
R, whereK = U(1)×U(1), and we also assume that the action of the isometry groupK
generated by the axial symmetries is so that there are no points with discrete isotropy group.
We denote the Killing vector fields generatingK by ψa

1,ψ
a
2, and we denote the factor space

M̂ = M/G . The nature of the factor space is described by the followingproposition [12]:
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Proposition 1: Let (M,gab) be the exterior of a stationary, asymptotically flat, Einstein-
Maxwell black hole spacetime with 2 mutually commuting independent axial Killing fields
ψa

1,ψ
a
2. Then the orbit spacêM = M/G by the isometry group is a simply connected, 2-

dimensional manifold with boundaries and corners. Points in the interior ofM̂ correspond
to points inM where all Killing fieldsta,ψa

1,ψ
a
2 are linearly independent. Points on thei-th

1-dimensional boundary segment of∂M̂ correspond to either the horizon ofM, or points
where a linear combinationv1

i ψa
1+v2

i ψa
2 = 0, wherevi = (v1

i ,v
2
i ) is a vector of integers that

is constant on each such segment. Points in the corners of∂M̂ correspond to points inM
whereψa

1 = 0= ψa
2. The boundary ofM̂ is connected.

Away from the boundary ofM̂, we can define a metric ˆgab by identifying the tangent space
Tπ(x)M̂ with the subspaceHx of TxM spanned by the vectors orthogonal tota,ψa

1,ψ
a
2, where

π : M → M̂ = M/G is the projection. We denote this metric by ˆgab. It has signature(++).
We denote the derivative operator associated with this metric by D̂a. If one defines the 3×3
Gram matrix of the Killing fields by

GIJ = gabX
a
I Xb

J , Xa
I =

{

ta if I = 0,

ψa
i if I = 1,2,

(7)

then the Gram determinant
r2 = |detG| (8)

defines a scalar functionr on M̂ which is harmonic,D̂aD̂ar = 0, as a consequence of the
Einstein-Maxwell equations. Using this, one can show thatr > 0, D̂ar 6= 0 on the interior of
M̂, and one can also show thatr = 0 on∂M̂. A conjugate harmonic scalar fieldz may then
be defined onM̂ by the equation̂Daz= ε̂b

aD̂br. The functionsr,z define global coordinates
on M̂, thus identifying this space with the complex upper half-plane

M̂ = {ζ = z+ ir ∈ C : r ≥ 0} ,

with the boundary segments corresponding to intervals on the real axis. The lengthzi−zi+1=
l i of each segment is an invariant of the solution. The induced metric ĝab is given in these
coordinates by

dŝ2 = k(r,z)2(dr2+dz2) (9)

with k2 a conformal factor.
The set of real "moduli"{l i}, and and of the "winding number" vectors{vi} are global

parameters that can be defined in an invariant way for the given solution in addition to the
massm, the two angular momentaJ1,J2, and the electric and magnetic charges. We refer to
these data as the “interval structure” of the solution. As shown in [12], the interval structure
determines the structure ofM as a fibered space with an action of the torus groupK . The
winding numbers{vi} characterize the structure of this fibration near the axis segments. It
follows from our analysis in [12] that near such an axis,M locally has the structure ofR2×
Seiffert(v1

i ,v
2
i ), i.e., it is a cartesian product ofR2 with a Seiffert torus, i.e., a 3-torus with

a twisting characterized by the two winding numbers. The winding numbers on segments
adjacent on a corner, respectively adjacent on the horizon have to satisfy the constraint [12]

det(v j ,v j+1) =±1 if (zj−1,zj) and(zj ,zj+1) are not the horizon
det(vh−1,vh+1) = p if (zh,zh+1) is the horizon
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Furthermore, we have the following theorem about the horizon topology [12]:

Proposition 2: In a black hole spacetime of dimension 5 with 2 commuting, independent
axial Killing fields, the horizon cross sectionH must be topologically either a ringS1×S2,
a sphereS3, or a Lens-spaceL(p,q), with p,q∈ Z, andp as in eq. (2).

Remark: The Lens-spacesL(p,q) (see e.g. [1, Paragraph 9.2]) are the spaces obtained by
gluing the boundaries of two solid tori together in such a waythat the meridian of the first
goes to a curve on the second which wraps around the longitudep-times and which wraps
around the meridianq-times. A Lens-space may also be obtained as the quotient ofS3 by a
discrete group of isometries.

