
ar
X

iv
:0

71
1.

18
79

v1
  [

he
p-

th
] 

 1
3 

N
ov

 2
00

7

Area, ladder symmetry, degeneracy and fluctuations of a horizon

Mohammad H. Ansari∗

University of Waterloo, Waterloo, On, Canada N2L 3G1 and

Perimeter Institute, Waterloo, On, Canada N2L 2Y5

(Dated: November 11, 2018)

Abstract

Loop quantum gravity admits a kind of area quantization that is characterized by three quantum

numbers. We show the complete spectrum of area is the union of equidistant subsets and a universal

reformulation with fewer parameters is possible. Associated with any area there is also another

number that determines its degeneracy. One application is that a quantum horizon manifests

harmonic modes in vacuum fluctuations. It is discussed the physical fluctuations of a space-

time horizon should include all the excluded area eigenvalues, where quantum amplification effect

occurs. Due to this effect the uniformity of transition matrix elements between near levels could

be assumed. Based on these, a modification to the previous method of analyzing the radiance

intensities is presented that makes the result one step further precise. A few of harmonic modes

appear to be extremely amplified on top of the Hawking’s radiation. They are expected to form a

few brightest lines with the wavelength not larger than the black hole size.

PACS numbers: 04.60.Pp, 04.70.Dy

∗Electronic address: mansari@perimeterinstitute.ca

1

http://arxiv.org/abs/0711.1879v1
mailto:mansari@perimeterinstitute.ca


Contents

I. Introduction 2

II. Area 3

III. Ladder symmetry 4

IV. Degeneracy 5

V. Fluctuations of a horizon 7

References 12

I. INTRODUCTION

So far the main consequence of area quantization in loop quantum gravity has been the

removal of classical gravitational singularities [1] as well as determining the isolated hori-

zon entropy [2]. The predicted generic exit of scale factor from an inflation sector into a

Friedman universe in a loop quantized minisuperspace is at present in agreement with stan-

dard inflation models. This quantum phenomena, which comes from a quantum correction

in the inhomogeneous Hamiltonian constraint, is through elementary area variable whose

value should be determined by an underlying inhomogeneous state. Area is an elementary

operator in loop quantum gravity because in the classical limits it is directly related to the

densitized triad as a canonical variable. In this note, we study two previously unknown prop-

erties of area quantization that further clarify the understanding of this operator. Firstly,

the area eigenvalues possess a symmetry that its spectrum is the union of different evenly

spaced subsets. Secondly, the eigenvalues are substantially degenerate such that in larger

area the degeneracy increases. Due to the presence of a huge class of completely tangential

excitations on a surface different regions of the surface are distinguishable. These together

result in degeneracy increasing in a way that with any eigenvalue a finite exponentially

proportional to area degeneracy is associated. One application is in area fluctuations of a

collapsing star. It is discussed a trustworthy analysis of area fluctuations in a space-time

horizon must include all those excluded quanta from a quantized isolated horizon [2]. Having
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recognized the quantum amplification effect during transitions, the density matrix elements

can be considered uniform in near levels. The black hole undergoes a thermal fluctuations

and harmonic modes resonate. Using these properties, a modification method to the previ-

ous analysis of the intensities [4] is introduced that makes the result one step further precise.

The major result is that the fluctuations in the dominant configuration with minimal quan-

tum of area is mostly amplified by the black hole such that a few sharp and bright lines

appear on top of Hawking’s radiation. These modes cannot be seen in the wavelength larger

than the size of black hole. In summary, by the use of a few main assumptions from black

hole studies, loop quantum gravity, a non-perturbative background independent approach

to quantum gravity, becomes testable much above the Planck scales if quantum primordial

black holes are ever found.

II. AREA

In this note we choose to define a surface by a coordinate condition. The quantization of a

3-manifold is obtained by quantizing the holonomy configuration space on embedded graphs

in a spatial manifold. The sub-graphs whose nodes lie on a surface are basis for defining the

quantum state of the surface. Densitized conjugate momenta possess full information of the

surface metric and consequently the surface area, [3].

