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Abstract

We propose a new class ofp-brane models describing intrinsicallylight-
like branes in any world-volume dimensions. Properties of the dynamics
of these lightlikep-branes in various gravitational backgrounds of interest
in the context of braneworlds are briefly described. Codimenion two (and
more) lightlike braneworlds perform in their ground statesnon-trivial mo-
tions in the extra dimensions in sharp contrast to standard (Nambu-Goto)
braneworlds.

1 Introduction

Lightlike branes (LL-branes, for short) are of particular interest in general rel-
ativity primarily due to their role: (i) in describing impulsive lightlike signals
arising in cataclysmic astrophysical events [1]; (ii) as basic ingredients in the so
called “membrane paradigm” theory [2] of black hole physics; (iii) in the context
of the thin-wall description of domain walls coupled to gravity [3,4].

More recently,LL-branesbecame significant also in the context of modern
non-perturbative string theory, in particular, as the so called H-branes describ-
ing quantum horizons (black hole and cosmological) [5], as well appearing as
Penrose limits of baryonicD(=Dirichlet) branes [6].

In the original papers [3,4]LL-branesin the context of gravity and cosmol-
ogy have been extensively studied from a phenomenological point of view, i.e.,
by introducing them without specifying the Lagrangian dynamics from which
they may originate1. On the other hand, we have proposed in a series of re-
cent papers [8] a new class of concise Lagrangian actions, among them –Weyl-
conformally invariantones, providing a derivation from first principles of the

1In a recent paper [7] brane actions in terms of their pertinent extrinsic geometry have been
proposed which generically describe non-lightlike branes, whereas the lightlike branes are treated as
a limiting case.
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LL-brane dynamics. The latterLL-brane actions were, however, limited to
(p+ 1) =oddworld-volume dimensions.

In Section 2 of the present paper we extend our previous construction to the
case ofLL-braneactions forarbitrary world-volume dimensions. In Section 4
we discuss the properties ofLL-brane dynamics in generic static gravitational
backgrounds, in particular, the case with two extra dimensions from the point
of view of “braneworld” scenarios [9] (for a review, see [10]). Unlike conven-
tional braneworlds, where the underlying branes are of Nambu-Goto type (i.e.,
describing massive brane modes) and in their ground state they position them-
selves at some fixed point in the extra dimensions of the bulk space-time, our
lightlike braneworlds perform in the ground state non-trivial motions in the ex-
tra dimensions – planar circular, spiral winding,etc. depending on the topology
of the extra dimensions. Finally, in the outlook section we briefly outline the
treatment of the special case of codimension one lightlike branes which play an
important role in the context of black hole physics. Also we comment on the role
of lightlike branes in Kaluza-Klein scenarios with singular bulk metrics [11].

2 Generalized Gauge Field Description of Lightlike Branes

The main ingredients of our construction ofLL-braneactions for arbitrary(p+1)
world-volume dimensions are:

• Alternative non-Riemannian integration measure densityΦ(ϕ) (volume
form) on thep-brane world-volume manifold:

Φ(ϕ) ≡ 1

(p+ 1)!
εI1...Ip+1

εa1...ap+1∂a1
ϕI1 . . . ∂ap+1

ϕIp+1 (1)

instead of the usual
√−γ. Here

{

ϕI
}p+1

I=1
are auxiliary world-volume

scalar fields;γab (a, b = 0, 1, . . ., p) denotes the intrinsic Riemannian met-
ric on the world-volume, andγ = det ‖γab‖.

• Auxiliary (p− 1)-rank antisymmetric tensor gauge fieldAa1...ap−1
on the

world-volume withp-rank field-strength and its dual:

Fa1...ap
= p∂[a1

Aa2...ap] , F ∗a =
1

p!