For illustrative purposes, we list the interval structure for some known solutions [15, 6, 4, 16]:

Moduli l i Vectorsvi Horizon Topology
Myers-Perry BH ∞, l1,∞ (1,0),(0,0),(0,1) S3

Black Ring ∞, l1, l2,∞ (1,0),(0,0),(1,0),(0,1) S2×S1

Flat Spacetime ∞,∞ (1,0),(0,1) —

Here we are using the convention that the integer vectorvh associated with the horizon is
taken to be(0,0). Even for a fixed set of of asymptotic chargesm,J1,J2 the invariant lengths
l1, l2 may be different for the different Black Ring solutions, corresponding to the fact that
there exist non-isometric Black Ring solutions with equal asymptotic charges.
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3 Moduli space of Einstein-Maxwell black holes

We would now like to see to what extent the interval structure, and the global charges
m,J1,J2,QE,QM determine a given black hole solution of the Einstein-Maxwell equations
in 5 dimensions. We were not able to analyze this question in generality but only in a sim-
plified case. The simplifying assumptions that we will make in this section in addition to the
general hypothesis stated above are the following:

1. About thespacetime metricwe assume that one of the axial Killing fields, sayψa
1, is or-

thogonal to the other Killing fields,gabψa
1ψb

2 = 0= gabtaψb
1, and that it is hypersurface

orthogonal,ψ1[a∇bψ1c] = 0.

2. About theMaxwell fieldwe assume that there is a 1-formξa orthogonal to the Killing
fields such thatFab = ξ[aψ1b]. It can easily be shown that, if the Maxwell field arises
from a vector potentialFab = 2∇[aAb] which is invariant under the Killing fields, then
this will be the case if and only ifAa is proportional toψa

1 at each point inM. Note,
however that we donotassume the existence of such a vector potential here.

Let us first point out some simplifications which follow from assumptions 1) and 2). The
first immediate consequence of 1) is thatJ1 = 0. Secondly, because the Killing fieldψa

1
is demanded to be orthogonal toψa

2, if v1ψa
1+v2ψa

2 = 0 at a point in spacetime, then either
v= (v1,v2) = (0,0), orv= (0,1),(1,0), or both axial Killing fields vanish. Thus, the interval
structure (see Prop. 1) of any solution satisfying assumption 1) can only be of the following
possibilities (i)—(iv):

Moduli l i Vectorsvi

(i) ∞, l1, . . . , lp,∞ (1,0),(0,1), . . .(1,0),(0,0),(1,0),(0,1) . . .,(0,1)
(ii) ∞, l1, . . . , lp,∞ (1,0),(0,1), . . .(0,1),(0,0),(0,1),(1,0) . . .,(0,1)
(iii) ∞, l1, . . . , lp,∞ (1,0),(0,1), . . .(0,1),(0,0),(1,0),(0,1) . . .,(0,1)
(iv) ∞, l1, . . . , lp,∞ (1,0),(0,1), . . .(1,0),(0,0),(0,1),(1,0) . . .,(0,1)

Thus, the possible interval structures are severely restricted by 1). By Prop. 2, it then
follows that the only possible horizon topologies are

H ∼= S1×S2 (black ring), H ∼= S3 (black hole), (10)

with the first case realized when the vectors to the left and right of the horizonvh−1,vh+1 are
equal [i.e., for the interval structures (i) and (ii)] and the second case realized when they are
different [i.e., for the interval structures (iii) and (iv)]. In particular, the Lens-spacesL(p,q)
are excluded as possible horizon topologies by 1).

From 2), the electric charge vanishes,QE = 0, and the Maxwell field is completely char-
acterized by the 1-form

fa = Fabψa
1 , (11)
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which is closed by the equations of motion for the Maxwell field, ∇[a fb] = 0. We define the
twist 1-form by

ωa =
1
2

εabcdeψb
1ψc

2∇dψe
2 . (12)

Using thatψa
1 andψa

2 are commuting Killing fields, we find that∇[aωb] is proportional to
εabcdeψc

2ψe
1Rd fψ2 f . If we now substitute the Einstein-Maxwell equation for theRicci tensor,

and use assumptions 1) and 2), then we see that∇[aωb] = 0. By definition,ωa and fa are
invariant under the symmetries, so they induce corresponding 1-formsω̂a and f̂a on the
factor spaceM̂, which are still closed. Since the factor space is the upper half plane{ζ =
z+ ir : r ≥ 0}, i.e. is in particular simply connected, we can define globalpotentials for
these quantities,̂Daχ = ω̂a andD̂aα = f̂a. If the Maxwell field arises from a globally defined
vector potential,Fab= 2∇[aAb]—which we donotassume—thenα = Aaψa

1.

