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A novel scalar field free approach to cosmic inflation is presented. The inflationary Universe and
the radiation dominated Universe are shown, within the framework of unified brane cosmology, to
be two different phases governed by one and the same energy density. The phase transition of
second order (the Hubble constant exhibits a finite jump) appears naturally and serves as the exit
mechanism. No re-heating is needed. The required number of e-folds is achieved without fine tuning.

The remarkable idea that our Universe has undergone,
in its very earliest stages of evolution, a phase of expo-
nential expansion[1, 2] is widely accepted as the solution
to the horizon, flatness, and magnetic monopole puzzles.
The inflationary Universe scenario[3], which has gained
strong experimental support from the detailed observa-
tions of the Cosmic Microwave Background radiation[4],
is now considered part of the standard hot Big Bang cos-
mology. With this in mind, it is highly frustrating that
the physical mechanism underlying inflation is essentially
obscure. The conventional ad-hoc theoretical prescrip-
tion of the inflationary scenario invokes a scalar field of
some sort, in analogy to the Higgs field introduced in par-
ticle physics. The accompanying potential is carefully en-
gineered to address certain desired features of inflation.
It is not clear what degrees of freedom are collectively
represented by this so-called inflaton, and what actually
determines the shape of its model dependent potential.
The beginning and the end the inflationary era are the-
oretical challenges by themselves, with the major goal
being the production of a sufficient number Ne ≃ 60 of
e-folds. While the beginning may resemble a spontaneous
creation, by means of quantum nucleation[5, 6], the end
traditionally occurs once the inflaton starts oscillating
around the absolute minimum of the scalar potential.

In this paper, within the framework of unified brane
gravity[7], we present a novel approach to cosmic in-
flation. The inflationary Universe and the subsequent
radiation dominated Universe are shown to be two dif-
ferent phases governed by one and the same brane en-
ergy density. It differs from other models of inflation
in that it does not involve scalar fields and/or scalar
potentials[8]. Alternatively, the model forces the brane
energy/momentum tensor, predominantly in the infla-
tionary phase, to consist of radiation and surface ten-
sion, which are essential standard cosmological ingredi-
ents. Furthermore, the model offers a natural built-in
exit mechanism, implemented by means of a second order
phase transition. The Universe exiting the inflationary
era is then necessarily radiation dominated and hot. In
turn, no re-heating[2, 9] is needed, neither as a graceful
end of Guth’s inflation, nor as the arena for recreating
matter and fill the Universe with radiation. In addition,
the required number of e-folds emerges naturally without

fine tuning.
Dirac[10], in his ’Extensible Model of the Electron’,

has paved the way for a consistent brane variation. He
was concerned with the fact that the ’linearity of the
variation’ may be in jeopardy. Rephrasing Dirac, ’a tiny
deformation of the brane corresponding to the brane be-
ing pushed a little to the right will not be minus the
variation corresponding to the brane being pushed a lit-
tle (equally) to the left, on account of the left and right
bulk sections not being a smooth continuation of each
other’. To bypass the problem, a general curvilinear co-
ordinate system has been invoked, such that in the new
so-called Dirac frame, the location of the brane does not

change during the variation process. Imposing Dirac’s
prescription on modern brane theories based on an action
principle, such as the Collins-Holdom[11] model, which
unifies the familiar Randall-Sundrum[12] and the Dvali-
Gabadadze-Porrati[13] models, and assuming a discrete
Z2 symmetry on simplicity grounds, the corresponding
brane field equations (see Ref.[7] for the derivation) take
the form

1

4πG5
(Kµν − gµνK) =

=
1

8πG4

(

Rµν − 1

2
gµνR

)

+ Tµν + λµν ,

(1)

where G5(4) denote the gravitational coupling constants
in the bulk (brane), respectively. In addition to the con-
ventional terms (the Israel[14] junction term, the Ein-
stein tensor associated with the scalar curvature R on
the brane, and the physical energy-momentum tensor of
the brane Tµν = δLmatter/δg

µν), unified brane gravity
gives furthermore rise to λµν . The latter tensor consists
of Lagrange multipliers associated with the fundamental
induced metric constraint gµν(x)−gMN (y(x))yM,µ y

N
,ν = 0.

