
ar
X

iv
:0

71
1.

18
02

v2
  [

as
tr

o-
ph

]  
16

 J
an

 2
00

8

On the influence of the cosmological constant on gravitational lensing in small systems

Mauro Sereno∗
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The cosmological constantΛ affects gravitational lensing phenomena. The contribution ofΛ to the observable
angular positions of multiple images and to their amplification and time delay is here computed through a
study in the weak deflection limit of the equations of motion in the Schwarzschild-de Sitter metric. Due to
Λ the unresolved images are slightly demagnified, the radius of the Einstein ring decreases and the time delay
increases. The effect is however negligible for near lenses. In the case of null cosmological constant, we provide
some updated results on lensing by a Schwarzschild black hole.
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I. INTRODUCTION

The interpretation of the cosmological constantΛ is a very
fascinating and traditional topic in theoretical physics.On
the observational side, large scale structure observations have
made a strong case forΛ as a possible choice for dark en-
ergy. In fact, a very small value ofΛ ∼ 10−52m−2, together
with dark matter, can provide a suitable framework for obser-
vational cosmology [1].

Since the cosmological constant should take part in all
kinds of gravitational phenomena, investigations have been
performed on very different scale-lengths. Despite no con-
vincing method for constrainingΛ in an Earth’s laboratory has
been proposed [2], local astronomical phenomena seem to be
more promising. The cosmological constant can influence the
motion of massive bodies [3–5]. Perihelion precession of so-
lar system planets together with other solar and stellar tests
has been considered to put an upper bound ofΛ <

∼ 10−42m−2

[4, 6–8, and references therein]. The cosmological constant
also affects the gravitational equilibrium of large astrophysi-
cal structures [9–11] and produces a lower velocity dispersion
around the Hubble flow on the scale of the Local Volume [12].

Recently, Rindler and Ishak [13] discussed how the cosmo-
logical constant takes part in gravitational lensing. Taking into
accountΛ through the Schwarzschild-de Sitter (SdS) metric,
they showed that even if the exact differential equation fora
light path in the coordinate space can be written in a form that
does not involveΛ [3], the cosmological constant contributes
to the bending of light through the metric itself, which de-
termines the actual observations that can be made on the orbit
equation. In fact, one must consider not only the null geodesic
equation but also the process of measurement [14, 15].

Following this correction of the long-standing misconcep-
tion thatΛ does not affect the observed deflection angle, in
this paper I further investigate the effect of the cosmological
constant in gravitational lensing observations in near systems.
The weak deflection limit considered throughout the paper al-
lows to have a clear insight on the effect ofΛ but it is to be
remarked that a gravitational lens equation without approxi-
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mations can be written in generic spherically symmetric and
static spacetimes [16]. In this paper, the lens equation is de-
rived from the lightlike null geodesics of the SdS metric. Re-
sults concerning observable quantities are expressed in terms
of the invariants of the light ray, avoiding ambiguities con-
nected to coordinate-dependent quantities [17, 18].

The paper is organized as follows. In Sec. II, the null orbits
are solved in the weak deflection limit. In Sec. III the lens
equation is first written in terms of the observed image posi-
tion angle and then solved with a perturbation method. Image
amplification and time delay are discussed in Sec. IV and V,
respectively. Some quantitative estimates of the effect ofΛ
are illustrated in Sec. VI whereas Sec. VII is devoted to some
final considerations.

