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On the influence of the cosmological constant on gravitatical lensing in small systems
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The cosmological constantaffects gravitational lensing phenomena. The contrilouio\ to the observable
angular positions of multiple images and to their amplifmatand time delay is here computed through a
study in the weak deflection limit of the equations of motiarthie Schwarzschild-de Sitter metric. Due to
A the unresolved images are slightly demagnified, the raditisecEinstein ring decreases and the time delay
increases. The effect is however negligible for near lerisehie case of null cosmological constant, we provide
some updated results on lensing by a Schwarzschild blagk hol
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I. INTRODUCTION mations can be written in generic spherically symmetric and
static spacetimes [16]. In this paper, the lens equatioe-is d
rived from the lightlike null geodesics of the SdS metric-Re

fascinating and traditional topic in theoretical physic®n sults concerning observable quantities are expressednste

the observational side, large scale structure obsensatiane of the invariants of the light ray, avoiding ambiguities eon
made a strong case fdr as a possible choice for dark en- N€cted to coordinate-dependent quantities [17, 18].
ergy. In fact, a very small value of ~ 10~52m~2, together The paper is organized as follows. In Sec. II, the null orbits

with dark matter, can provide a suitable framework for obserare solved in the weak deflection limit. In Sec. |l the lens
vational cosmology [1]. equation is first written in terms of the observed image posi-

Since the cosmological constant should take part in alfion angle and then solved with a perturbation method. Image

kinds of gravitational phenomena, investigations havenbee@MPplification and time delay are discussed in Sec. IV and V,

performed on very different scale-lengths. Despite no conf€SPectively. Some quantitative estimates of the effect of

vincing method for constraining in an Earth’s laboratory has &€ |Ilustr§1ted in Sec. VI whereas Sec. Vll is devoted to some

been proposed [2], local astronomical phenomena seem to (i@l considerations.

more promising. The cosmological constant can influence the

motion of massive bodies [3-5]. Perihelion precession ef so

lar system planets together with other solar and stellas tes Il. GEODESIC EQUATION

has been considered to put an upper bountl §f 10~42m—2

[4, 6-8, and references therein]. The cosmological cobstan The role of A in gravitational lensing can be considered

also affects the gravitational equilibrium of large astrggi-  in the framework of the spherically symmetric Schwarzsthil

cal structures [9-11] and produces a lower velocity dispars  vacuum solution with a cosmological constant, also known as

around the Hubble flow on the scale of the Local Volume [12].Schwarzschild-de Sitter (SdS) or Kottler space-time [19],

Recently, Rindler and Ishak [13] discussed how the cosmo-

logical constant takes part in gravitational lensing. figkinto

accountA through the Schwarzschild-de Sitter (SdS) metric,

they showed that even if the exact differential equationafor

light path in the coordinate space can be written in a forrmh thawhere

does not involve\ [3], the cosmological constant contributes

to the bending of light through the metric itself, which de- Falr) = (1 _2m A_”Z) @)

termines the actual observations that can be made on the orbi ’

equation. In fact, one must consider not only the null geiades

equation but also the process of measurement [14, 15]. andm is the black hole mass. We are using uidits= ¢ = 1.

Following this correction of the long-standing misconcep-A coordinate singularity occurs at large radii. Fer = 0,

tion that A does not affect the observed deflection angle, inthe de Sitter horizon occurs at = /3/A. Due to spher-

this paper | further investigate the effect of the cosmalabi ical symmetry, photon trajectories can be conveniently re-

constant in gravitational lensing observations in neatesys. ~ stricted to the centrad = 7 /2 plane. We consider the stan-

The weak deflection limit considered throughout the paper aldard framework of gravitational lensing in the weak deflerti

lows to have a clear insight on the effectfout it is to be  limit, where the source of radiation and the observer are re-

remarked that a gravitational lens equation without apiprox mote from the lens. Lensing in a static, spherically symioetr
metric is usually investigated considering asymptotjcéét
spacetimes [17] but, here, we have to consider both observer
and source in a region of spacetime which is well inside the