It has been proven that λµν is conserved, and that its
contraction with the extrinsic curvature vanishes

λµν
;ν = 0 , λµνK

µν = 0 . (2)

As is evident from the above field equations, λµν serves
as a geometrical (embedding originated) contribution to
the total energy-momentum tensor of the brane, and as
such, may have far reaching gravitational consequences.
It is thus crucial to make sure that, although deviating
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from the RS approach, the GR limit is still there. Cosmo-
logical analysis has been shown[7] to reproduce the GR
limit. On top of it, by analyzing the weak field pertur-
bations caused by the presence of matter on the brane,
we have already recovered[15] the 4-dimensional Newton
force law.
Within a cosmological framework, eq.(1) can be inte-

grated out[7], giving rise to a novel constant of integra-
tion ω, the finger print of unified brane cosmology. The
corresponding FRW equation which governs the evolu-
tion of the 4-dimensional brane can be conveniently writ-
ten in the form

8πGN

3
ρeff (a) ≡

ȧ2 + k

a2
=

Λ5

6
+ ξ2(a) . (3)

If the only energy/momentum source in the bulk is a
negative cosmological constant Λ5 < 0, then ξ(a) has
been shown[7] to be a solution of the cubic equation

P (ξ) ≡ 3ξ2

8πG4
+

3ξ

4πG5
+

Λ5

16πG4
−ρ(a)+

ω√
3ξa4

= 0 . (4)

Eqs.(3,4) thus generalize the familiar RS, DGP and CH
cosmologies, which are recovered at the ω → 0 limit. The
Regge-Teitelboim[16] Cordero-Vilenkin[17] stealth Uni-
verse models are manifest at the G5 → ∞ limit. Like in
all brane cosmologies[18, 19], it is crucial to notice that
ρeff (a) defined in eq.(3) is no longer the physical energy
density on the brane, but rather a function of it. It is
ρ(a) = T 0

0 which serves as the physical energy density on
the brane.
Let us first focus attention on the special case of eternal

inflation, which clearly requires eq.(4) to admit an exact

a-independent solution. Such a solution, conveniently
written as ξ(a) = ω/

√
3A, with A being a constant, as

depicted by the straight horizontal (dashed) asymptote
in fig.(1), corresponding to a (positive by assumption)
cosmological constant

Λ0 =
1

2
Λ5 +

ω2

A2
, (5)

may exist for some conventional energy density ρ(a).
The serendipitous observation now being that ρ(a) must
solely consist (as hinted first in ref.[20]) of radiation ac-
companied by a particular amount of surface tension

ρ(a) =
A

a4
+ σ0 ,

σ0 =
1

8π

(

ω2

G4A2
+

2
√
3ω

G5A
+

Λ5

2G4

)

.

(6)

The ’no-ghost’ condition A > 0 is then naturally adopted.
Counter intuitively, however, even ’eternal’ inflation

cannot last forever in our model. The slightest devia-
tion of the physical surface tension σ from the particular
σ0 value, will expose, as shown in fig.(1), the hyperbolic

FIG. 1: Given ρ(a) = σ + A/a4, two roots of cubic eq.(4)
exhibit a hyperbolic structure. The intersection point of the
two asymptotes (the straight horizontal one associated with
eternal inflation) sets a natural scale for terminating inflation.

structure of the ξ(a) roots. The amount of finite inflation,
however, is insensitive to the value of σ. The intersection
point of the two asymptotes (the straight one is associ-
ated with eternal inflation), as determined directly from
eq.(4), with eq.(6) imposed, sets a natural FRW scale
across for terminating inflation, namely

a4cross =
4πG4A

2

√
3ω

(

G4

G5
+

ω√
3A

) . (7)

The early Universe cosmological constant Λ0 is also not
sensitive to the value of the surface tension σ. In fact, on
realistic grounds (to be revealed soon), σ0 will be traded
for the Randall-Sundrum surface tension

σRS =
3

4πG5

√

−Λ5

6
, (8)

with the price being a finite, yet sufficient, amount of
radiation driven inflation.
At very short scale factors, the situation may appear

to be confusing. While the energy density ρ(a) clearly
explodes as a → 0, the effective energy density ρeff (a)
stays finite in this limit. What this means is that, in the
absence of an ultra-violet cutoff (included in particular is
the k = 0 flat case), the inflationary era can in fact start
at an arbitrarily small scale. In turn, the total number of
e-folds can become arbitrarily large. In such a case, aenter
will mark the edge of validity (set by the Planck scale) of
our classical field equations. If k > 0, on the other hand,
the cosmological scale factor marking the entrance of in-
flation gets fixed by aenter =