II. GEODESIC EQUATION

The role ofΛ in gravitational lensing can be considered
in the framework of the spherically symmetric Schwarzschild
vacuum solution with a cosmological constant, also known as
Schwarzschild-de Sitter (SdS) or Kottler space-time [19],

ds2 = fΛ(r)dt
2 − dr2

fΛ(r)
− r2

(

dθ2 − sin2 θdφ2
)

, (1)

where

fΛ(r) ≡
(

1− 2m

r
− Λr2

3

)

, (2)

andm is the black hole mass. We are using unitsG = c = 1.
A coordinate singularity occurs at large radii. Form = 0,
the de Sitter horizon occurs atrΛ ≡

√

3/Λ. Due to spher-
ical symmetry, photon trajectories can be conveniently re-
stricted to the centralθ = π/2 plane. We consider the stan-
dard framework of gravitational lensing in the weak deflection
limit, where the source of radiation and the observer are re-
mote from the lens. Lensing in a static, spherically symmetric
metric is usually investigated considering asymptotically flat
spacetimes [17] but, here, we have to consider both observer
and source in a region of spacetime which is well inside the
outer horizon. In such a region the intrinsic geometry of the
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2-metric of the equatorial planeθ = π/2 undergoes a tran-
sition from a nearly Flamm paraboloid of revolution in the
inner region, as typical in Schwarzschild metric, to a spheri-
cal geometry of radiusrΛ in the very outer and nearly de Sit-
ter spacetime [13, 20]. Since the observer lies in this curved
transition region of spacetime, even if the null geodesics are
formally indistinguishable from theΛ = 0 case in the coor-
dinate space, the observable quantities will be affected bythe
cosmological constant [13].

In the following analysis the observer and the emitter are
taken to be static. The observer coordinates are denoted
{ro, φo = 0}, whereφo has been fixed without loss of gen-
erality. The source coordinates are denoted as{rs, φs}. The
orbital equation for a light ray from the source to the observer
can then be written in terms of the first integral of motion
b(≡ φ̇r2) as

φs = ±
∫

dr

r2

[

1

b2
+

1

r2Λ
− 1

r2
+

2m

r3

]−1/2

, (3)

where the sign of the integral is adhered to the sign ofdr and
changes at the inversion points in ther-motion. A dot de-
notes derivation with respect to an affine parameter. Along its
path from the source to the observer, the photon passes by the
black hole at a minimum distancermin which is much larger
than the gravitational radius. In the weak deflection limit,this
closest approach is the only turning point in ther-motion.
Defining a new constantbΛ such that1/b2Λ =

(

1/b2 + 1/r2Λ
)

,
we can see that the geodesics are formally identical to those
in a Schwarzschild spacetime without cosmological constant.
This can be seen even more clearly taking the second deriva-
tive d2r/dφ2, which eliminatesΛ from the equation. Equa-
tion (3) can be solved in terms of elliptical functions [14] and
exact analytical results can be obtained even considering a
spinning black hole [21]. In an asymptotically flat spacetime,
b can be viewed as the impact parameter.

Even if the equations of motion for either a massive test par-
ticle or a photon can be solved exactly [14, 21], expressions
are quite involved, so that lensing observables are more con-
veniently derived treating through a perturbation approach. A
fundamental assumption in the weak deflection limit is that
the point of closest approach lies well outside the gravitational
radius, i.e.m/b ≡ ǫm ≪ 1. The observer and the source lie
very far from the lens. It can be shown thatb/ro ∼ b/rs ∼ ǫm
[17]. Furthermore, we assume that the system is embedded in
a region well inside the outer horizon,ro, rs ≪ rΛ. In what
follows, we will expand quantities of interest according tothe
expansion parametersǫm andǫΛ ≡ ro/rΛ but, for the sake of
brevity, we will produce our results up to a given formal order
in ǫ, collecting terms coming from any combination of the two
expansion parameters [22].

The light ray minimum radial distancermin to the lens is
determined by the equationr2 = b2fΛ(r), whose exact solu-
tion is known analytically [13]. Expanding the solution in the
weak deflection limit as a power series inǫ we find

rmin ≃ b

{

1− m

b
− 3m2

2b2
− 4m3

b3
− 105m4

8b4
− b2

2r2Λ

}

. (4)

An expression for the minimum approach includingO(ǫ4)-
terms for the Kerr metric can be found in [22]. In the case of
null cosmological constant, equation (4) agrees with the result
in [17].