*Electronic addresssereno@physik.unizh.ch outer horizon. In such a region the intrinsic geometry of the

The interpretation of the cosmological constans a very
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2-metric of the equatorial plan® = 7/2 undergoes a tran- An expression for the minimum approach includi@ge?)-
sition from a nearly Flamm paraboloid of revolution in the terms for the Kerr metric can be found in [22]. In the case of
inner region, as typical in Schwarzschild metric, to a spher null cosmological constant, equation (4) agrees with thalte

cal geometry of radius, in the very outer and nearly de Sit- in [17].

ter spacetime [13, 20]. Since the observer lies in this a@irve The integral in Eq. (3) can be solved approximately un-
transition region of spacetime, even if the null geodesies a der the assumptions discussed above and following standard
formally indistinguishable from thé = 0 case in the coor- methods and procedures [17, 22]. We get

dinate space, the observable quantities will be affectethédy

cosmological constant [13]. b = —m— 4m T 11y 15m?2m B 128m3

In the following analysis the observer and the emitter are ™ L re  To 42 33
taken to be static. The observe:r coor_dinates are denoted b3 /1 1 3465mAr  3584m°  2mb
{ro, ®o = 0}, Whereg, has been fixed without loss of gen- + st YT R a
erality. The source coordinates are denotedrases}. The s T A
orbital equation for a light ray from the source to the observ oomb’ (11 " 3° /1 1
can then be written in terms of the first integral of motion 4 \rd rd 40 \r2 7]
b(= ¢r?) as ¥o/1 1

- = <— + —> + O(€%). (5)
—1/2 2ry \rs 7o
5 r2 [ 3 2 3 ’ The cosmological constant contributes to the geodesic-equa

tion through terms of order o®(e®). The term2bm/r3,
where the sign of the integral is adhered to the sigircdind ~ where neither the source or the observer radial positicersnt
changes at the inversion points in thenotion. A dot de- can be considered as local. We are assuming the parabneter
notes derivation with respect to an affine parameter. Altgg i to be positive.
path from the source to the observer, the photon passes by the
black hole at a minimum distanesg,;,, which is much larger
than the gravitational radius. In the weak deflection linfiis ll. LENS EQUATION
closest approach is the only turning point in thenotion.

ni 2 2 2
Defining a new constah such thatl /by = (1/b - 1/TA)’ The lens equation is a mapping relating the position of the

we can see that the geodesics are formally identical to thosg, .o ang the observed position of its images. It is usually
in a Schwarzschild spacetime without cosmological conistan ., i+ tarms of the apparent angular position of the image

'I_'his ‘;a” be2 seen even more clearly taking the §econd derve the sky, i.e. the anglé between the tangent to the photon
tive d’r/dg*, which eI|.m|natesA fror_n t.he equation. Equa- trajectory at the observer and the radial direction to tlaelbl
tion (3) can t_)e solved in terms of elllp_tlcal functions [1_4‘]“?‘ hole as measured in the locally flat observer’s frame. Ingerm
exact analytical results can be obtained even considering & w - tatrad components of the four moment#ycos 9 —
spinning black hole [21]. In an asymptotically flat space&tjim P/ Pl For the SdS metric
b can be viewed as the impact parameter. '

Even if the equations of motion for either a massive test par-
ticle or a photon can be solved exactly [14, 21], expressions sind = fA(TO)r_' (6)
are quite involved, so that lensing observables are more con ©
veniently derived treating through a perturbation appho#c  The angled is then strictly linked to the constant of motion.
fundamental assumption in the weak deflection limit is thatFor small angles,
the point of closest approach lies well outside the grawitet
radius, i.e.m/b = e, < 1. The observer and the source lie b b3 6mr, 3rd
very far from the lens. It can be shown thbdi, ~ b/7s ~ €n, = T 63 b2 b2r2 | (7)
[17]. Furthermore, we assume that the system is embedded in ¢ A
a region well inside the outer horizon,,rs < ry. Inwhat  The repulsive gravitational effect df counteracts the attrac-
follows, we will expand quantities of interest accordindite  tion of the central mass:. Then, light paths seem to be less
expansion parametets, andey = r,/ra but, for the sake of  deflected: oncé is fixed, in presence of a non null, positive
brevity, we will produce our results up to a given formal arde cosmological constant is smaller than the angle observed
in ¢, collecting terms coming from any combination of the two whenA = 0. Due to the presence df, the relation between
expansion parameters [22]. b and the observed anglechanges by a term of ordél(e?),