εaa1...ap

√−γ
Fa1...ap

. (2)

Note the simple identity:

Fa1...ap−1bF
∗b = 0 , (3)

which will play a crucial role in what follows, and let us alsointroduce the short-
hand notation:

F 2 ≡ Fa1...ap
Fb1...bpγ

a1b1 . . . γapbp . (4)

We now propose the following reparametrization invariant action describing
intrinsically lightlikep-branes for any world-volume dimension(p+ 1):

S = −
∫

dp+1σΦ(ϕ)
[1

2
γab∂aX

µ∂bX
νGµν(X)− L

(

F 2
)

]

(5)



Guendelman, Kaganovich, Nissimov, Pacheva 3

using the objects (1) and (2), whereL
(

F 2
)

is arbitrary function ofF 2 (4) and
Gµν(X) denotes the Riemannian metric of the bulk space-time.

Remark. For the special choiceL
(

F 2
)

=
(

F 2
)1/p

the action (5) becomes
manifestly invariant underWeyl (conformal) symmetry: γab −→ γ′

ab = ρ γab,

ϕi −→ ϕ′ i = ϕ′ i(ϕ) with Jacobiandet
∥

∥

∥

∂ϕ′ i

∂ϕj

∥

∥

∥
= ρ.

Rewriting the action (5) in the following equivalent form:

S = −
∫

dp+1σ χ
√
−γ

[1

2
γab∂aX

µ∂bX
νGµν(X)− L

(

F 2
)

]

, χ ≡ Φ(ϕ)√−γ
(6)

we see that the composite fieldχ plays the role of a dynamical (variable) brane
tension.

The equations of motion obtained from (5) w.r.t. measure-building auxiliary
scalarsϕI andγab read, respectively:

1

2
γcd (∂cX∂dX)− L

(

F 2
)

= M
(

= integration const
)

, (7)

1

2
(∂aX∂bX)− pL′

(

F 2
)

Faa1...ap−1
γa1b1 . . . γap−1bp−1Fbb1...bp−1

= 0 , (8)

where we have introduced short-hand notation for the induced metric:

(∂aX∂bX) ≡ ∂aX
µ∂bX

νGµν . (9)

Let us note that Eqs.(8) can be viewed asp-brane analogues of the string Vira-
soro constraints.

Eqs.(7)–(8) have the following profound consequences. First, taking the
trace in (8) and comparing with (7) implies the following crucial relation for
the Lagrangian functionL

(

F 2
)

:

L
(

F 2
)

− pF 2L′
(

F 2
)

+M = 0 , (10)

which determinesF 2 on-shell as certain function of the integration constantM ,
i.e.

F 2 = F 2(M) = const . (11)

The second and most important implication of Eqs.(8) is due to the identity
(3) which implies that the induced metric (9) on the world-volume of thep-brane
model (5) issingular(as opposed to the ordinary Nambu-Goto brane):

(∂aX∂bX)F ∗b = 0 , i.e. (∂FX∂FX) = 0 , (∂⊥X∂FX) = 0 , (12)

where∂F ≡ F ∗a∂a and∂⊥ are derivatives along the tangent vectors in the
complement ofF ∗a.

Thus, we arrive at the following important conclusion: every point on the
surface of thep-brane (5) moves with the speed of light in a time-evolution
along the vector-fieldF ∗a. Therefore, we will name (5) by the acronymLL-
brane(Lightlike-brane) model.
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Before proceeding let us point out that we can add to theLL-brane action
(5) natural couplings to bulk MaxwellAµ and Kalb-RamondAµ1...µp+1

gauge
fields:

S = −
∫

dp+1σΦ(ϕ)
[1

2
γab∂aX

µ∂bX
νGµν(X)− L

(

F 2
)

]

−q

∫

dp+1σεab1...bpFb1...bp∂aX
µAµ(X)

− β

(p+ 1)!