The integral in Eq. (3) can be solved approximately un-
der the assumptions discussed above and following standard
methods and procedures [17, 22]. We get

φs = −π − 4m

b
+ b

(

1

rs
+

1

ro

)

− 15m2π

4b2
− 128m3

3b3

+
b3

6

(

1

r3s
+

1

r3o

)

− 3465m4π

64b4
− 3584m5

5b5
− 2mb

r2Λ

− mb3

4

(

1

r4s
+

1

r4o

)

+
3b5

40

(

1

r5s
+

1

r5o

)

− b3

2r2Λ

(

1

rs
+

1

ro

)

+O(ǫ6). (5)

The cosmological constant contributes to the geodesic equa-
tion through terms of order ofO(ǫ5). The term2bm/r2Λ,
where neither the source or the observer radial position enters,
can be considered as local. We are assuming the parameterb
to be positive.

III. LENS EQUATION

The lens equation is a mapping relating the position of the
source and the observed position of its images. It is usually
given in terms of the apparent angular position of the image
in the sky, i.e. the angleϑ between the tangent to the photon
trajectory at the observer and the radial direction to the black
hole as measured in the locally flat observer’s frame. In terms
of the tetrad components of the four momentumP , cosϑ =
P [r]/P [t]. For the SdS metric,

sinϑ =
√

fΛ(ro)
b

ro
. (6)

The angleϑ is then strictly linked to the constant of motion.
For small angles,

ϑ ≃ b

ro
+

b3

6r3o

[

1− 6mro
b2

− 3r4o
b2r2Λ

]

. (7)

The repulsive gravitational effect ofΛ counteracts the attrac-
tion of the central massm. Then, light paths seem to be less
deflected: onceb is fixed, in presence of a non null, positive
cosmological constantϑ is smaller than the angle observed
whenΛ = 0. Due to the presence ofΛ, the relation between
b and the observed angleϑ changes by a term of orderO(ǫ3),
two orders of magnitude higher than the contribution ofΛ to
the variation of the coordinate azimuthal angle, see Eq. (5).
The relation between the observed angle and the constant of
motion determines the extent to whichΛ affects the lensing
observables. In the following resolution of the lens equation,
calculations will be then performed up to and including terms
of order ofO(ǫ3).
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Once we use angular coordinates for the image positions
instead on the invariants of motion, it can be appropriate to
introduce a series expansion parameter in the weak deflection
limit based on the angular Einstein ring defined through radial
distances [22],

ϑE ≡
√

4m
rs

ro(ro + rs)
; (8)

the expansion parameterεE is then defined asεE ≡ ϑE/4D
[17, 22] whereD ≡ rs/(ro + rs). In a way similar to the
case of the geodesic equation, let us perform the expansion
in terms of two parameters,εE andǫΛ. Mixed terms are then
collected through a given formal order in the parameterε. The
parametersεE andǫΛ will be written in terms ofε through the
relationsεE = ε andǫΛ = ε/rΛε, respectively. The parameter
rΛε, defined in the second one of the above equations as the
ratio εE/ǫΛ, is usually≫ 1 for near astrophysical systems,
see Sec. VI.

It is customary in lensing studies to write the source posi-
tion in terms of the angleB at which the source would be seen
in absence of the lens, i.e form = 0. In analogy with Eq. (6),
B is then given bysinB =

√

1− (ro/rΛ)2bs/r0 with bs be-
ing a fictitious constant of motion which solves the geodesic
motion in Eq. (3) for the actual source and observer coordi-
nates but form = 0. The azimuthal source coordinate,φs,
can then be expressed in terms ofB plugging the “unlensed”
constantbs in Eq. (5). The lens equation in the form

F(B, ϑ;m,Λ) = 0, (9)

is finally obtained by first writingφs as a function of eitherϑ

orB and then equating the two expressions,

φs(ϑ;m,Λ) = φs(B;m = 0,Λ).