Consider a vertex lying on a surface with total upper side spin ju, bottom side spin jd,

and completely tangential edges of total spin jt on the surface. The quantum of area in this

state depends on the upper and lower spins as well as the total tangent vector induced by

these two on the surface, ju+d,

a = ao
√

2f(ju) + 2f(jd)− f(ju+d), (1)

where f(x) = x(x + 1), ao := 4πγℓ2P , γ the Barbero-Immirzi parameter, and ju+d ∈ [|ju −
jd|, . . . , ju + jd − 1, ju + jd]. Note that the completely tangential edges do not contribute in

the area.

Consider a closed underlying surface dividing the 3-manifold into two completely disjoint

sectors and not bounded by a boundary. A few additional vertices are needed in order to

close this quantum state. This introduces two additional constraints on the states, namely:
∑

α j
(α)
u ∈ Z+ and

∑

α j
(α)
d ∈ Z+, where α labels all the residing vertices on the surface, [3].
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III. LADDER SYMMETRY

In SO(3) group representation spins are integers. Therefore in (1) the right side can

be written as a positive integer number: m
.
= f(ju) + f(jd) − 1

2
f(ju+d) = 1

2
(a/ao)

2. This

number due to the following proof is in fact any natural number. Suppose ju ≥ jd and

the difference of them is a positive integer n = ju − jd. Restricting to the subset M∗ of

ju+d = ju + jd, it is easy to verify the generator of this subset is n(n + 1)/2 + jd. The first

term, a triangular number, is a positive integer. The second term is independent of n and

in principle takes any positive integer value. Therefore the set of all M∗ corresponding to

the states with jd = {1, 2, 3, 4, · · · } is equivalent to natural numbers; N ≡ {M∗}/R, where

/R stands for the modulation of repetition (or in a simple word different copies of one

number are identified). Since m in general is a positive integer, any other subset fits into N.

Consequently, an irreducible reformulation of area when all copies of numbers are identified

is possible by one quantum number, a = ao
√
2n , where n ∈ N.

The spectrum of area modulo repetitions in SU(2) group representations is impossible

to reformulate by one parameter; however, it is possible by two in the following form:

a = 1
2
ao
√
ζ n, for any discriminant of positive definite form ζ and any positive integer n, [6].

A universal reformulation is thus possible if one rewrites the SO(3) irreducible reformula-

tion as a reducible one by two parameters. In the followings it is shown that any integer c can

be represented uniquely by c = ζn2 where ζ is a square-free number and n ∈ N. A positive

integer that has no perfect square divisors except 1 is called square-free (or quadratfrei) num-

ber. In other words it is a number whose prime decomposition contains no repeated factors;

for instance 15 is square-free but 18 is not. Now consider an integer c containing s different

prime factors p1, p2, · · · , ps each repeated n1, n2, · · · , ns times, respectively; c =
∏s

i=1(pi)
ni.

The exponents ni are all positive integers and are either even or odd numbers. Consider

the case that the exponents are all odd numbers, ni := 2mi + 1. Therefore c can be written

in the form of (
∏s

k=1 pk).(
∏s

l=1(pl)
ml)2 which shows the integer c is a multiplication of a

square-free part and a square part. This could be redone for any integer number and the

result is the same decomposition. Since the prime factorization of every number is unique, so

does its decomposition into square and square-free numbers. Therefore, in SO(3) group the

complete set of quantum area {m}, which fits into natural numbers, is the multiplication of

a square-free and a square number. In other words, the quantum of area can be reformulated
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into a = ao
√
2ζ n. This makes the universal reformulation of area as a function of ζ and n,

an(ζ) = a0χ
√

ζ n (2)

for ∀ n ∈ N, where in SO(3) group ζ is any square-free number {1, 2, 3, 5, · · · } and χ :=
√
2;

and in SU(2) group ζ is the ‘discriminant of any positive definite form’ {3, 4, 7, 8, 11, · · · } and
χ := 1/2. The parameters χ is ‘the group characteristic parameter.’ Fixing ζ a generation of

evenly spaced numbers is picked out, thus the parameter ζ is the ‘generational number.’ For

the purpose of making the rest of this note easier to read let us rename the first generational

number whose gap between levels is minimal by ζmin and the minimal area amin.