The light ray minimum radial distancg,;, to the lens is  two orders of magnitude higher than the contributiom\ab
determined by the equatiofi = b2 f4(r), whose exact solu- the variation of the coordinate azimuthal angle, see Eq. (5)
tion is known analytically [13]. Expanding the solution flret  The relation between the observed angle and the constant of
weak deflection limit as a power seriescive find motion determines the extent to whighaffects the lensing

observables. In the following resolution of the lens equrati
m  3m*  4m®  105m* b } @) calculations will be then performed up to and including term

Tmin ™~ b {1 Ty T o T st 2% of order of O(e?).




Once we use angular coordinates for the image positionsr B and then equating the two expressions,
instead on the invariants of motion, it can be appropriate to
introduce a series expansion parameter in the weak defiectio ¢s(U;m, A) = ¢s(B;m =0, A).
limit based on the angular Einstein ring defined throughadadi
distances [22], We will consider source positior3 > 0. At the lowest order,

B ~ D(¢s + 7).

—_— (8) The lens equation can be solved term by term. We assume
To(To +15) that the solution can be written as a series,in

9 = ,/4m Is

the expansion parameteg, is then defined asg = Y5 /4D
[17, 22] whereD = rs/(ro + r5). In a way similar to the
case of the geodesic equation, let us perform the expansiq ” .
in terms of tv?/o paramet%rsE andey. Mi)F()ed terms are tﬁen Trlqe source posmoB_can be rescaled as= B/Jg. Atfirst
collected through a given formal order in the parametdine  Order. the lens equation takes the standard form
parametersg ande, will be written in terms ot through the 1
relationssg = ¢ andey = ¢/r,., respectively. The parameter B =060y ——, (10)
rae, defined in the second one of the above equations as the 0o
ratio eg /ey, is usually>> 1 for near astrophysical systems,
see Sec. VI.

It is customary in lensing studies to write the source posi-

tion in terms of the angl® at which the source would be seen ot — 1 <1 + .1 + i) 8
in absence of the lens, i.e for = 0. In analogy with Eq. (6), 2 B

B is then given byin B = /1 — (1, /7ra)2bs/70 With bs be-

ing a fictitious constant of motion which solves the geodesicThe next order correction is
motion in Eq. (3) for the actual source and observer coordi- 15
nates but forn = 0. The azimuthal source coordinaig,, 0, = — 2"
can then be expressed in terms®plugging the “unlensed” 16(1 + 65)
constanbs in Eqg. (5). The lens equation in the form

¥ =Yg {90 + 016 + 09 + (’)(63)} ;

with the usual pair of solutions

Up to and including second order corrections, the cosmolog-
F(B,9;m,A\) =0, 9) ical constant is ineffective and lensing is pure Schwatrikgch
The cosmological constant shows up at the next order, chang-
is finally obtained by first writingps as a function of eithef ing the angular positions of the images as seen by the olrserve

02 508 262 22572 1+ 262 6
92:+ 1+9§-9§+D( —7—°+5—°>—D2(—0—293+§>}— on i 0 .
0o (02 + 1) 2 2 3 3 256 0y (02 +1)° 3. (03 +1)

The effect of the cosmological constant on the observed po- The angular splitting between the two images reads
sitions¥ of the images is thex (¢/rxc)? = (ro/ra)?. The

effect depends mainly on the radial distance of the observer

but it is also sensitive to the source position trodgh The

contribution of A to the angular position of the images can

then be written as

T 2 90
S9p = — (—) gzl (11)

b e _ lsmpe g2 _2257° (B* +65% +6) , 8D? a2
e ‘ﬁE{Vﬁz” T Y L 2 G B o |

Let see how the above results compare to [13]. Rindler and akl$h3] derived the angl®, see their equation (12), for



the particular configuratioh ~ /2mr,, which stands for Plugging Egs. (16) in the lens equation Eq. (14) we get
observer and source at the same radial distance- 7,