We will consider source positionsB ≥ 0. At the lowest order,
B ≃ D(φs + π).

The lens equation can be solved term by term. We assume
that the solution can be written as a series inε,

ϑ = ϑE

{

θ0 + θ1ε+ θ2ε
2 +O(ε3)

}

;

The source positionB can be rescaled asβ = B/ϑE. At first
order, the lens equation takes the standard form

β = θ0 −
1

θ0
, (10)

with the usual pair of solutions

θ±0 =
1

2

(

1±
√

1 +
4

β2

)

β.

The next order correction is

θ1 =
15π

16(1 + θ20)
.

Up to and including second order corrections, the cosmolog-
ical constant is ineffective and lensing is pure Schwarzschild.
The cosmological constant shows up at the next order, chang-
ing the angular positions of the images as seen by the observer,

θ2 =
8

θ0 (θ20 + 1)

[

1 + θ20 − θ40 +D

(

1− 7θ20
2

+
5θ40
2

)

−D2

(

2θ40
3

− 2θ20 +
5

3

)]

− 225π2

256

1 + 2θ20

θ0 (θ20 + 1)
3 − θ0

r2Λε (θ
2
0 + 1)

.

The effect of the cosmological constant on the observed po-
sitionsϑ of the images is then∝ (ε/rΛε)

2 = (ro/rΛ)
2. The

effect depends mainly on the radial distance of the observer
but it is also sensitive to the source position troughθ0. The
contribution ofΛ to the angular position of the images can
then be written as

δϑΛ = −
(

ro
rΛ

)2
θ0

1 + θ20
ϑE. (11)

The angular splitting between the two images reads

ϑ+−ϑ− = ϑE

{

√

β2 + 4− 15πβε

16
√

β2 + 4
+

ε2
√

β2 + 4

[

16− 225π2
(

β4 + 6β2 + 6
)

256 (β2 + 4)
+ 28Dβ2 − 8D2

3

(

2 + 7β2
)

− 2

r2Λε

]}

.

Let see how the above results compare to [13]. Rindler and Ishak [13] derived the angleϑ, see their equation (12), for
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the particular configurationb ∼ √
2mro, which stands for

observer and source at the same radial distancero ∼ rs
(D = 1/2) andb/r0 ∼ ϑ ∼ ϑE (θ0 = 1). In that case, the
contribution of the cosmological constant to the observed im-
age position angle,δϑΛ, can be rewritten as−(1/12)Λb3/m,
which agrees with the result in [13].

Deflection angle in gravitational lensing is usually defined
in asymptotically flat spacetimes as the angle between the
asymptotic tangents to the light ray at the observer and at the
source. Even though the SdS spacetime is not asymptotically
flat, we can identify a sort of contribution of the cosmologi-
cal constant to the deflection by comparing the lens equations
either with or withoutΛ,

D
α̂Λ

ϑE
= F(B, ϑ;m,Λ)−F(B, ϑ;m,Λ = 0), (12)

with F normalized in such a way that at first order it takes the
form of Eq. (10). The difference is of order ofε3. As usual,
the factorD in the left hand side of Eq. (12) allows to turn the
“scaled” deflection angle into the “effective” one. Using the
relation in Eq. (10),̂αΛ can be written as

α̂Λ = α̂pN

(

ro
rΛ

)2

= −4mroΛ

3ϑ
, (13)

whereα̂pN ≡ 4m/(roϑ) is the deflection angle at the post-
Newtonian order. We have thatδϑΛ/α̂Λ = Dθ20/(1 + θ20). At
a typical angleϑ = ϑE,

α̂Λ(ϑE) = −ϑE

D

(

ro
rΛ

)2

= −ϑE

D

r2oΛ

3
.