Note that the term
√
ζ is an irrational number in both groups and in any generation it

is unique. Therefore the sum or difference of any two quanta an1
(ζ1) and an2

(ζ2) for ζ1 6= ζ2

is unique and belongs to none of generations.

IV. DEGENERACY

The spin network states of a surface under the action of area operator manifest a sub-

stantial degeneracy. Consider an N -valent vertex lying on a surface, some of the edges are

contained in the upper side, some in the lower, and some lie completely tangential on the

surface. Given the total spin of upper and lower sectors by ju and jd, respectively, a set of

area eigenvalues are generated from a minimum where ju+d = ju + jd to a maximum where

ju+d = |ju−jd| from eq. (1). Changing ju and jd a different finite subset of area is generated

whose elements may or may not coincide with the elements of the other subset of area eigen-

values. Associated with any area eigenvalue there appears unexpectedly a finite number

of completely different eigenstates. For instance, these states |ju = 1, jd = 0, ju+d = 1〉,
|ju = 0, jd = 1, ju+d = 1〉, and |ju = 1, jd = 1, ju+d = 2〉 correspond to the area a =

√
2ao.

Counting these states for every eigenvalue a power law correlation with the size of area ap-

pears such that a larger area possesses a higher degeneracy. This is studied for both SU(2)

and SO(3) gauge groups in [6].

On a classical surface there are a finite number of area cells and a set of degenerate

quantum states could be associated with it. However, this is essential for a background

independent theory to identify only physical states after reducing the redundant gauge-

and diffeomorphism-transformed ones. Gauge invariance by definition is satisfied in spin
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network state, but diffeomorphism invariance should be checked by its imposing on the

states. Consider a surface containing a large number of the same area cell in different

regions. Each cell is a degenerate eigenvalue of area. However, area operator does not ‘see’

the completely tangential edges of these degenerate states. By definitions, the number of

completely tangential edges at each vertex could vary from zero to infinity and when there

are many of these excitations at one vertex they accept a huge spectrum of spins. These

various states make the identical cell configuration on different regions distinguishable under

the measurements of other observable operators.

Note that the area of higher levels can be decomposed precisely into smaller fractions of

the same generation (without any approximation). For example, an = na1 = (n−2)a1+a2 =

· · · . As it was explained above, these cells are all completely distinguishable. Therefore the

degeneracy of the area eigenvalue an becomes Ωn = gn + gn−1g1+ · · ·+(g1)
n. Obviously the

dominant term in the sum belongs to the configuration with maximum number of the area

cell a1. Therefore the total degeneracy of an(ζ) for n ≫ 1 is:

Ωn(ζ) = g1(ζ)
n. (3)

In the classical limits, the dominant configuration of a large surface is the one occupying

the highest possible level of area from the ‘first’ generation ζmin; i. e. A ≈ namin. This

dominant degeneracy is g1(ζmin)
n and a kinematic entropy can be associated with it propor-

tional to the area; S = A(ln g1(ζmin)/amin). Depending on the type of time evolution of the

surface this entropy may vanish, decrease, increase or remains unchanged in the course of

time. In other words, a classical surface characterized by its area at each time slice possesses

a finite entropy-like parameter. Space-time horizons as a class of physical surfaces possess

a non-decreasing entropy. In other words their kinematical entropy in the course of time,

due to the second black hole thermodynamics law, are physical entropy. We will show in

the next section such a horizon carries an entropy whose nature is the total degeneracy of

vacuum fluctuation modes responsible for the thermal radiation of black hole. However, for

the aim of this note on the study of kinematics of fluctuations we disregard here the issues

of defining the Hamiltonian of a quantum horizon based on spin foam, which is still an open

problem.
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V. FLUCTUATIONS OF A HORIZON

Having known a suitable definition for the information flow other than expansions of

geodesic congruences used in general relativity, one can certainly define a quantum black

hole. However, there are different definitions of quantum horizons with different properties,

including causal ones. Event horizon is always a null surface by definition, thus it must

satisfy one-way information transfer, [7]. However an event horizon is not locally defined at

all, not even in time. To define it classically, we need the information of the whole manifold.