∫

dp+1σεa1...ap+1∂a1
Xµ1 . . . ∂ap+1

Xµp+1Aµ1...µp+1
. (13)

The additional coupling terms to the bulk fields do not affectEqs.(7) and (8),
so that the conclusions about on-shell constancy ofF 2 (11) and the lightlike
nature (12) of thep-branes under consideration remain unchanged. The second
Chern-Simmons-like term in (13) is a special case of a class of Chern-Simmons-
like couplings of extended objects to external electromagnetic fields proposed in
ref. [12].

The Kalb-Ramond gauge field has special significance inD = p + 2-
dimensional bulk space-time. The single independent componentF of its field-
strength:

Fµ1...µD
= D∂[µ1

Aµ2...µD ] = F
√
−Gεµ1...µD

(14)

when coupled to gravity produces a dynamical (positive) cosmological constant
(cf. ref. [13] forD=4; recall, hereD=p+ 2):

K =
8πGN

p(p+ 1)
F2 . (15)

It remains to write down the equations of motion w.r.t. auxiliary world-
volume gauge fieldAa1...ap−1

andXµ produced by the action (13):

∂[a
(

F ∗cγb]c χL
′(F 2)

)

+
q

4
∂aX

µ∂bX
νFµν(X) = 0 ; (16)

∂a
(

χ
√−γγab∂bX

µ
)

+ χ
√−γγab∂aX

ν∂bX
λΓµ

νλ(X)

−qεab1...bpFb1...bp∂aX
νFλν(X)Gλµ(X)

− β

(p+ 1)!
εa1...ap+1∂a1

Xµ1 . . . ∂ap+1
Xµp+1Fλµ1...µp+1

(X)Gλµ(X) = 0 . (17)

Hereχ is the dynamical brane tension as in (6),

Fµν = ∂µAν − ∂νAµ , Fλµ1...µp+1
= (p+ 2)∂[λAµ1...µp+1] (18)

are the corresponding gauge field-strengths,

Γµ
νλ =

1

2
Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) (19)

is the Christoffel connection for the external metric, andL′(F 2) denotes deriva-
tive ofL(F 2) w.r.t. the argumentF 2.
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3 Gauge-Fixed Equations of Motion

Invariance under world-volume reparametrizations allowsto introduce the stan-
dard synchronous gauge-fixing conditions:

γ0i = 0 (i = 1, . . . , p)) , γ00 = −1 . (20)

In what follows we will also use a natural ansatz for the auxiliary world-volume
gauge field-strength:

F ∗i = 0 (i = 1, . . ., p) , i.e. F0i1...ip−1
= 0 , (21)

the only non-zero component of the dual strength being:

F ∗0 =
1

p!

εi1...ip
√

γ(p)
Fi1...ip , (22)

γ(p) ≡ det ‖γij‖ (i, j = 1, . . . , p) , F 2 = p!
(

F ∗0
)2

= const .

According to (12) the meaning of the ansatz (21) is that the lightlike direction
F ∗a∂a ≃ ∂0 ≡ ∂τ , i.e., it coincides with the brane proper-time direction. Bianc-
chi identity∂aF ∗a = 0 together with (21)–(22) implies:

∂0Fi1...ip = 0 −→ ∂0
√

γ(p) = 0 . (23)

Using (20) and (21) the equations of motion (8), (16) and (17)acquire the
form, respectively:

(∂0X ∂0X) = 0 , (∂0X ∂iX) = 0 , (∂iX ∂jX)− 2a1(M) γij = 0
(24)

(Virasoro-like constraints), where the constant:

a1(M) ≡ F 2L′(F 2)
∣

∣

F 2=F 2(M)
(25)

(it must be strictly positive);

∂iχ+
q

a2(M)
∂0X

µ∂iX
νFµν = 0 , ∂iX

µ∂jX
νFµν = 0 , (26)

with
a2(M) ≡ 2F ∗0L′(F 2)

∣

∣

F 2=F 2(M)
= const ; (27)

−
√

γ(p)∂0 (χ∂0X
µ) + ∂i

(

χ
√

γ(p)γij∂jX
µ
)