The contribution of the cosmological constant to the lens
equation can be derived in an alternative and easier way. The
approximate lens equation is usually written in terms of the
image position angle,ϑ, the position angle of the source in
absence of the lens,B, and angular diameter distances as mea-
sured in the smooth background [23],

B = ϑ− Dds

Ds
α̂pN, (14)

whereα̂pN is the deflection angle at the post-Newtonian or-
der andDds andDs are the angular diameter distances from
the lens to the source and from the observer to the source, re-
spectively. In the case we have been considering so far, the
black holem is embedded in an otherwise smooth spacetime
which can be described by the de Sitter metric, Eqs. (1, 2) for
m = 0. Then, the unperturbed deflection angle in terms of
angular diameter distanceDd from the observer to the lens
takes the form̂αpN = 4m/(Ddϑ), whereas the angular diam-
eter distances can be written in terms of radial coordinatesas
[23, 24]

Dd =
ro

√

1− (ro/rΛ)
2
, (15)

Dds = rs, (16)

Ds =
ro + rs

√

1− (ro/rΛ)
2
. (17)

The above distances have been derived considering static
source, lens and observer in the background de Sitter metric.

Plugging Eqs. (16) in the lens equation Eq. (14) we get

B = ϑ− ro
ro + rs

4m

roϑ

{

1−
(

ro
rΛ

)2
}

. (18)

The contribution of the cosmological constant to the lens
equation in the right-hand side of Eq. (18) has the same form
of the expression derived considering the geodesic motion,see
Eq. (13). Since the main contribution ofΛ to gravitational
lensing comes from the relation between the observed angle
and the constant of motion, see Eq. (6), it is not surprising
that such a contribution can be also obtained by taking care of
expressing distances as the angular diameter distances of the
background metric. In fact, such distances express the relation
between proper physical sizes at the emitter and measurable
angles subtended at the observer. In other words, up to order
ǫ3, Λ affect lensing phenomena only through the curvature of
the background spacetime and does not affect the local deflec-
tion of light near the lens. On the other side, it is clear thatthe
cosmological constant affect lensing observations.

It is to be remarked that the above derivation based on the
lens equation in the approximate form of Eq. (14) allows to
determine the main contribution ofΛ to gravitational lensing
but, on the other hand, misses both higher order geometri-
cal corrections and the contributions to the light deflection of
post-post-Newtonian order or higher [25, 26], which must be
properly considered by expanding the geodesics equation.

IV. MAGNIFICATION

The ratio between the angular area of the image in the ob-
server sky and the angular area of the source in absence of
lensing gives the (signed) amplification of the image,

µ =
sinϑ

sinB

dϑ

dB
. (19)

The magnification of the apparent luminosity is given by cor-
recting such a geometrical amplification for the standard red-
shift factor. The derivative in Eq. (19) can be computed
through the chain rule by deriving the coordinate position of
the sourceφs with respect to eitherB or ϑ and then combin-
ing the results suitably. After introducing the scaled angular
variables, the result can be rearranged as a series inε,

µ = µ0 + µ1ε+ µ2ε
2 +O(ε3).

The first coefficients of the above expansion series are like
pure Schwarzschild lensing,

µ0 =
θ40

θ40 − 1
,

and

µ1 = − 15πθ30

16 (θ20 + 1)
3 .

TheΛ correction shows up at the next order,
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µ2 =
8θ20

(1− θ20)(1 + θ20)
3

{

θ40

(

4 + 2θ20 −
675π2

1024(1 + θ20)
2

)

+Dθ20(9− 10θ20 − 5θ40)−
D2

3
(1 + 16θ20 − 23θ40 − 12θ60) +

θ20
4r2Λε

}

.