In canonical quantum gravity, we need a definition by which we can look at a place in

space and say those photons reaching to us from there must come from a spatial slice that

intersects a space-time horizon. Such local definitions are in fact those of apparent, trapping,

and dynamical horizons, [2]. On the other hand, the space-time horizons are not necessarily

null. They would be so if we have vacuum and absence of gravitational radiation. Vacuum

can easily be achieved for a spin network case, but we cannot prevent the local gravitational

degrees of freedom to be excited in the neighborhood of a space-time horizon. With these

gravitational radiation across the horizon and with positive energy conditions (or vacuum)

the horizon will be space-like rather than null. Moreover, the energy conditions in quantum

gravity could not be taken for granted, even for semiclassical states, as long as violations

occur on small length scales, [12]. Thus, quantum space-time horizons can become even

timelike with a two-way information transfer. As a consequence, one cannot restrict the

quantum fluctuations of horizon area to the subset that is considered in the trapping-based

theories of horizon because the basic assumption underneath those theories is that a quantum

horizon is the extention of a classical null boundary of space-time in a quantum theory, [2].

Physical fluctuations of space-time horizons, in fact, occurs in a wider spectrum that includes

all excluded quanta of area.

Note that in the Hawking’s conception of a black hole radiation, those modes created

in vacuum at past null infinity pass through the center of a collapsing star, hover around

it and come out of it at future infinity. The outgoing quanta get a thermal statistics from

this incipient (about-to-be-formed) black hole. Quantum fluctuations of the horizon change

this simple picture because the Hawking quanta will not be able to hover at a nearly fixed

distance from the fluctuating horizon. Bekenstein and Mukhanov postulated an equidistant

spectrum for the horizon area fluctuations in [9] and showed concentrating of radiance modes
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in discrete lines. In loop quantum gravity as a fundamental candidate theory of quantum

gravity, quantum of area is different and here its emissive pattern is work out.

During the latest stages of gravitational collapse of a neutral non-rotating spherical star,

all radiatable multipole perturbations in the gravitational fields are radiated away such that

its classical physics is described only by its horizon area. The energy associated with this

object depends on the area by the relation A = 16πG2

c4
M2. The energy fluctuations of a

large space-time horizon are easy to find δM = γχMPl

8M

√
ζδn. Ladder symmetry classifies

the transitions between levels into: 1) ‘generational transitions’, those with both initial and

final levels belonging to the same generation, or 2) ‘inter-generational transitions’, with

initial and final levels belonging to two different generations. The generational transitions

produce ‘harmonic’ frequencies proportional to a fundamental frequency by an integer. Inter-

generational transitions produce ‘non-harmonic modes’.

In generational transitions, the fundamental frequency is the jump between two consec-

utive levels with frequency ̟(ζ) = (γχ
√
ζ) ωo, where ωo :=

c3

8GM
is the so-called ‘frequency

scale’. For instance, a black hole of mass 10−18M⊙ has a horizon of area about 10−29m2

and a temperature about 1011 K. The frequency scale is thus of the order of ∼ 10 keV.

Such a typical hole has a horizon 40 order of magnitude larger than the Planck length area.

Therefore from each harmonic mode there are many copies emitted in the different levels;

or in other words these modes are amplified. On the other hand, since the difference of two

levels of different generations is a unique number, there exists only one copy from each non-

harmonic mode in all possible transitions. This quantum amplification effect makes a black

hole condensate its particles production mostly on harmonic modes. One important con-

sequence is the density matrix elements of non-harmonic modes can be regarded negligible

and therefore the generational transitions matrix elements can be assumed to be uniform.

