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Abstract

The attractive gravitational force between two electrons in super-

conductors is deduced from the Eddington-Dirac large number rela-

tion, together with Beck and Mackey electromagnetic model of vacuum

energy in superconductors. This force is estimated to be weaker than

the gravitational attraction between two electrons in the vacuum.

1 Introduction

Suspicions about the underlying physical connections among the parameters
of the cosmos and particle physics arose as early as 1930 when Eddington
[1] and Dirac [2] investigated myriad occurrences of pure numbers of order
10−40. These relations can be summarized in the following expression [3]:

α
(

mp

m

)

=

(

Λ−1/2

lp

)1/3

. (1)

Where lp = (Gh̄
c3
)1/2 is the Planck length, mP = ( h̄c

G
)1/2 is the Planck mass,

m is the electron mass, α = 1

4πǫ0
e2

h̄c
is the fine structure constant,and Λ

is the cosmological constant. Using the presently measured value of Λ0 =
(1.29± 0.23)× 10−52[m−2] [4], Equ.(1) is valid within 1%.

A modern formulation of the Eddington-Dirac large number conjecture,
equ.(1), is possible in the framework of the Planck-Einstein scale [5, 6], which
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corresponds to typical energy scales for dark energy, and involves the funda-
mental constants: Λ, h̄, c, k, G. Explicitly one has the following formulas at
the Planck-Einstein scale:

EPE = kTPE =

(

c7h̄3Λ

G

)1/4

= 5.25[meV ] (2)

mPE =
EPE

c2
=

(

h̄3Λ

cG

)1/4

= 9.32× 10−39[Kg] (3)

lPE =
h̄

MPEc
=

(

h̄G

c3Λ

)1/4

= 0.037[mm] (4)

tPE =
lPE

c
=

(

h̄G

c7Λ

)1/4

= 1.26× 10−13[s] (5)

ρPE =
EPE

l3PE

=
c4Λ

G
= 104[eV/mm3] (6)

The Planck temperature TP = 1

k

√

h̄c5

G
together with the Planck-Einstein

temperature,TPE = 1

k

(

c7h̄3
Λ

G

)1/4

, allow to rewrite equ.(1) in the following

form:

α

(

mP

m

)

=

(

TP

TPE

)2/3

. (7)

Thus it seems that the Eddington-Dirac large number relation takes its ”nat-
ural form” in the context of the Planck-Einstein scale.

The existence of dark energy in the universe, as indicated by numerous
astrophysical observations, represents one of the most challenging problems
in theoretical physics at present [4, 7, 8, 9]. A great variety of different
models exist for dark energy but none of these models can be regarded as
being entirely convincing so far. The cosmological constant problem (i.e. the
smallness of the cosmologically observed vacuum energy density) remains an
unsolved problem. It is likely that the solution of this problem requires new,
so far unknown, physics.

Recent models of dark energy, such as the electromagnetic dark energy
model of Beck and Mackey [10], produce potentially measurable effects at lab-
oratory scales, which are, however, restricted to superconductors. In [10] a
Ginzburg-Landau theory is constructed that generates a cutoff for the grav-
itational activity of vacuum fluctuations. Generally it is assumed in this
model that vacuum fluctuations of any particle can exist in two different
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phases: A gravitational active one (contributing to the cosmological con-
stant Λ) and a gravitationally inactive one (not contributing to Λ). The
model exhibits a phase transition at a critical frequency which makes the
dark energy density in the universe small and finite. The above approach
has many analogies with the physics of superconductors, and in particular
it allows for a possible interaction between dark energy and Cooper pairs.
Using the vacuum energy predicted by this model in superconducting mate-
rials together with the Eddington-dirac conjectured relationship equ.(1), we
estimate the gravitational force between two electrons in superconducting
materials, and compare it with its value in vacuum.