+χ
√

γ(p)
(

−∂0X
ν∂0X

λ + γkl∂kX
ν∂lX

λ
)

Γµ
νλ − q p!F ∗0

√

γ(p)∂0X
νFλνG

λµ

− β

(p+ 1)!
εa1...ap+1∂a1

Xµ1 . . . ∂ap+1
Xµp+1Fλµ1...µp+1

Gλµ = 0 . (28)
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4 Lightlike Brane Dynamics in Static Gravitational Backgrounds

Let us split the bulk space-time coordinates as:

(Xµ) = (xa, yα) ≡
(

x0, xi, yα
)

(29)

a = 0, 1, . . . , p , i = 1, . . . , p , α = 1, . . . , D − (p+ 1)

and consider static (x0-independent) background metricsGµν of the form:

ds2 = −A(y)(dx0)2 + C(y)gij(~x)dx
idxj +Bαβ(y)dy

αdyβ . (30)

Here we will discuss the simplest non-trivial ansatz for theLL-brane em-
bedding coordinates:

Xa ≡ xa = σa , Xp+α ≡ yα = yα(τ) , τ ≡ σ0 . (31)

With (30) and (31), the constraint Eqs.(24) yield:

−A(y(τ)) +Bαβ(y(τ))
.
y
α .
y
β
= 0 , C(y(τ))gij − 2a1(M)γij = 0 , (32)

where
.
y
α≡ d

dτ y
α. Second Eq.(32) together with the last relation in (23) implies:

d

dτ
C(y(τ)) =

.
y
α ∂

∂yα
C

∣

∣

y=y(τ)
= 0 . (33)

The second-order Eqs.(28) in the absence of couplings to bulk Maxwell and
Kalb-Ramond fields (which will be case we will consider in thepresent section)
yield accordingly:

∂τχ+
χ

A(y)

.
y
β ∂

∂yβ
A(y)

∣

∣

y=y(τ)
= 0 , (34)

..
y
α
+

.
y
β .
y
γ
Γα
βγ +Bαβ

(

p a1(M)

C(y)

∂

∂yβ
C(y) +

1

2

∂

∂yβ
A(y)

)

∣

∣

y=y(τ)

−
.
y
α

A(y)

.
y
β ∂

∂yβ
A(y)

∣

∣

y=y(τ)
= 0 . (35)

whereΓα
βγ is the Christoffel connection for the metricBαβ in the extra dimen-

sions (cf. (30)).
Here we will be interested in the case of constant brane tension:

∂τχ = 0 →
.
y
α ∂

∂yα
A

∣

∣

y=y(τ)
= 0 from Eq.(34) . (36)

Thus we arrive at the following compatible system of equations describing a
nontrivial motion of theLL-branein the extra dimensions:

.
y
α ∂

∂yα
A

∣

∣

y=y(τ)
= 0 ,

.
y
α ∂

∂yα
C

∣

∣

y=y(τ)
= 0 , (37)

−A(y(τ)) +Bαβ(y(τ))
.
y
α .
y
β
= 0 , (38)

..
y
α
+

.
y
β .
y
γ
Γα
βγ +Bαβ

(

p a1(M)

C(y)

∂

∂yβ
C(y) +

1

2

∂

∂yβ
A(y)

)

∣

∣

y=y(τ)
= 0 (39)
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4.1 Example 1: Two Flat Extra Dimensions

In this case:

yα = (ρ, φ) , Bαβ(y)dy
αdyβ = dρ2 + ρ2dφ2 ; (40)

A = A(ρ) , C = C(ρ) ;
.
ρ= 0 , i.e. ρ = ρ0 = const . (41)

Eqs.(38) and (39) yield correspondingly:

−A(ρ0) + ρ20
.

φ
2
= 0 ; (42)

−ρ0
.