Using the potentialsα,χ, we can now write down the reduced Einstein-Maxwell equations
on the orbit spacêM. Let ν,w,u be the functions on̂M be defined by

e2u = gabψa
1ψb

1 , e−u+2w = gabψa
2ψb

2 , e−u+2w+2ν = (∇ar)∇ar . (13)

Then the complete Einstein-Maxwell equations are equivalent to the following set of equa-
tions on the upper complex half planêM [22] :

D̂a
(

rΦ−1
1 D̂aΦ1

)

= 0,

D̂a
(

rΦ−1
2 D̂aΦ2

)

= 0, (14)

together with

−r−1(D̂ar)D̂aν =

[

3
8

Tr
(

D̂aΦ1D̂bΦ−1
1

)

+
1
8

Tr
(

D̂aΦ2D̂bΦ−1
2

)

]

·
[

ĝab−2(D̂az)D̂bz
]

−r−1(D̂az)D̂aν =

[

3
4

Tr
(

D̂aΦ1D̂bΦ−1
1

)

+
1
4

Tr
(

D̂aΦ2D̂bΦ−1
2

)

]

(D̂ar)D̂bz, (15)

where the matrix fields are defined in terms ofu,w,α,χ by

Φ1 =

(

eu+ 1
3e−uα2 1√

3
e−uα

1√
3
e−uα e−u

)

, (16)

and

Φ2 =

(

e2w+4χ2e−2w 2χe−2w

2χe−2w e−2w

)

. (17)

The first two equations state that the matrix fieldsΦ1 andΦ2 each satisfy the equations of a
2-dimensional sigma-model. The matrix fields are real, symmetric, with determinant equal
to 1 on the interior ofM̂. We may view them as taking values in the hyperbolic spaceH. The
matrix fieldsΦ1,Φ2 determine the functionsα,χ,w,u. The second and third equations (15)
are decoupled from the sigma-model equations and determinethe functionν.

7



Using this formulation of the reduced Einstein-Maxwell equations, we will now prove
the main result of this paper:

Theorem: Consider two stationary, asymptotically flat, Einstein-Maxwell black hole space-
time of dimension 5, having one time-translation Killing field and two axial Killing fields.
We also assume that there are no points with discrete isotropy subgroup under the action
of the isometry group in the exterior of the black hole, and weassume that the Killing and
Maxwell fields satisfy the assumptions 1) and 2) above, implying thatvi = (1,0) or (0,1),
andH = S3 or S1×S2, andQE = 0= J1 for the solutions. If the two solutions have the same
interval structures, the same values of the massm, same angular momentumJ2, and same
magnetic chargesQM [Cl ] for all 2-cyclesCl , then they are isometric.

Proof: Consider two solutions(M,gab,Fab) and(M̃, g̃ab, F̃ab) as in the statement of the the-
orem. As argued in [12], since the interval structures of both solutions are the same,M and
M̃ can be identified as manifolds, and the actions of the isometry groupG are conjugate to
each other. Thus, we may assume thatM̃ = M, and that̃ta = ta, ψ̃a

i = ψa
i . Furthermore, since

the quotient space by the isometries is the upper half plane in both cases, we may assume
that r̃ = r, z̃= z as functions onM̃ = M. We now define the 2 by 2 matrix fields as above,
which we denotẽΦi andΦi , i = 1,2. These functions are mappingsM̂ → H from the upper
complex half plane into the 2-dimensional hyperbolic space. We next consider the functions

σ1 = Tr
[

Φ−1
1 Φ̃1−1

]

=
(eu−eũ)2

eueũ +
1
3
(α̃−α)2

eueũ (18)

and

σ2 = Tr
[

Φ−1
2 Φ̃2−1

]

=
(e2w−e2w̃)2

e2we2w̃ +4
(χ̃−χ)2

e2we2w̃ . (19)

The quantityσ1 is a function of the point wise geodesic distance between themapsΦ1 andΦ̃1

in the target spaceH, andσ2 similarly betweenΦ2 andΦ̃2. By a straightforward calculation
using the equations (14), one finds that the functionsσi satisfy the differential inequality

D̂a(rD̂aσi)≥ 0, for i = 1,2. (20)