(D = 1/2)andb/rg ~ ¥ ~ 9g (6p = 1). In that case, the ro 4m ro \

contribution of the cosmological constant to the observed i B=19- o + 74 U - (H) ‘ (18)
age position anglejy, can be rewritten as (1/12)Ab%/m,

which agrees with the result in [13]. The contribution of the cosmological constant to the lens

Deflection angle in gravitational lensing is usually definedequation in the right-hand side of Eq. (18) has the same form
in asymptotically flat spacetimes as the angle between thgfthe expression derived considering the geodesic matim,
asymptotic tangents to the light ray at the observer andeat theq. (13). Since the main contribution &f to gravitational
source. Even though the SdS spacetime is not asymptoticallgnsing comes from the relation between the observed angle
flat, we can identify a sort of contribution of the cosmologi- and the constant of motion, see Eq. (6), it is not surprising
cal constant to the deflection by comparing the lens equationthat such a contribution can be also obtained by taking dare o
either with or withoutA, expressing distances as the angular diameter distanche of t

A background metric. In fact, such distances express thixmela
D% = F(B,0;m, ) = F(B,J;m, A = 0), (12)  petween proper physical sizes at the emitter and measurable

with 7 normalized in such a way that at first order it takes theangles subtended at the observer. In other words, up to order
3 .
form of Eq. (10). The difference is of order ef. As usual, e?, A affect lensing phenomena only through the curvature of

the factorD) in the left hand side of Eq. (12) allows to turn the the background spacetime and does not affect the local deflec

“scaled” deflection anale into the “effective” one. Usin@th tion of light near the lens. On the other side, it is clear that
o ang . ' & cosmological constant affect lensing observations.
relation in Eq. (10)¢&, can be written as

It is to be remarked that the above derivation based on the
. . o\ 2 dmr, A lens equation in the approximate form of Eq. (14) allows to
QA = QpN (H) - T3y (13)  determine the main contribution df to gravitational lensing

. ) , but, on the other hand, misses both higher order geometri-
wheredpn = 4m/(ro0) is the deflgc'uon aggle at t2he POSt- ca| corrections and the contributions to the light deflectib
Newtonian order. We have théi /& = D5/ (1 +05). At host-post-Newtonian order or higher [25, 26], which must be
atypical angle) = Vg, properly considered by expanding the geodesics equation.

Ir [ 76\ Ig 2\
Ap(0p) = — & (T} — _YETR
A (Vm) D <rA) D 3

The contribution of the cosmological constant to the lens

equation can be derived in an alternative and easier way. The The ratio between the angular area of the image in the ob-

approximate lens equation is usually written in terms of theseryer sky and the angular area of the source in absence of
image position angley, the position angle o_f the source in lensing gives the (signed) amplification of the image,
absence of the len&, and angular diameter distances as mea-

IV. MAGNIFICATION

sured in the smooth background [23], sind dv
b= ——-=. (29)
Dys sin B dB
B =1 — —=dpN, (14) o o
Dy The magnification of the apparent luminosity is given by cor-

whered,y is the deflection angle at the post-Newtonian or-recting such a geometrical amplification for the standadd re
der andDgys and D are the angular diameter distances fromshift factor. The derivative in Eq. (19) can be computed
the lens to the source and from the observer to the source, rérough the chain rule by deriving the coordinate positibn o
spectively. In the case we have been considering so far, thiée sourceps with respect to eithef3 or 4 and then combin-
black holem is embedded in an otherwise smooth spacetiméng the results suitably. After introducing the scaled dagu
which can be described by the de Sitter metric, Egs. (1, 2) fovariables, the result can be rearranged as a serigs in

m = 0. Then, the unperturbed deflection angle in terms of 9 3

angular diameter distand®y from the observer to the lens p= po + pa€ + pge” + O(e”).