φ
2
+

(

p a1(M)

C(ρ)
∂ρC +

1

2
∂ρA)

)

∣

∣

ρ=ρ0
= 0 ,

..

φ= 0 . (43)

The last Eq.(43) implies:
φ(τ) = ωτ , (44)

which upon substituting into (42)–(43) gives:

ω2 =
A(ρ0)

ρ20
, A(ρ0) = ρ0

(

p a1(M)

C(ρ)
∂ρC +

1

2
∂ρA)

)

∣

∣

ρ=ρ0
. (45)

Thus, we find that theLL-brane performs a planar circular motion in the flat
extra dimensions whose radiusρ0 and angular velocityω are determined from
(45). This property of theLL-braneshas to be contrasted with the usual case
of Nambu-Goto-type braneworlds which (in the ground state)occupy a fixed
position in the extra dimensions.

4.2 Example 2: Spherical Extra Dimensions

In this case:

yα = (θ, φ) , Bαβ(y)dy
αdyβ = dθ2 + sin2(θ)dφ2 ; (46)

A = A(θ) , C = C(θ) ;
.

θ= 0 , i.e. θ = θ0 = const . (47)

Eqs.(38) and (39) yield correspondingly:

−A(θ0) + sin2(θ0)
.

φ
2
= 0 ; (48)

− sin(θ0) cos(θ0)
.

φ
2
+

(

p a1(M)

C(θ)
∂θC +

1

2
∂θA

)

∣

∣

θ=θ0
= 0 ,

..

φ= 0 . (49)

Therefore, once again we obtain:

φ(τ) = ωτ , (50)

which upon substituting into (48)–(49) gives:

ω2 =
A(θ0)

sin2(θ0)
, A(θ0) = tan(θ0)

(

p a1(M)

C(θ)
∂θC +

1

2
∂θA

)

∣

∣

θ=θ0
.

(51)
As in the case of flat extra dimensions, Eqs.(51) determine the positionθ0 of the
circular orbit of theLL-braneand its angular velocityω.
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4.3 Example 3: Toroidal Extra Dimensions

In this case:

yα = (θ, φ) , 0 ≤ θ, φ ≤ 2π , Bαβ(y)dy
αdyβ = dθ2 + a2dφ2 ; (52)

Eqs.(37)–(39) assume the form:
( .

θ ∂θA+
.

φ ∂φA
)

∣

∣

θ=θ(τ), φ=φ(τ)
= 0 ,

( .

θ ∂θC+
.

φ ∂φC
)

∣

∣

θ=θ(τ), φ=φ(τ)
= 0 ; (53)

−A
∣

∣

θ=θ(τ), φ=φ(τ)
+

.

θ
2
+a2

.

φ
2
= 0 ; (54)

..

θ +

(

p a1(M)

C
∂θC +

1

2
∂θA

)

∣

∣

θ=θ(τ), φ=φ(τ)
= 0 ,

..

φ +

(

p a1(M)

C
∂φC +

1

2
∂φA

)

∣

∣

θ=θ(τ), φ=φ(τ)
= 0 . (55)

Eqs.(53) can be solved by takingA(θ, φ) andC(θ, φ) as functions of only one
combinationξ(θ, φ) such that:

A = A
(

ξ(θ, φ)
)

, C = C
(

ξ(θ, φ)
)

(56)

d

dξ
A

∣

∣

θ=θ(τ), φ=φ(τ)
= 0 ,

d

dξ
C

∣

∣

θ=θ(τ), φ=φ(τ)
= 0 . (57)

Taking into account (57), Eqs.(55) imply:

..

θ= 0 ,
..

