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Abstract

We propose a new class pfbrane models describing intrinsicallight-

like branes in any world-volume dimensions. Properties of theadyics

of these lightlikep-branes in various gravitational backgrounds of interest
in the context of braneworlds are briefly described. Codioretwo (and
more) lightlike braneworlds perform in their ground states-trivial mo-
tions in the extra dimensions in sharp contrast to standdagnpu-Goto)
braneworlds.

1 Introduction

Lightlike branes [L-branes for short) are of particular interest in general rel-
ativity primarily due to their role: (i) in describing impsilze lightlike signals
arising in cataclysmic astrophysical events [1]; (ii) asibéngredients in the so
called “membrane paradigm” theory [2] of black hole physiig in the context

of the thin-wall description of domain walls coupled to gtay3, 4].

More recently,LL-braneshecame significant also in the context of modern
non-perturbative string theory, in particular, as the dtedaf -branes describ-
ing quantum horizons (black hole and cosmological) [5], @l appearing as
Penrose limits of baryoni®(=Dirichlet) branes [6].

In the original papers [3, 4]L-branesin the context of gravity and cosmol-
ogy have been extensively studied from a phenomenologiiat pf view, i.e.,
by introducing them without specifying the Lagrangian dymes from which
they may originate On the other hand, we have proposed in a series of re-
cent papers [8] a new class of concise Lagrangian actionsngthem \Weyl-
conformally invariantones, providing a derivation from first principles of the

1in a recent paper [7] brane actions in terms of their pertimatrinsic geometry have been
proposed which generically describe non-lightlike bramésereas the lightlike branes are treated as
a limiting case.
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2 Lightlike Braneworlds

LL-brane dynamics. The lattet.L-brane actions were, however, limited to
(p + 1) =oddworld-volume dimensions.

In Section 2 of the present paper we extend our previous icanitn to the
case ofLL-braneactions forarbitrary world-volume dimensions. In Section 4
we discuss the properties bt -branedynamics in generic static gravitational
backgrounds, in particular, the case with two extra dinmmsirom the point
of view of “braneworld” scenarios [9] (for a review, see [LOUnlike conven-
tional braneworlds, where the underlying branes are of Nefbto type [e.
describing massive brane modes) and in their ground stejeptbsition them-
selves at some fixed point in the extra dimensions of the p#ice-time, our
lightlike braneworlds perform in the ground state noni#divnotions in the ex-
tra dimensions — planar circular, spiral windirgge. depending on the topology
of the extra dimensions. Finally, in the outlook section wiefty outline the
treatment of the special case of codimension one lightlikeés which play an
important role in the context of black hole physics. Also wexent on the role
of lightlike branes in Kaluza-Klein scenarios with singutallk metrics [11].

2 Generalized Gauge Field Description of Lightlike Branes

The main ingredients of our constructionldf-braneactions for arbitraryp+1)
world-volume dimensions are:

e Alternative non-Riemannian integration measure dendity) (volume
form) on thep-brane world-volume manifold:

1 a a
(I)(SO) = mglln~1p+lg e p“&u 9011 v aap+1(plp+] (1)

instead_ of the usual/—~. Here{gpf ?: are_au_xiligry _vvorld-vplume
scalar fieldsy, (a,b = 0, 1, .. ., p) denotes the intrinsic Riemannian met-

ric on the world-volume, and = det ||vqs]|-
e Auxiliary (p — 1)-rank antisymmetric tensor gauge field, .. ,,_, onthe
world-volume withp-rank field-strength and its dual:
1 Eaal...ap
Fal...ap = pa[mAag...ap] , F = EﬁFm...aP . (2)
Note the simple identity:
Fay.ap o F*" =0, ®)

which will play a crucial role in what follows, and let us alsdroduce the short-
hand notation:
F2=Fay 0 Fyy 0,70 .yt 4)

We now propose the following reparametrization invarianican describing
intrinsically lightlike p-branes for any world-volume dimensi¢mn+ 1):

S=- [@Hoa() 310X X Gu(X) - L(FY)] )
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using the objects (1) and (2), whekd F'2) is arbitrary function of 2 (4) and
G,.v(X) denotes the Riemannian metric of the bulk space-time.

Remark. For the special choicé (F?) = (FQ)I/’) the action (5) becomes
manifestly invariant undeyeyl (conformal) symmetryy,, — ., = P Vab.
O — 't = () with JacobiardetH %“g;" = p.
Rewriting the action (5) in the following equivalent form:

P(p

~

S = —/d”“aX\/—W[%WabaaX“BbX"GH,,(X) — L(Fz)} , X=

CE

we see that the composite fieldplays the role of a dynamical (variable) brane
tension.