It is now convenient to view the mapsσi not as functions on the complex upper half plane
M̂ = {ζ = z+ ir ∈ C : r ≥ 0}, but as axially symmetric functions onR3 \ {z−axis}, by
writing points X = (X1,X2,X3) ∈ R3 in cylindrical coordinates asX = (r cosϕ, r sinϕ,z).
Eqs. (20) may then be written as

{

∂2

∂X2
1

+
∂2

∂X2
2

+
∂2

∂X2
3

}

σi(X)≥ 0, for i = 1,2. (21)

By a general arguments based on the maximum principle, see e.g. [20, 21], ifσi are globally
bounded above on the entireR3 including thez-axis and infinity, then they vanish identically.
Assuming this has been shown, it follows that the matrix fields must be equal for both solu-
tionsΦi = Φ̃i for i = 1,2. This may then be used to prove that ˜gab= gab andF̃ab= Fab as fol-
lows. First, the equality of the matrix fields immediately impliesχ̃ = χ, α̃ = α, ũ= u, w̃= w.
If B= eu−2wgabtbψa

2, then we haveB→ 0 at infinity and

D̂aB= 2re−4w ε̂a
b D̂bχ , (22)
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and similarly for the tilda solution. Thus, we haveB̃= B. Finally, the norm of the time-like
Killing field N = gabtatb (and similarly for the tilda solution) satisfies

N = e−u+2wB2−e−u−2wr2 , (23)

from which it follows thatÑ = N. Sinceψa
1 is orthogonal to the other two Killing fields

by assumption, we also havegabψa
1ψb

2 = 0 = gabtaψb
1, and likewise for the tilda solution.

Hence, the inner products between all Killing fields are equal for both solutions. Finally, it
follows from the equations eq. (15) that alsoν̃ = ν, and it follows fromFabψa

1 = ∇aα and
our assumptions about the Maxwell field thatF̃ab= Fab. Altogether, this implies that the two
solutions coincide, as we desired to show. In fact, the metric and Maxwell field may locally
be written as

ds2 = −e−u−2wr2dt2+e−u+2w (dφ2+Bdt)2+e−u+2w+2ν (dr2+dz2)+e2udφ2
1

F = dα∧dφ1 (24)

in local coordinates such thatta = (∂/∂t)a,ψa
i = (∂/∂φi)

a.

Thus, what remains is to be shown is thatσi is bounded. It is at this stage that we must use
our assumption that the interval structures and asymptoticcharges of both solutions agree.
We must consider the behavior ofσi : R3 \ {z− axis} → H on (a) near infinity (b) on the
horizon, and (c) on thez-axis for bothi = 1,2. We will consider these cases separately.

(a) In order to show thatσi are bounded near infinity, one uses that both metrics ˜gab andgab

are asymptotically flat near infinity (inM), with the same asymptotic charges ˜m= m, J̃1 =
J1 = 0,J2 = J̃2, and the same electric chargesQ̃E = QE = 0. This can be used to show
boundedness ofσi near infinity inM̂.

(b) On the open segment corresponding to the horizon, neither ew nor eu vanish, since both
Killing fields ψa

i are non-vanishing by Prop. 2. Thus,σi , i = 1,2 are bounded on the boundary
segment of∂M̂ corresponding to the horizon.

(c) On the boundary segments corresponding to a rotation axis, we must be most careful.
We distinguish boundary segments(zi,zi+1) whereψa

1 = 0,ψa
2 6= 0 [corresponding to the

vectorvi = (1,0)], boundary segments whereψa
1 6= 0,ψa

2 = 0 [corresponding to the vector
vi = (0,1)], and corners whereψa

1 = 0= ψa
2.

Near points of the axis whereψa
1 = 0,ψa

2 6= 0, we havee2u → 0 ande2w → 0 with e2w−u

finite and non-zero, as the latter is the norm ofψa
2 (and likewise for the tilda quantity). We

first focus on this case. We immediately see that we have a potential problem in proving the
boundedness ofσ1, see eq. (18), since the second term haseueũ in the denominator, with no
compensating factors in the numerator as in the first term. Clearly,σ1 can only be finite if
and only if(α− α̃)2 goes to zero near such points at least at the same rate aseueũ. Similarly,
we also have a potential problem in proving the boundedness of σ2 see eq. (19), since the
second term hase2we2w̃ in the denominator, with no compensating factors in the numerator
as in the first term. Again,σ2 can only be finite if and only if(χ− χ̃)2 goes to zero near such
points at least at the same rate ase2we2w̃.