takes the forndy,n = 4m/(Dq¥), whereas the angular diam-

eter distances can be written in terms of radial coordinades The first coefficients of the above expansion series are like

pure Schwarzschild lensing,

[23, 24]
To o4
1— (ro/ra)” 05— 1
Dds = Ts, (16) and
0—"_ S
DS = —’f' " . (17) 157‘-98

1— 2 Mm=———7.
(ro/r2) 66+ 1)

The above distances have been derived considering static

source, lens and observer in the background de Sitter metridhe A correction shows up at the next order,
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Let us consider the microlening case when the two images canhere the emission time has been fixed,at= 0 for all the
not be resolved and the observable is the total magnificatiolight rays. The overall sign in Eq. (21) is adhereddtoto
tiot = |pT| + |#~]- Using the above resultgy, can be give a positive contribution. Differently from themotion,

written in terms of the unlensed source position as the travel time can not be expressed in terms of a new con-
stant of motiorb, that makes the integral in Eq. (21) formally
. B+2 15w 4e? identical to the expression for the Schwarzschild metris. A
Hrot = BVBE+4  8(B2+ 437 B (82 + 4)3/2 for the geodesic equation, the travel time can be calculated
1 6752 through an expansion in We get
—— +4(6+ 68>+ BY) — 20
“ =T (6+65"+5) — 5@ 1y (20)
2 4 2 4
— 2D(12+4305“ + 58%) + 7(18 +3568°+63%)| . dror b2 1 1
to ~ 1o +71s+2m(1+log - | =+ =
The contribution oft to the total magnification is negati > 2 \n
e contribution ofA to the total magnification is negative so 3, 3 9 3
that images are slightly de-amplified. + o +27”s _ 15m'm 472” v < 13 _3> (22)
The cosmological constant is isotropic and does not perturb 3y 2b 8 \rg 71
the spherical symmetry of the lens. The caustic surfacdlis st 5 (1 1 2m (r2+r2)  m? (r3+13)
a line coincident with the optical axis behind the lens. The — 4m s + o + = 22 b2
tangential critical circle corresponding to the pointeliéaus-  since an observer measures time differences, only terms in
tics is a perturbed Einstein ring with angular radius the arrival time containing the impact paramet@ontribute

L5 AD? 67502 ) to the observeq time q_elay, whereas terms depending either
i ~ Vg {1 FRhalpas (4 _ _ ) 52} ~only on the radial positions of source and observer orfon

32 3 2048 213, and A do not. Then the term- (r3 + r2)/(3r%), which is
similar to a contribution already derived in [5], can not be
measured in lensing observations. The measurable timg dela
is the interval of proper time between the arrivals of thesam
intrinsic variation in the source luminosity as observeeach
of the two images,

Due toA the area of the Einstein ring slightly decreases.

V. TIME DELAY

Light rays corresponding to different images have différen
travel times. To compute the time delay as measured by an
observer we have first to compute the coordinate tignehen A
a given ray reaches the observer position and then to ttansla
the difference from coordinate time to proper time. For the
SdS metric

Falro)(ts —13). (23)

b2 —1/2 Expanding ire and expressing the result in terms of the angu-
to = :I:/fA(r)_l (1 — —QfA(r)) dr, (21) lar source position in absence of the lens, we get
T

4
AT = 2m{57’0+%6 [2 4462

_ 2 3 _ 4 2
12 (1+13D — 45D + 48D° —16DYBVA* +4 _ 1o (24)
2r3, 8(1—D)3D

157572
1024
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NEE

[8 +68% + p* + (34 8%) + D(8 — 1087 — 38*) — D° - (24— 144% — 554)} - 4D5T0] }

where Differently from the angular position, the correction teton
JETI the time delay due ta. shows factor®D and(1 — D) at the
0 =2 /52+4+210gu_

VB+4-p



tion of the source radial distance, with spanning the range
from 10 AU to 10 pc. For sources very near the black hole,
the delay can be as large B3 s.