The equations of motion obtained from (5) w.r.t. measuréding auxiliary
scalarsp! andy? read, respectively:

%VCd (0:X04X) — L(FQ) =M (: integration const) , (1)

1
5 (0aX0,X) — pL'(F?) Faay...ap Y™ ooy Fyyy b, =0, (8)
where we have introduced short-hand notation for the inducetric:

(0. XOpX) = 0, X O X G 9)

Let us note that Egs.(8) can be viewedpasrane analogues of the string Vira-
soro constraints.

Eqgs.(7)—(8) have the following profound consequencesstFaking the
trace in (8) and comparing with (7) implies the following cial relation for
the Lagrangian functio (F2):

L(F?)—pF?’L'(F*)+ M =0, (10)

which determineg™ on-shell as certain function of the integration constaht
ie.
F? = F?(M) = const . (11)

The second and most important implication of Egs.(8) is dubé identity
(3) which implies that the induced metric (9) on the worldwoe of thep-brane
model (5) issingular(as opposed to the ordinary Nambu-Goto brane):

(0 XBX)F** =0 , ie (0pX0pX)=0, (0.X0rX)=0, (12)

wheredr = F*%0, andd, are derivatives along the tangent vectors in the
complement ofF™*¢,

Thus, we arrive at the following important conclusion: gvpoint on the
surface of thep-brane (5) moves with the speed of light in a time-evolution
along the vector-field™**. Therefore, we will name (5) by the acronylm-
brane(Lightlike-brane) model.
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Before proceeding let us point out that we can add tolthéraneaction
(5) natural couplings to bulk Maxwell,, and Kalb-Ramond4,,, .. ..., gauge
fields:

S=— /dP“a B(y) Ey“baaX“ﬁbX”GW(X) - L(Fz)}

—q/dp+10'€ab1"'prb1___bpaaXHAH(X)

s
(p+1)!

The additional coupling terms to the bulk fields do not affeégs.(7) and (8),
so that the conclusions about on-shell constancy®f(11) and the lightlike
nature (12) of the-branes under consideration remain unchanged. The second
Chern-Simmons-like term in (13) is a special case of a cla€hern-Simmons-
like couplings of extended objects to external electronetigriields proposed in
ref. [12].

The Kalb-Ramond gauge field has special significancdin= p + 2-
dimensional bulk space-time. The single independent compio- of its field-
strength:

/ AP oe® g, XML D, XA

*Yap+1

(13)

H1---Hp+1 *

Furenp = DOy Apy i) = FV=Gepy o pp (14)

when coupled to gravity produces a dynamical (positivejremegical constant
(cf. ref. [13] for D =4; recall, hereD =p + 2):
K = STON g (15)
pp+1)
It remains to write down the equations of motion w.r.t. aiaxil world-
volume gauge fieldl,, . ., , andX* produced by the action (13):

P (P X (F2) + GO X Fu(X) =05 (16)

Aa (V=170 XH) + X/ =770 X" 0 X TH, (X)
—qe™ P By 4, 00 XY Fau (X)GM(X)

__ B eapag, xm By X F e (X)GM(X) = 0. (17)

(p+1)!
Herey is the dynamical brane tension as in (6),

]:Mu = BMAV - BIJAN ) ]:>\M1---Mp+1 = (p + 2)8[)\Ap1...pp+1] (18)
are the corresponding gauge field-strengths,
Tl = G (.G + 3Gy — uGi) (19)

is the Christoffel connection for the external metric, di¢F'?) denotes deriva-
tive of L(F?) w.r.t. the argumenk™.
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3 Gauge-Fixed Equations of Motion

Invariance under world-volume reparametrizations alltmismtroduce the stan-
dard synchronous gauge-fixing conditions:

W=0(Gi=1,...,p) , P =-1. (20)

In what follows we will also use a natural ansatz for the daryiworld-volume
gauge field-strength:

F*=0 (i=1,....,p) , ie Fy..i,,=0, (21)
the only non-zero component of the dual strength being:

o _ L
B p' A /'y(p)

P =det ||yl (6,5 =1,...,p) , F2:p!(F*O)2:const.