We first determine the rate at whicheu andew tend to zero near the points whereψa
1 =

0,ψa
2 6= 0. Sincee2w−u is finite and non-zero near such points, it follows thatB is finite,

9



too. From the finiteness ofN and eq. (23), it then also follows thateu = O(r), and therefore
that e2w = O(r). Thus, in order forσ1 andσ2 to be finite near such points, we must have
α̃=α+O(r) andχ̃= χ+O(r). We now prove that this is the case using the equality between
the magnetic charges̃QM = QM and the angular momentum̃J2 = J2. For this, letζ1 andζ2

be points on the boundary of the upper half planeM̂ corresponding to points in the manifold
whereψa

1 = 0. We can calculate the difference betweenα(ζ1) and α(ζ2) by chosing an
arbitrary patĥγ in the interior of the complex upper half plane starting atζ1 and ending at
ζ2: Namely, sincefa = ∇aα, we have, in differential forms notation

α(ζ1)−α(ζ2) =

Z

γ̂
f̂ . (25)

Now, it is possible to lift̂γ : [0,1]→ M̂ to a pathγ : [0,1]→ M, i.e., γ̂ = π◦ γ, whereπ is the
projection fromM to the quotient spacêM. LetC be the 2-surface inM that is obtained by
acting on points in the image ofγ with the isometries generated byψa

1, i.e.,

C := {(e2πit ,0) · γ(s) : s, t ∈ [0,1]} . (26)

The images of the pointsγ(0) andγ(1) under the action of this 1-parameter group isomorphic
toU(1) are again points, becauseψa

1|γ(0)= 0=ψa
1|γ(1). The image of any other pointγ(t),0<

t < 1 is a circle. Thus, it follows that the 2-surfaceC is topologically a 2-sphere. If we now
pick a local coordinate system nearC such thatψa

1 = (∂/∂φ1)
a, then we may write

α(ζ1)−α(ζ2) =
Z

γ
f =

1
2π

Z

C
f ∧dφ1 . (27)

whereπ∗ f̂ = f , and where we have used in the second step that£ψ1 fa = 0. The term on the
right side may now be manipulated using thatfa = Fabψb

1, showing that

α(ζ1)−α(ζ2) =
1
2π

Z

C
F =

1
2π

QM [C] . (28)

We may of course repeat the same argument for the tilda solution. Because the magnetic
charges are the same for the two solutions, it follows thatα(ζ) = α̃(ζ) up to a constant
independent ofζ, for eachζ corresponding to a point whereψa

1 vanishes. Since that constant
vanishes at infinity by asymptotic flatness, it follows thatσ1 is finite near such points.

We would next like to show that the same statement holds true for σ2. This will follow if
we can show that̃χ(ζ) = χ(ζ)+O(r) for anyζ ∈ ∂M̂ not on the horizon segment. To show
this, we first note that the twist 1-formω vanishes on any axis, i.e. any point of∂M̂ not
corresponding to the horizon, by Prop. 1. Letζ1,ζ2 ∈ ∂M̂, and not on the horizon segment,
and takêγ to be the curvêγ(t) = (1− t)ζ1+ tζ2 in M̂. Then we have

χ(ζ1)−χ(ζ2) =

Z

γ̂
ω̂ , (29)

whereπ∗ω̂ = ω. If ζ1,ζ2 are both to the same side of the horizon, then the above expression
vanishes, while if they are on different sides, we find, by thesame type of argument as above
that

χ(ζ1)−χ(ζ2) =
1

(2π)2

Z

H
∗(dψ2) , (30)
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whereψa
2 has been identified with a 1-form viagab and whereH is a horizon cross section

in M. We would like to show that the quantity on the right side is proportional to the angular
momentumJ2. For this, we pick a spacelike 4-surfaceΣ in spacetime with interior boundary
H and boundaryS3

∞ at infinity. By Gauss’ theorem, we can then write the quantityon the
right side as

Z

H
∇[aψ2b] dSab = J2+

Z

C
∇b∇[aψ2b] dSa . (31)

The integrand on the right side may be evaluated standard identities for Killing vectors, the
Einstein-Maxwell equations, as well as our assumptions 1) and 2). We have

∇b∇[aψ2b] =
1
2

Rabψb
2

=
1
4

(

FacFb
c− gab

6
FcdFcd

)

ψb
2

= − 1
48

ψb
1ψ1bξcξcψ2a =: λψ2a . (32)

We may chooseΣ to be a surface defined byT = const., whereT is a time function that
is invariant under the axial Killing fields5, i.e. in particularψa

2∇aT = 0. Choosing now an
integration 4-form onΣ by εabcde= 5∇[aTεbcde], and lettingdSbe the integration element
on Σ associated with this 4-form, we see that

R

Σ λψ2adSa =
R

Σ λψa
2∇aT dS= 0, as desired.