φ= 0 , i.e. θ(τ) = ω1τ , φ(τ) = ω2τ . (58)

Furthermore, taking into account the periodicity ofA andC w.r.t. (θ, φ) we find:

ξ(θ, φ) = θ −Nφ , ω1 = Nω2 , (59)

whereN is abritrary positive integer. In other words, from (56)–(57) the admiss-
able form of the background metric must be of the form:

A = A(θ −Nφ) , C = C(θ −Nφ) , A′(0) = 0 , C′(0) = 0 , (60)

whereas Eq.(54) determines the angular frequenciesω1,2 in (58):

ω2
1 =

A(0)

1 + a2/N2
, ω2 =

ω1

N
. (61)

A particular choice forA (and similarly forC) respecting conditions (57) is:

A = A0 sin
2
(θ −Nφ

2

)

+A1 , A0,1 = positive const . (62)

Thus, we conclude that theLL-braneperforms a spiral motion in the toroidal
extra dimensions with winding frequences as in (61).
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5 Outlook

In the present paper we presented a systematic Lagrangian formulation of
lightlike p-branes in arbitrary(p + 1) world-volume dimensions allowing in
addition for natural (gauge-invariant) couplings to bulk electromagnetic and
Kalb-Ramond gauge fields. In the context of “brane-world scenarios” light-
like braneworlds (of codimension two or more) in their ground state per-
form non-trivial motions in the extra dimensions unlike ordinary Nambu-Goto
braneworlds which position themselves at certain fixed points in the extra di-
mensions.

The special case of codimension oneLL-branesneeds separate study which
is relegated to a subsequent paper. As already discussed in refs. [8] for light-
like membranes (p = 2) in D = 4 bulk space-time, theLL-brane dynamics
dictates that the bulk space-time must possess an event horizon which is auto-
matically occupied by theLL-brane (an explicit dynamical realization of the
“membrane paradigm” in black hole physics [2]). Extending our treatment in
refs. [8], we will study the important issue of self-consistent solutions for bulk
gravity-matter systems (e.g., Einstein-Maxwell-type) coupled to lightlike branes
where the latter serves as a source for gravity, electromagnetism, dynamically
produces space-varying cosmological constant and triggers non-trivial matching
of two different space-time geometries across common eventhorizon spanned
by the lightlike brane itself.

Let us mention the observation in ref. [14], that large extradimensions could
be rendered undetectable (due to the zero eigenvalue of the induced metric) if
our world is considered as a lightlike brane moving inD > 4 bulk space – pre-
cisely the brane-world scenario obtained in the present paper from the consistent
unified dynamical (Lagrangian) description of lightlike branes

To stress again, in our formalism we consider theintrinsic metric γab on
the world-volume of thelightlike brane to be the metric that defines the geom-
etry experienced by an observer confined to the brane. This isin contrast to
the induced metric (9), which as a result of lightlike natureof the brane is nec-
essarilysingular, having spacelike components and a zero eigenvalue,i.e. a
lightlike instead of timelike one. Nevertheless, it is possible to ascribe a phys-
ical role to singular induced metrics provided they possessan additional time-
like (diagonal) component. The latter can be achieved by consideringLL-brane
with (p+ 2)-dimensional world-volume (cf. (5)) embedded in aD-dimensional
(D > p + 2) bulk space withtwo timelike dimensions (Gµν having signature
(−,−,+, . . . ,+)). Repeating the steps in Section 2 we will get an induced
(p+2)× (p+2) metric (9) with signature(0,−,+, . . . ,+), i.e., with one light-
like, one timelike andp spacelike dimensions. Then, applying the formalism
for degenerate metrics proposed in ref. [11], one can employthe resulting in-
duced metric as a starting point for construction of a Kaluza-Klein model with
the pertinent lightlike brane (with(p + 2)-dimensional world-volume) as a to-
tal Kaluza-Klein space with naturally unobservable extra dimension (the first
lightlike one) from the point of view of the “normal”(p + 1) world-volume di-
mensions. Also, let us note that the use of an embedding space-time with two
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timelike coordinates has an advantage if we want to obtain a Lorentz-invariant
ground state, since there is the possibility of having one additional time, not
involved in the motion of the lightlike brane.
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