Let us consider the microlening case when the two images can
not be resolved and the observable is the total magnification
µtot = |µ+| + |µ−|. Using the above results,µtot can be
written in terms of the unlensed source position as

µtot ≃ β2 + 2

β
√

β2 + 4
− 15πε

8 (β2 + 4)
3/2

− 4ε2

β (β2 + 4)
3/2

×
[

1

r2Λε

+ 4(6 + 6β2 + β4)− 675π2

256 (β2 + 4)
(20)

− 2D(12 + 30β2 + 5β4) +
4D2

3
(18 + 35β2 + 6β4)

]

.

The contribution ofΛ to the total magnification is negative so
that images are slightly de-amplified.

The cosmological constant is isotropic and does not perturb
the spherical symmetry of the lens. The caustic surface is still
a line coincident with the optical axis behind the lens. The
tangential critical circle corresponding to the point-like caus-
tics is a perturbed Einstein ring with angular radius

ϑt ≃ ϑE

{

1 +
15π

32
ε+

(

4− 4D2

3
− 675π2

2048
− 1

2r2Λε

)

ε2
}

.

Due toΛ the area of the Einstein ring slightly decreases.

V. TIME DELAY

Light rays corresponding to different images have different
travel times. To compute the time delay as measured by an
observer we have first to compute the coordinate timeto when
a given ray reaches the observer position and then to translate
the difference from coordinate time to proper time. For the
SdS metric

to = ±
∫

fΛ(r)
−1

(

1− b2

r2
fΛ(r)

)−1/2

dr, (21)

where the emission time has been fixed atts = 0 for all the
light rays. The overall sign in Eq. (21) is adhered todr to
give a positive contribution. Differently from ther-motion,
the travel time can not be expressed in terms of a new con-
stant of motionbΛ that makes the integral in Eq. (21) formally
identical to the expression for the Schwarzschild metric. As
for the geodesic equation, the travel time can be calculated
through an expansion inǫ. We get

to ≃ ro + rs + 2m

(

1 + log
4rors
b2

)

− b2

2

(

1

rs
+

1

ro

)

+
r3o + r3s
3r2Λ

− 15m2π

2b
+

64m3

b2
− b4

8

(

1

r3s
+

1

r3o

)

(22)

− 4m2

(

1

rs
+

1

ro

)

+
2m
(

r2o + r2s
)

r2Λ
+

m2
(

r3o + r3s
)

2r2Λb
2

.

Since an observer measures time differences, only terms in
the arrival time containing the impact parameterb contribute
to the observed time delay, whereas terms depending either
only on the radial positions of source and observer or onm
andΛ do not. Then the term∼ (r3o + r3s )/(3r

2
Λ), which is

similar to a contribution already derived in [5], can not be
measured in lensing observations. The measurable time delay
is the interval of proper time between the arrivals of the same
intrinsic variation in the source luminosity as observed ineach
of the two images,

∆τ =
√

fΛ(ro)(t
−
o − t+o ). (23)

Expanding inε and expressing the result in terms of the angu-
lar source position in absence of the lens, we get

∆τ = 2m

{

δτ0 +
45π

8
ε
√

β2 + 4 + ε2

[

1

2r2Λε

(

(1 + 13D− 45D2 + 48D3 − 16D4)β
√

β2 + 4

8(1−D)3D
− 4Dδτ0

)

(24)

+
4β

√

β2 + 4

[

8 + 6β2 + β4 +
1575π2

1024
(3 + β2) +D(8 − 10β2 − 3β4)− D2

3
(24− 14β2 − 5β4)

]

− 4Dδτ0

]}

where

δτ0 = β
√

β2 + 4 + 2 log

√

β2 + 4 + β
√

β2 + 4− β
.

Differently from the angular position, the correction termto
the time delay due toΛ shows factorsD and(1 − D) at the



6
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FIG. 1: The contribution to the time delay due to the cosmologi-
cal constant (in seconds) between the images of a source behind a
Sgr A*-like black hole (m ∼ 3.6 × 106M⊙, ro ∼ 7.6 Kpc ) as
a function of the source radial distancers (in parsecs). The short-
dashed, full and long-dashed lines correspond to source angular po-
sitions fixed atβ = 0.1, 1 and5, respectively.

denominator, so that the effect can be enhanced for sources
either very far from (rs ≫ ro, D → 1) or very near to (rs ≪
ro, D → 0) the lens.