2 Electron’s gravito-electromagnetic coupling

from the Eddington-Dirac large number re-

lation

From Eddington-Dirac large number relation, Equ.(1), we deduce the cou-
pling between the gravitational and the electromagnetic interaction between
two electrons in vacuum, in function of the electron Compton wavelength
λc = h̄

mc
, the cosmological constant, and the square of the fine structure

constant, α

αg

α
= α2λcΛ

1/2. (8)

Where αg = Gm2

h̄c
= ( m

mP

)2 is the electron’s gravitational fine structure
constant. Note that a null value of the cosmological constant would imply
that electrons could note simultaneously generate gravitational and electro-
magnetic fields.

A non-vanishing cosmological constant (CC) Λ can be interpreted in terms
of a non-vanishing vacuum energy density

ρvacΛ =
c4

8πG
Λ, (9)

which corresponds to dark energy. The small astronomically observed value
of the CC, Λ = 1.29× 10−52[1/m2] [4], and its origin remain a deep mystery.
This is often call the CC problem, since with a cutoff at the Planck scale the
vacuum energy density expected from quantum field theories should be larger
by a factor of the order 10120, in complete contradiction with the observed
value. Substituting equ(9) into equ.(8), it is possible to express the coupling
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between gravitational and electromagnetic forces between two electrons in
vacuum in function of the dark energy density.

αg

α
=

2(2πG)1/2

c2
α2λcρ

1/2
vacΛ (10)

3 Electromagnetic model of vacuum energy

in superconductors

To solve the CC problem, in [10] a model of dark energy was suggested that
is based on electromagnetic vacuum fluctuations creating a small amount of
vacuum energy density. One assumes that photons (or any other bosons),
with zeropoint energy ǫ = 1

2
hν, can exist in two different phases: A grav-

itationally active phase where the zeropoint fluctuations contribute to the
cosmological constant Λ, and a gravitationally inactive phase where they do
not contribute to Λ [10, 11, 12, 13]. This is described in [10] by a Ginzburg-
Landau type of theory. As shown in [10], this type of model of dark energy
can lead to measurable effects in superconductors, via a possible interaction
with the Cooper pairs in the superconductor.

Here we introduce an additional hypotheses with respect to the original
Beck and Mackey model:

1. the vacuum energy density contained in superconductors can be differ-
ent from the energy density observed in the universe.

Beck and Mackey’s Ginzburg-Landau-like theory leads to a finite dark
energy density dependent on the frequency cutoff νc of vacuum fluctuations:

ρ∗ =
1

2

πh

c3
ν4

c (11)

In vacuum one may put ρ∗ = ρvacΛ, from which the cosmological cutoff
frequency νcc is estimated as

νcc ≃ 2.01THz (12)

The corresponding ”cosmological” quantum of energy is:

ǫcc = hνcc = 8.32meV (13)

In the interior of superconductors, according to assumption 1. above, the
effective cutoff frequency can be different. This is due to interaction effects
between the two Ginzburg-Landau potentials (that of the superconducting
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electrons and that of the dark energy model) [10]. The effect can be seen
in analogy to polarization effects of ordinary electromagnetic fields in mat-
ter: In matter the electric field energy density is different as compared to
the vacuum. Similarly, in superconductors the effectice dark energy density
(represented by gravitationally active zeropoint fluctuations) can be different
as compared to the vacuum. Our model allows for the gravitational analogue
of polarization.

An experimental effort is currently taking place at University College
London and the University of Cambridge to measure the cosmological cut-
off frequency through the measurement of the spectral density of the noise
current in resistively shunted Josephson junctions, extending earlier mea-
surements of Koch et al. [14].

In [10] the formal attribution of a temperature T to the graviphotons
is done by comparing their zeropoint energy with the energy of ordinary
photons in a bath at temperature T :

1

2
hν =

hν

e
hν

kT − 1
(14)

This condition is equivalent to

hν = ln 3kT (15)

Substituting the critical transition temperature Tc specific to a given su-
perconductive material into Eq.(15), we can calculate the critical frequency
characteristic for this material:

νc = ln 3
kTc

h
(16)

For example, for Niobium with Tc = 9.25K we get νc = 0.212 THz. If
we use the cosmological cutoff frequency, equ.(12), in Eq.(16) we find the
cosmological critical temperature Tcc:

Tcc = 87.49K (17)

This temperature is characteristic of the BSCCO High-Tc superconductor.
Substituting equ.(16) into equ.(11), the vacuum energy stored in a given

superconductor is obtained from a Stephan-Boltzmann type law, showing a
dependence on the fourth power of the superconductor’s critical transition
temperature:

ρ∗ =
π(ln 3)4

2

k4

(ch)3
T 4

c (18)
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4 The gravitational force law between two

electrons in superconductors

Using Beck and Mackey’s electromagnetic vacuum energy density in super-
conductors ρ∗, equ.(18), instead of the cosmological energy density ρvacΛ,
equ.(9), in the expression defining the coupling between gravitational and
electromagnetic forces between two electrons in vacuum, equ.(10), we obtain
this coupling in a superconducting environment:

αg

α
= α2

(ln3)2

(2π)1/2
k2

mmP c4
T 2

c (19)

Taking the geometric mean value between the Planck scale and the electron
scale, it is possible to define an intermediate energy scale at 7.9[GeV ]:

mi = (mmP )
1/2 (20)

substituting equ.(20) into equ.(19), we obtain:

αg

α
= α2

(ln3)2

(2π)1/2

(

Tc

Ti

)2

(21)

where Ti = mic
2/k ∼ 9 × 1020[K] is the temperature associated with the

intermediate energy scale defined from equ.(20)
Equ.(21) indicates that the coupling between gravitational forces and elec-

tromagnetic forces between two electrons in superconductors is weaker than
in vacuum, recovering its classical value at the temperature, Tc ∼ 87.5[K]
(BSCCO’s critical transition temperature).

Assuming that the electromagnetic fine structure constant does not change,
with respect to its classical value. We can only explain a deviation from the
classical gravito-electromagnetic coupling in terms of a suitable scale trans-
formation: The gravitational constant G = h̄c/m2

P formally becomes much
weaker in a superconductor than in vacuum if mP is replaced by a higher
value mPeff . Thus from equ.(21) we deduce the effective gravitational con-
stant between two electrons in a given superconducting material:

Geff =
h̄c

m2
Peff

=
α2

4πǫ0

(ln3)2

(2π)1/2

(

e

m

)2(

Tc

Ti

)2

(22)

Substituting this expression in Newton’s law of gravitation, and applying
it to a system of two electrons separated by a distance r inside a superconduc-
tor. We conclude that their mutual gravitational attraction force, FSC , will
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be smaller than the gravitational force, F0, that the same electrons, separated
by the same distance, will exert on each other when they are in vacuum and
the classical value of the gravitational constant G0 = 6.67×10−11[Nm2/Kg2]
holds:

FSC

F0

=
Geff

G0

=
α2

4πǫ0G0

(ln3)2

(2π)1/2

(

e

m

)2(

Tc

Ti

)2

(23)

For the case of two electrons located in superconducting Niobium, for
which Tc = 9.25[K], the numerical estimation of equ.(23) is:

FSC

F0

∼ 10−2 (24)

This prediction is difficult to test experimentally, since the electron’s mass
only contributes marginally to the overall mass of atoms and of macroscopic
bodies: (melectron/mproton = 5.4× 10−4).

At this point one remark is in order: Our theoretical derivation presented
in this paper strictly speaking holds only for electrons, because equ.(1) is
only valid for electrons (in that expression m must always be the electron
mass). Therefore equ.(23) should not apply to the other particles (protons,
atoms) the superconductor consists of. This ultimately could be understood
as being a direct consequence of the spontaneous breaking of the principle of
general covariance in superconductors [15].

5 conclusion

From the Eddington-Dirac Large number conjecture, equ.(1), together with
Beck and Mackey electromagnetic model for dark energy density in super-
conductors, equ.(18), it is shown that the gravitational force between two
electrons in superconductors should deviate from the classical law of gravi-
tational attraction between two electrons in vacuum, according to equ.(23).
This effect is estimated difficult to be detected within current experimental
capabilities.
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