Fi iy s (22)

According to (12) the meaning of the ansatz (21) is that thhetlike direction
F**9, ~ 9y = 0, i.e, it coincides with the brane proper-time direction. Bianc-
chi identity 9, F** = 0 together with (21)—(22) implies:

80Fi1___1'p =0 — (90\/ ,Y(p) =0. (23)

Using (20) and (21) the equations of motion (8), (16) and @cfuire the
form, respectively:

(60X 60X) =0 5 (60X (91X) =0 s (61X an) — 2(11(M) Yij = 0

(Virasoro-like constraints), where the constant: 24
a1 (M) = F?L'(F?) | po_po o) (25)
(it must be strictly positive);
Bix + ﬁa}x#@x" w=0 . 0X'O;X"F, =0,  (26)
with
ax(M) = 2F*°L/(F?) ’F2:F2(M): const ; 27

—V P (xoX") + 0; (x v“’)v“an“)
XVAP) (=06 X" 0 X + MO X O XA TY, — qplF*0\/y®) 0 X" Fy, GM

B

A
TS GM=0. (28)

al...a "
eI 9y XM Dy XP P
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4 Lightlike Brane Dynamics in Static Gravitational Backgrounds

Let us split the bulk space-time coordinates as:
(XH) = (2% y*) = (2% 2", y") (29)
a=0,1,...,p, t=1,....,p , a=1,....D—(p+1)
and consider staticz{-independent) background metri6s,, of the form:
s? = —A(y)(de°)® + C(y)gij(D)dx'da’ + Bag(y)dy*dy” . (30)

Here we will discuss the simplest non-trivial ansatz for thebrane em-

bedding coordinates:
X*=z=0" XPHe = g — 4%(7) r=0". (31)

) )

With (30) and (31), the constraint Egs.(24) yield:

—A(Y(r) + Baply(r) 57 =0 . Cy(1)gi; — 2a1(M)7; =0, (32)

wherey = —y . Second Eq.(32) together with the last relation in (23) iegl
a0
dTO( y(7)) =Y a—yac lymy =0 (33)

The second-order Egs.(28) in the absence of couplings koNbakwell and
Kalb-Ramond fields (which will be case we will consider in firesent section)
yield accordingly:

X 80

X+ Ty ¥ AW hmin= 00 B9
e By o af pal(M) 6 1 6
Y +yy Ty +B ( am WC(yHM AW ) |yeyir)
TR
25} 6—yBA(y) |y =0 (35)

WherefgV is the Christoffel connection for the metris,, s in the extra dimen-
sions (cf. (30)).
Here we will be interested in the case of constant branedansi

o 0
o-x=0 —= vy @A ‘y:y(r): 0 from Eq.(34) . (36)

Thus we arrive at the following compatible system of equegidescribing a
nontrivial motion of thel L-branein the extra dimensions:

‘“aAy =0 , aacy =0, @37)
~A(y()) + Bas(y(r) §"9"= 0, (38)
i+ 9757 19+ Bo? <pcg((y1\)4) (;Zﬂ (v) %%A(y)> ly—yim=0 (39)
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4.1 Example 1: Two Flat Extra Dimensions

In this case:
y* = (p,¢) , Baply)dy®dy® = dp® + p*d¢?® ; (40)
A=A(p) , C=C(p) ; p=0, ie p=py=const. (41)
Egs.(38) and (39) yield correspondingly:
-2
~A(po) +p5 ¢ =0 (42)
.2 pai (M) 1 B o
—po ¢ + ( an) 9,C + 5a,,A)) lepy=0 , ¢=0. (43)
The last Eq.(43) implies:
o(1) = wr (44)
which upon substituting into (42)—(43) gives:
Alpo) pai(M) 1
2 _ — -
=2 ) = ( CoRaCESN) |,,  @)

Thus, we find that thé.L-brane performs a planar circular motion in the flat
extra dimensions whose radigs and angular velocity are determined from
(45). This property of thd.L-braneshas to be contrasted with the usual case
of Nambu-Goto-type braneworlds which (in the ground stawupy a fixed
position in the extra dimensions.

4.2 Example 2: Spherical Extra Dimensions

In this case:
Y =(0,6) , DBap(y)dy“dy’ = do* +sin®(0)d¢” ; (46)
A=AB) , C=C®) ; #=0, ie 0 =0y =const. 47)

Egs.(38) and (39) yield correspondingly:

—A(f) +sin®(80) ¢ = 0; (48)

_ sin(o) cos(6o) & + (p‘g((;f) dC + %&,A) lgg,=0 » ¢=0. (49)
Therefore, once again we obtain:
o(1) = wr, (50)
which upon substituting into (48)—(49) gives:
w? = S;igi?;i) . A(0) = tan(fy) (p‘g((é‘f) 96C + %BQA) oo (.51)

As in the case of flat extra dimensions, Eqgs.(51) determia@dsitiond, of the
circular orbit of theL L-braneand its angular velocity.
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4.3 Example 3: Toroidal Extra Dimensions

In this case:
y*=(0,¢) , 0<0,0<2r , Bap(y)dy®dy’ =db* + a’dé® ; (52)

Egs.(37)—(39) assume the form:

(989A+¢3¢A) lo=0(r), 6=0(1 = 0
(9 99C+ ¢ 8¢C) ’9 o(r =03 3)
Aoy gmptn) T8 026 =0 o4
0+ (palT(M)aeC + %5014) lo=or), 6=r)= 0
¢+ (palT()f%C + %%A) lo=o(r), 6= =0 - (53)

Egs.(53) can be solved by takifd, ) andC(6, ¢) as functions of only one
combinatioré (6, ¢) such that:

A=A(@0,9) . C=C(&0.9) (56)
d_gA lo=0r)6=0) =0 - 2’ lo=0(r). 6= = 0 ®7)

Taking into account (57), Egs.(55) imply:
=0, ¢=0 , ie O(r)=wiT , ¢(1) =war. (58)

Furthermore, taking into account the periodicitydandC w.r.t. (6, ¢) we find:
g(ead)):o_N(b ) QJlZNWQ, (59)

whereN is abritrary positive integer. In other words, from (56)#(&e admiss-
able form of the background metric must be of the form:

A=A0-N¢) , C=C@—-N¢) , A(0)=0, C'(0)=0, (60)
whereas Eq.(54) determines the angular frequengigsn (58):

2 A(0) w1

/- St 61
Wi 1+a2/N2 , W2 N ( )

A particular choice ford (and similarly forC') respecting conditions (57) is:

—N¢

A=A, sinQ(t9 ) + A1 , Ap, = positive const . (62)

Thus, we conclude that thd.-braneperforms a spiral motion in the toroidal
extra dimensions with winding frequences as in (61).
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5 Outlook

In the present paper we presented a systematic Lagrangianulfion of
lightlike p-branes in arbitraryp + 1) world-volume dimensions allowing in
addition for natural (gauge-invariant) couplings to bulkatromagnetic and
Kalb-Ramond gauge fields. In the context of “brane-worldnsec®s” light-
like braneworlds (of codimension two or more) in their grdustate per-
form non-trivial motions in the extra dimensions unlike ioaty Nambu-Goto
braneworlds which position themselves at certain fixed fgdim the extra di-
mensions.

The special case of codimension drlebranesneeds separate study which
is relegated to a subsequent paper. As already discussetkir{8] for light-
like membranesy( = 2) in D = 4 bulk space-time, thé.L-brane dynamics
dictates that the bulk space-time must possess an evembhawihich is auto-
matically occupied by thé L-brane (an explicit dynamical realization of the
“membrane paradigm” in black hole physics [2]). Extending treatment in
refs. [8], we will study the important issue of self-consigt solutions for bulk
gravity-matter systems(g, Einstein-Maxwell-type) coupled to lightlike branes
where the latter serves as a source for gravity, electroptegn, dynamically
produces space-varying cosmological constant and tgggmr-trivial matching
of two different space-time geometries across common déwerizon spanned
by the lightlike brane itself.

Let us mention the observation in ref. [14], that large edtraensions could
be rendered undetectable (due to the zero eigenvalue ofittueéd metric) if
our world is considered as a lightlike brane movingirn> 4 bulk space — pre-
cisely the brane-world scenario obtained in the presergifapm the consistent
unified dynamical (Lagrangian) description of lightlikeahes

To stress again, in our formalism we consider thinsic metric v,;, on
the world-volume of thaightlike brane to be the metric that defines the geom-
etry experienced by an observer confined to the brane. Thisdentrast to
the induced metric (9), which as a result of lightlike nataféhe brane is nec-
essarilysingular, having spacelike components and a zero eigenvalee,a
lightlike instead of timelike one. Nevertheless, it is gbksto ascribe a phys-
ical role to singular induced metrics provided they possesadditional time-
like (diagonal) component. The latter can be achieved bgideningLL-brane
with (p 4+ 2)-dimensional world-volume (cf. (5)) embedded iadimensional
(D > p + 2) bulk space withtwo timelike dimensions(,,, having signature
(-,—,+,...,+)). Repeating the steps in Section 2 we will get an induced
(p+2) x (p+2) metric (9) with signaturé0, —, +, ..., +), i.e,, with one light-
like, one timelike anc spacelike dimensions. Then, applying the formalism
for degenerate metrics proposed in ref. [11], one can embleyesulting in-
duced metric as a starting point for construction of a Kalki=in model with
the pertinent lightlike brane (witfp + 2)-dimensional world-volume) as a to-
tal Kaluza-Klein space with naturally unobservable extirmahsion (the first
lightlike one) from the point of view of the “normal’» + 1) world-volume di-
mensions. Also, let us note that the use of an embedding sjpaeevith two
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timelike coordinates has an advantage if we want to obtaiorantz-invariant
ground state, since there is the possibility of having ondgitexhal time, not
involved in the motion of the lightlike brane.
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