Since multiple images of a single source could be detected
behind Sgr A* in the near future, prospects for measurements
of time delays can deserve some interest. In Fig. 1, the time
delay due to\ for sources behind Sgr A* is plotted as a func-
tion of the source radial distance, with spanning the range
from 10 AU, slightly smaller than the pericentre of S2 (the
observed orbiting star nearest to Sgr A* [29]),1tbpc, a dis-

9 tance slightly larger than the scale-length of the startetus
107 . : : : : in the Galactic center. As you can see from the pictivey
104 0.001 0.01 01 1 10 increases with the angular separatibaf the source from the
s (PO) line of sight and decreases with an increasing radial source
s distance. Due to spherical symmetry, the time delay between
the images is null for a source aligned with the line of sight.

FIG. 1: The contribution to the time delay due to the cosmielog £q- sources very near the black hole € 10 AU), the de-
cal constant (in seconds) between the images of a sourcadoahi lay can be as large a®)—3 s. The weak defle<,:ti0n limit

Sgr A*-like black hole ¢ ~ 3.6 x 10°Mg, ro ~ 7.6 Kpc)as .7 . .
a function of the source radial distance(in parsecs). The short- is still valid for such a small distance. Fer < 10 AU,

dashed, full and long-dashed lines correspond to souraaamgp- Rsen = 2Gm/c® ~ 10" m < Rp(= ro¥p) ~ 10" m <
sitions fixed a3 = 0.1, 1 and5, respectively. s ~ 10" m.
Let us finally consider the impact of the cosmological con-
stant on microlensing analyses. A variatidfyg in the Ein-
denominator, so that the effect can be enhanced for sourc&&ein radius brings a variation 8§9g /U5 in the optical depth.
either very far from#; > r,, D — 1) or very near tofs < Microlensing events have been observed up to the Andromeda
o, D — 0) the lens. galaxy at~ 750 kpc [32]. Due toA, the optical depth de-
creases by~ 1078, which is really negligible.

VI. NEAR LENSES
VII. CONCLUSIONS

We have seen in the previous sections that the effect of
the cosmological constant on lensing observables is really The stagnant theoretical affair between the cosmological
small, being~ (r,/rx)? times smaller than the main post- constant and the bending of light rays took an hit recently
Newtonian term. It can be nevertheless interesting to givevhen Rindler and Ishak [13] pointed out how the study of
some numbers. A classic test of general relativity consistshe orbit equation in the coordinate space is not enough to
in measuring the bending of starlight by the Sun. Observadescribe the observations of lensing phenomena. This note-
tions of solar deflection using very long baseline intenfero  worthy criticism has then stimulated some new interest on
etry data allowed to put constraints on deviations from prethe subject [14]. In this paper, | have performed an analy-
dictions based on the parametrized post-Newtonian formalsis of lensing phenomena in the framework of the SdS metric,
ism at the level of< 0.05% [27, 28]. Translating this ac- which allows a full treatment for systems much smaller than
curacy into a bound on the cosmological constant, one getthe Hubble radius. | have based my results on a perturbation
A < 1072°m~2, nearly 17 orders of magnitude worse than expansion of the equation of motions, from which | have de-
the limits obtained from other solar system tests as pramess rived a lens equation accounting far The analysis has also
shift and change in mean motion [7]. showed that the usual argument agaifst.e. that the cos-

The supermassive black hole hosted in the radio sourcmological constant is dropped out from the exact diffewnti
Sgr A* in the Galactic center, with a mass-©f3.6 x 10° M, equation for a light path, does not apply to the time delay. It
and at a distance ef 7.6 kpc from the Earth [29], offers an- is also to be remarked that the degeneracy between thelorbita
other appealing target for testing higher order effectsavg differential equation in the Schwarzschild metric and that
itational lensing with future space- and ground-based ixpe the SAS spacetime breaks down in presence of a non null an-
ments [17, 22, 25, 30, 31]. For a soursel pc behind the  gular momentum of the lens.
black hole,A induces a variation on the angular position of The argument thaA affects lensing through the metric it-
the images o~ 1074 arcsec. Accuracies at the level of self at the observer position is not restricted to the weak de
~ 1 parcsec, which are within the reach of future missionsflection limit and applies as well to light rays passing very
are still too low to detect such a tiny effect. near to the photon horizon of a black hole. Since SdS null