Since by assumptioñJ2 = J2, we conclude that̃χ(ζ) = χ(ζ) on any rotation axis, i.e. any
point of ∂M̂ not in the horizon segment. Since the twist potentialω̂ also vanishes on∂M̂
except for the horizon segment, it then follows from eq. (29)that in fact evenχ− χ̃ = O(r2)
near any boundary segment corresponding to a rotation axis.Thus, in summary, we have now
shown thatσi , i = 1,2 has a finite limit for any pointζ boundary ofM̂ whereψa

1 = 0,ψa
2 6= 0.

We must now consider the second case, i.e., points whereψa
2 = 0,ψa

1 6= 0. For such
points,e2w−u → 0, buteu finite and non-zero, soe2w → 0. From the fact thatN is finite and
non-zero near such points and eq. (23) it can furthermore be seen that, in fact,e2w = O(r2).
Thus, onlyσ2 is potentially unbounded near such points. However, we havealready shown
thatχ̃−χ = O(r2) near any point in∂M̂ which is not on the horizon segment, so this cannot
happen. Thus,σi , i = 1,2 are bounded in that case, too.

Finally, we must consider the corners. Here we may invoke a continuity argument to
show thatσi are bounded. Thus, when viewed as functions onR3, the functionsσi are
solutions to eq. (21) that are bounded on the entire spaceR

3, including thez-axis. As we
have argued above, this is enough in order to show that the twoblack hole solutions are
identical.

Remark: The proof shows that the non-trivial 2-cycles [i.e., basis elements ofH2(M)] in the
exterior of the spacetime may be obtained as follows. We knowthat the real axis boundinĝM
is divided into intervals, each labeled with an integer 2-vector vi = (1,0) or vi = (0,1). The
different possibilities are summarized in the above table.Now consider all possible curves
γ̂p, p = 1,2, . . . in M̂ with the property that̂γp starts on an interval labeled(1,0), and ends
on another interval labeled(1,0), with no interval with label(1,0) in between. If we now

5Such a function can be obtained from an arbitrary time function T̃ by averagingT̃ over the compact group
K of axial symmetries.
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lift γ̂p to a curveγp in M, and act with all isometries generated byψa
1 on the image of this

curve, then we generate a closed 2-surfaceCp in M [see eq. (26)], which is topologically
a 2-sphere for allp. We may repeat this by replacingγ̂p, p = 1,2, . . . with a set of curves
each starting on an interval labeled(0,1), and ending on another interval labeled(0,1), with
no interval with label(0,1) in between. If we again lift these curves to curves inM, and
act with all isometries generated byψa

2, then we generate a set of topologically inequivalent
closed 2-surfaces̃Cq,q= 1,2, . . . in M, each of which is topologically a 2-sphere. It may be
seen that the set of 2-surfaces{Cp,C̃q} forms a basis ofH2(M), and also ofH2(Σ), where
the 4-manifoldΣ is a spatial slice going from infinity to the horizon (so that topologically
M = R×Σ). In this 4-manifold, we can compute intersection numbers as Cp : C̃q = ±1 or
= 0, depending on whether the corresponding curves inM̂ intersect or not. The rank of
H2(Σ) = H2(M) in the cases (i) through (iv) in the above table, and the intersection matrix
Ipq = Cp : C̃q is therefore easily computed. This gives invariants of the 4-manifold Σ and
hence of the exteriorM of the black hole.

Only the magnetic chargesQM [Cp] enter in the proof of the above theorem. The magnetic
chargesQM [C̃q] are not needed and in fact vanish, due to assumptions 1) and 2)at the begin-
ning of this section. Thus, for the simplest interval structure(0,1),(0,0),(1,0), there are no
non-trivial magnetic charges, and the unique solution within the class studied here is com-
pletely specified byJ2,m. In fact, this unique solution is the Myers-Perry black hole[15],
with vanishing Maxwell field.
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