In a transition down the level of a generation, there are two weight factors: the transition

and the population weights. Assume a hole of large area A. When the hole jumps f steps

down the ladder of levels in the generation ζ , it emits a quanta of the frequency f̟(ζ). This

much of radiance energy could also be emitted in the dominant configuration by radiating

f a1(ζ)
amin

quanta of the fundamental frequency ̟(ζmin). These two transitions, although are

of the same radiance frequency, appear with different possibilities. The degeneracy ratio

of these two is Ω(f̟(ζ))/Ω(f a1(ζ)
amin

̟(ζmin)) that gives rise to the definition of ‘transition

weight’ θ(ζ, f) = g1(ζ)
fg1(ζmin)

−fa1(ζ)/amin . The second weight is the population one that
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comes from a different root. Due to quantum amplification effect, from each harmonic

frequency there produced many copies in different levels on the generation. This weight is

in fact the number of possible quanta emitting from different levels with the same frequency.

It is easy to verify this number is N̟(ζ)−f +1 where N̟(ζ) is the number of copies from the

fundamental frequency, and for near level modes (f ≪ N̟(ζ)) it is
A

a1(ζ)
. We absorb constants

in normalization factors and the population weight in near levels becomes ρ(ζ) := 1/
√
ζ.

Finally notice that within one generation when a space-time hole jumps f steps down

the ladder of levels, the degeneracy decreases by a factor of g1(ζ)
f . Having defined the

transition and the population weights, the conditional probability of ωf(ζ) emission after

using (2) becomes P (ωf(ζ)|1) = C−1ρ(ζ)g1(ζmin)
−f
√

ζ/ζmin, where C is the normalization

factor, [13].

One can consider a successive emissions and associates a probability to it as the mul-

tiplication of the probability of each emission. The conditional probability of a j dimen-

sional sequence of different frequencies becomes
∏j

i=1 P (ωfi(ζi)|1). The probability of the

sequences to include k emissions out of j to be of the frequency ωf∗(ζ∗) (in no matter what

order) while the rest of accompanying emissions are of any value except this frequency, is

P (k, ωf∗(ζ∗); {ωf1(ζ1), · · · }|j) = (jk) [P (ωf∗(ζ∗)|1)]k ×
∏j−k

i=1; ζ 6=ζ∗ P (ωfi(ζi)|1). The accom-

panying modes are allowed to accept any frequency except ωf∗(ζ∗) and therefore the prob-

abilities of any accompanying frequency should sum. From the definition of C, it is easy

to find out in each sum over accompanying modes instead of
∑

ω 6=ω∗ P (ωfi(ζi)|1) we can re-

place C−P (ωf∗(ζ∗)|1) that simplifies the probability to P (k, ωf∗(ζ∗)|j) = (kj ) [P (ωf∗(ζ∗)|1)]k

× [C − P (ωf∗(ζ∗)|1)]j−k.

Note that a black hole radiates in a ‘time’ sequential order, [11]. The probabilities

of zero and one jump (of no matter what frequency) in the time interval ∆t are P∆t(0)

and P∆t(1), respectively. In the time interval 2∆t, the probabilities of zero, one, and two

jumps are P∆t(0)
2, 2P∆t(0)P∆t(1), and 2P∆t(0)P∆t(2) + P∆t(1)

2, respectively. By induction

this is found for higher number of jumps in an interval and for longer time. A general

solution for the equations the probability of j time-ordered decays in an interval of time

∆t is P∆t(j) =
1
j!
(∆t

τ
)j exp(∆t

τ
). Multiplying this probability with P (k, ωf∗(ζ∗)|j) and then

summing over all sequence dimensions j ≥ k, it is easy to manipulate the total probability

of k emissions with frequency ωf∗(ζ∗) to be P∆t(k, ωf∗(ζ∗)) = 1
k!
(x∗

f )
k exp(−x∗

f ), where x
∗
f =

∆t
Cτ

ρ(ζ∗) g1(ζmin)
−f
√

ζ/ζmin. This indicates the distribution of the number of quanta emitted
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in harmonic modes is Poisson-like.