VI. NEAR LENSES

We have seen in the previous sections that the effect of
the cosmological constant on lensing observables is really
small, being∼ (ro/rΛ)

2 times smaller than the main post-
Newtonian term. It can be nevertheless interesting to give
some numbers. A classic test of general relativity consists
in measuring the bending of starlight by the Sun. Observa-
tions of solar deflection using very long baseline interferom-
etry data allowed to put constraints on deviations from pre-
dictions based on the parametrized post-Newtonian formal-
ism at the level of<∼ 0.05% [27, 28]. Translating this ac-
curacy into a bound on the cosmological constant, one gets
Λ <

∼ 10−25m−2, nearly 17 orders of magnitude worse than
the limits obtained from other solar system tests as precession
shift and change in mean motion [7].

The supermassive black hole hosted in the radio source
Sgr A* in the Galactic center, with a mass of∼ 3.6× 106M⊙

and at a distance of∼ 7.6 kpc from the Earth [29], offers an-
other appealing target for testing higher order effects in grav-
itational lensing with future space- and ground-based experi-
ments [17, 22, 25, 30, 31]. For a source∼ 1 pc behind the
black hole,Λ induces a variation on the angular position of
the images of∼ 10−14 arcsec. Accuracies at the level of
∼ 1 µarcsec, which are within the reach of future missions,
are still too low to detect such a tiny effect.

Since multiple images of a single source could be detected
behind Sgr A* in the near future, prospects for measurements
of time delays can deserve some interest. In Fig. 1 the time
delay due toΛ for sources behind Sgr A* is plotted as a func-

tion of the source radial distance, withrs spanning the range
from 10 AU to 10 pc. For sources very near the black hole,
the delay can be as large as10−3 s.

Since multiple images of a single source could be detected
behind Sgr A* in the near future, prospects for measurements
of time delays can deserve some interest. In Fig. 1, the time
delay due toΛ for sources behind Sgr A* is plotted as a func-
tion of the source radial distance, withrs spanning the range
from 10 AU, slightly smaller than the pericentre of S2 (the
observed orbiting star nearest to Sgr A* [29]), to10 pc, a dis-
tance slightly larger than the scale-length of the star cluster
in the Galactic center. As you can see from the picture,∆τΛ
increases with the angular separationβ of the source from the
line of sight and decreases with an increasing radial source
distance. Due to spherical symmetry, the time delay between
the images is null for a source aligned with the line of sight.
For sources very near the black hole (rs <

∼ 10 AU), the de-
lay can be as large as10−3 s. The weak deflection limit
is still valid for such a small distance. Forrs <

∼ 10 AU,
RSch ≡ 2Gm/c2 ∼ 1010 m < RE(≡ roϑE) ∼ 1011 m <
rs ∼ 1012 m.

Let us finally consider the impact of the cosmological con-
stant on microlensing analyses. A variationδϑE in the Ein-
stein radius brings a variation of2δϑE/ϑE in the optical depth.
Microlensing events have been observed up to the Andromeda
galaxy at∼ 750 kpc [32]. Due toΛ, the optical depth de-
creases by∼ 10−8, which is really negligible.