Since multiple images of a single source could be detectedeodesics are formally identical to the Schwarzschild ,case
behind Sgr A* in the near future, prospects for measurementthe calculation of the deflection angle should be performed
of time delays can deserve some interest. In Fig. 1 the timas usual but the relation between the constant of motion and
delay due to\ for sources behind Sgr A* is plotted as a func- the observed angle should be revised. However, since the an-



gular separations of the relativistic images are very smiéifi ~ to the coupling betweeA and the black hole mass, but if
respect to the splitting of the primary images, in the stronglistances are comparable to the Hubble length then thesesul
deflection limit it is customary to neglect higher order ez should be likely revisited. This will the subject of a future
tions. analysis.

Even though important on a theoretical point of view, the A further consideration is that if we are assuming that a
effect of A on near lenses, such as the Sun, the supermassi¥@nstant energy background as the one provided bffects
black hole in the Galactic center or compact objects in thgensing, then every other background, such as that provided
halo of near galaxies, is quantitatively very small. Ishaéle  py dark matter, should have a similar effects. The McVittie
[33] tried to extend the result obtained in the framework ofmetric, which accounts for the presence of a generic cosmo-
the SdS metric to a cosmological scenario where the distancogical fluid around the central mass and the related expan-
between lens, source and observer are comparable with thgon of the spacetime, should be used instead of the more spe-
Hubble radius. Some caution should be however used in sucfific SdS spacetime and the effect of all the contributions to
an extrapolation. The cosmological lens equation is uguallthe cosmological energy budget should be considered even on
derived combining local results on the light deflection,ethi 5 small scale [35]. Then, even thoughchanges in some
are based on an asymptotically flat metric, with considenati \yays the expression for the bending angle, the dark matter,
on global geometry and angular diameter distances, wheeh akyhose uniform distribution counteracts the cosmologiocakc
on turn based on the global Friedmann-Lemaitre-Robertsorstant, should nearly compensate in the opposite direction.

Walker spacetime in which the system is embedded [23, 34]. In the case of\ — 0 the results in this paper updates previ-

As shownin [13] and in the present analysis, both based on th : L : :
SdS metric, the main contribution Afto lensing observables Sus studies for lensing in the Schwarzschild spacetime that

: ~~ _were based either on an approximate lens equation, differ-
comes through the value of the metric at the observer pasitio PP d

T ) . . ently from the present analysis which is based on a pertur-
which lies in aregion of spacetime curved by the COSrn()ldg'cabation analysis of an exact lens equation, or neglectedfthe e

constant. In the classical reasoning at the basis of them:osmfect of the metric in the relation between the impact paramet

!oij;]cal Ignigquhatm(;l, :cc;ﬁalleffectiare relalteg tlo ?fsmttgltm and the observed image position angle. The present study is
In the neighbornood oTthe lens whereas global ENECtS dr€ €0 4, rajayant to lensing in extended theories of gravity],[36

nected to the large regions of spacetime between source, le which the SdS metric provides an exact solution suitable

a}nd obseryer. Then, the main contnbut_lon/bito gravita- - 45 evaluate the effects of the non linearity of the gravity La
tional lensing should be seen as global in the sense that it i rangian

connected to the observer radial distance. This view is als
supported by the fact that, as shown in Sec. lll, the effeét of
on the lensing equation can be already considered throegh th
angular diameter distances of the background smooth space-
time, which express global relations.
As far as distances are small with respect to the de Sitter

horizon, we can safely apply the expressions obtained in the M.S. is supported by the Swiss National Science Founda-
present analysis and neglect higher order correction atede tion and by the Tomalla Foundation.
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