Let us now look at the distribution of the number of quanta emitted from a black

body radiation. The probability of one emission of frequency ω∗ is Boltzmann-like;

πω∗ = B exp(−~ω∗

kT
) where B is normalization factor B =

∑

ω πω. Successive emissions

occurs independently and therefore the probability of a j dimensional sequence in which p

emissions are of the frequency ω∗ is
(

j
p

)

(πω∗)k
∏j−p

i

∑

ωi 6=ω∗ πωi
. The last summation term

can be replaced from the normalization relation by B − πω∗ . This makes the probability

equivalent with the black hole emission probability P (k, ωf∗(ζ∗)|j) when g1(ζmin)
−f∗

√
ζ∗/ζmin

(i.e. exp(−S)) is replaced with exp(−~ω∗

kT
). The analogy indicates that the hole radiation

is characterized by Planck’s black body radiation and the temperature matches the black

hole temperature when the Barbero-immirzi parameter is properly defined for getting the

Bekenstein-Hawking entropy. In fact the black hole is hot and the thermal character of

the radiation is entirely due to the degeneracy of the levels, the same degeneracy (3) that

becomes manifest as black hole entropy.

By definition, the intensity of a mode is the total energy emitted in that frequency per

unit time and area. The average number of emissive quanta at a typical harmonic frequency

is k =
∑∞

k=1 kP∆t(k|ωf(ζ)). Calculating this summation gives rise to the intensity

I(ωf(ζ))

Io
= fg1(ζmin)

−f
√

ζ/ζmin (4)

where Io is constant.

To estimate the width of lines, we need to compare the average loss of collapsing star

mass in late times with a black body. The average of time elapsing between two decays is

t̄ =
∫

dt tPt(1) = 2τ and its uncertainty is (∆t)2 =
∫

dt(t − t̄)2Pt(1) = 3τ 2. The average

frequency emitted from a black hole can be shown to be ω̄ = ωoγχ, [14] Moreover, the

mean value of the number of jumps in ∆t is j̄ =
∑

j jP∆t(j), which becomes ∆t
τ
. As a

consequence, a black hole losses the ratio of mass ∆M̄
∆t

= −~ωoγχ
c2τ

on average. On the other

hand, the nature of a black hole radiation is the same as a black body where the loss of

mean energy is described by Stephan-Boltzman law, ∆M̄
∆t

= − ~c4

15360πG2M2 . Comparing these

two, one finds τ = 1920πγχ
ωo

. According to the uncertainty principle ∆E∆t ∼ ~, the frequency

uncertainty becomes of the order of a thousandth of the frequency scale ωo. This shows that

the spectrum lines are indeed very narrow and the various black hole lines of one generation

are unlikely to overlap.
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FIG. 1: The intensity envelope of some generations.

The intensity envelope of the first three generations is plotted in Fig. (1), where the

envelope (a), (b) and (c) belongs to the intensity of harmonics in the first, second and third

generations, respectively. It becomes clear that in a generation with the least gap between

levels, the strongest harmonic modes are amplified. The brightest lines belong to a few of

the first harmonics of the generation ζmin. Other than these lines, the intensity of the rest

of harmonics in other generations are suppressed exponentially. We expect in a low energy

spectroscopy a clear observation of only a few narrow and unblended lines highly on top of

other harmonics. Also we expect these brightest lines appear in the wavelength not larger

than the size of black hole M in Planck units.

In summary: we showed the quantum of area are substantially degenerate. The complete

spectrum is possible to reformulate into a universal form with two parameters and more

importantly it is the union of exactly equidistant subsets. The spectrum of radiation due to

these new properties reveals a clear discretization on a few brightest lines which cannot blend

into one another. The most notable point is that loop quantum gravity as one fundamental

theory of quantum gravity is substantially testable with an observational justification if

primordial black holes are ever found.
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