VII. CONCLUSIONS

The stagnant theoretical affair between the cosmological
constant and the bending of light rays took an hit recently
when Rindler and Ishak [13] pointed out how the study of
the orbit equation in the coordinate space is not enough to
describe the observations of lensing phenomena. This note-
worthy criticism has then stimulated some new interest on
the subject [14]. In this paper, I have performed an analy-
sis of lensing phenomena in the framework of the SdS metric,
which allows a full treatment for systems much smaller than
the Hubble radius. I have based my results on a perturbation
expansion of the equation of motions, from which I have de-
rived a lens equation accounting forΛ. The analysis has also
showed that the usual argument againstΛ, i.e. that the cos-
mological constant is dropped out from the exact differential
equation for a light path, does not apply to the time delay. It
is also to be remarked that the degeneracy between the orbital
differential equation in the Schwarzschild metric and thatin
the SdS spacetime breaks down in presence of a non null an-
gular momentum of the lens.

The argument thatΛ affects lensing through the metric it-
self at the observer position is not restricted to the weak de-
flection limit and applies as well to light rays passing very
near to the photon horizon of a black hole. Since SdS null
geodesics are formally identical to the Schwarzschild case,
the calculation of the deflection angle should be performed
as usual but the relation between the constant of motion and
the observed angle should be revised. However, since the an-
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gular separations of the relativistic images are very smallwith
respect to the splitting of the primary images, in the strong
deflection limit it is customary to neglect higher order correc-
tions.

Even though important on a theoretical point of view, the
effect ofΛ on near lenses, such as the Sun, the supermassive
black hole in the Galactic center or compact objects in the
halo of near galaxies, is quantitatively very small. Ishak et al.
[33] tried to extend the result obtained in the framework of
the SdS metric to a cosmological scenario where the distances
between lens, source and observer are comparable with the
Hubble radius. Some caution should be however used in such
an extrapolation. The cosmological lens equation is usually
derived combining local results on the light deflection, which
are based on an asymptotically flat metric, with considerations
on global geometry and angular diameter distances, which are
on turn based on the global Friedmann-Lemaı̂tre-Robertson-
Walker spacetime in which the system is embedded [23, 34].
As shown in [13] and in the present analysis, both based on the
SdS metric, the main contribution ofΛ to lensing observables
comes through the value of the metric at the observer position,
which lies in a region of spacetime curved by the cosmological
constant. In the classical reasoning at the basis of the cosmo-
logical lens equation, local effects are related to a small region
in the neighborhoodof the lens whereas global effects are con-
nected to the large regions of spacetime between source, lens
and observer. Then, the main contribution ofΛ to gravita-
tional lensing should be seen as global in the sense that it is
connected to the observer radial distance. This view is also
supported by the fact that, as shown in Sec. III, the effect ofΛ
on the lensing equation can be already considered through the
angular diameter distances of the background smooth space-
time, which express global relations.

As far as distances are small with respect to the de Sitter
horizon, we can safely apply the expressions obtained in the
present analysis and neglect higher order correction connected

to the coupling betweenΛ and the black hole mass, but if
distances are comparable to the Hubble length then the results
should be likely revisited. This will the subject of a future
analysis.

A further consideration is that if we are assuming that a
constant energy background as the one provided byΛ affects
lensing, then every other background, such as that provided
by dark matter, should have a similar effects. The McVittie
metric, which accounts for the presence of a generic cosmo-
logical fluid around the central mass and the related expan-
sion of the spacetime, should be used instead of the more spe-
cific SdS spacetime and the effect of all the contributions to
the cosmological energy budget should be considered even on
a small scale [35]. Then, even thoughΛ changes in some
ways the expression for the bending angle, the dark matter,
whose uniform distribution counteracts the cosmological con-
stant, should nearly compensate in the opposite direction.

In the case ofΛ = 0 the results in this paper updates previ-
ous studies for lensing in the Schwarzschild spacetime that
were based either on an approximate lens equation, differ-
ently from the present analysis which is based on a pertur-
bation analysis of an exact lens equation, or neglected the ef-
fect of the metric in the relation between the impact parameter
and the observed image position angle. The present study is
also relevant to lensing in extended theories of gravity [36],
in which the SdS metric provides an exact solution suitable
to evaluate the effects of the non linearity of the gravity La-
grangian.
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