√

3k/Λ0. Interpreted as
spontaneous creation of a closed baby Universe, such an
entrance is presumably governed by Hawking-Hartle[5]
no-boundary proposal, or alternatively, by Davidson-
Karasik-Lederer[6] brane nucleation.
A great number of physical processes may occur during

the later stages of cosmic evolution. One of which, for ex-
ample, reflecting the fact that the massive particles have
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eventually cooled down, is the appearance of a dust term
B/a3 in the energy/momentum tensor. Our interest is
focused, however, on the early Universe exiting the infla-
tionary era, and not on the very late Universe. In this
respect, it remains to be seen whether radiation driven
inflation, based on ρ(a) = σ + A/a4 is capable of spon-
taneously inducing an exit mechanism, and whether the
emerging Universe happens to correspond to the physical
one we know of. If we insist on σ > 0, to assure a pos-
itive Newton’s constant at the general relativistic limit
(as well as brane stability), the cubic eq.(4) admits three
real roots such that ξ−(∞) < ξ0(∞) = 0 < ξ+(∞) as
a → ∞. Only the largest of these roots, namely

ξ+(∞) = −G4

G5
+

√

8πG4

3
σ +

G2
4

G2
5

− Λ5

6
, (9)

is capable of supporting an adjustably tiny cosmologi-
cal constant Λ∞ ≃ 0, as required by the present Uni-
verse (the other two roots lead to a negative and a pos-
itive definite Λ∞, respectively). This naturally calls for
the familiar Randall-Sundrum fine-tuning of the surface
tension, given by eq.(8), with the subsequent Collins-
Holdom identification[11] of Newton’s constant

1

GN
=

1

G4
+

1

G5

√

− 6

Λ5
. (10)

To probe the nature of the Universe at the post infla-
tionary era, we expand ξ+(a) to learn that it is radiation
dominated

ȧ2 + k

a2
≃ 8πGN

3

(

1− ω

A

√

− 2

Λ5

)

A

a4
, (11)

provided the enhancement factor (in parentheses) is pos-
itive.
At this stage, an apparent contradiction is encoun-

tered. On the one hand, inflation has been shown to sin-
gle out the ξ0(a) branch at the small-a regime, whereas
it is the ξ+(a) branch which is required for the large-a
regime. One must thus closely follow the time evolution
of the three roots, with the FRW scale factor serving as
the evolution parameter. Notice that the role of a finite a
is to add the linear piece (−Aξ+ 1√

3
ω)/a4 to the asymp-

totic (a → ∞) expression of P (ξ). There are four cases
to examine, corresponding to the different regions on the
ξ-axis where ω/

√
3A can be located. A careful analysis

reveals that (i) There is no ω for which ξ(a) would ana-
lytically evolve from ξ0(a) at small-a to ξ+(a) at large-a,
(ii) There exists a range of parameters, namely

ω√
3A

< ξ−(∞) = −2G4

G5
−
√

−Λ5

6
, (12)

for which ξ0(a) at small-a must connect with ξ+(a) at
large-a. The connection is established by means of a

second order phase transition, and (iii) Within the above
range, the radiation enhancement factor in eq.(11) is pos-
itive, in fact > 2. The exiting Universe is thus necessarily
radiation dominated.

FIG. 2: The roots ξ(a) of the cubic equation P (ξ) = 0 serve
to express the effective energy density ρeff (a) as a function
of the physical energy density ρ(a). Responding to the finite
jump ξ0(ac − ǫ) → ξ+(ac + ǫ), the Universe undergoes an
inflation → radiation domination phase transition.

Plotted in fig.(2), with a serving as the parameter, is
the master cubic polynomial P (ξ). As long as the FRW
scale factor is sub-critical, that is a < ac, there exist three
real solutions, the central of which ξ0(a) is recognized as
the inflation oriented solution. Once a approaches criti-
cality, ξ0(a) and ξ−(a) merge, and are about to mutually
disappear (becoming complex) as a crosses the ac barrier.
The only left over real solution is then ξ+(a). Respond-
ing to the finite jump ξ0(ac) = ξ−(ac) → ξ+(ac), the Uni-
verse undergoes a second order phase transition. While
the FRW scale factor a(t) remains continuous, the (pos-
itive) Hubble constant exhibits a sudden finite increase

(note that ä → +∞ when nearing ac from below). As in
any phase transition in physics, however, it is expected
that fluctuations will smoothen the jump (ä < +∞). The
effective energy/momentum tensor is characterized by a
typical critical behavior. Expanding near (below) the
critical point, one finds

ρeff (a) ≃ α− β(ac − a)1/2

Peff (a) ≃ −βac
6

(ac − a)−1/2
(13)

for some positive constants α, β. Peff (a) is the corre-
sponding effective pressure. The effective energy den-
sity ρeff (a), characterized by a finite jump at the critical
scale, is plotted in fig.(3). The shape of the graph (not
necessarily its physics) highly reminds us of the specific
heat as a function of 1/T (which in fact is the scale factor)
in λ-transition of liquid helium. At any rate, as a keeps
growing in the radiation dominated phase, one will face
once again three real roots, but this time for a change,
real ξ+(a) is never lost. It is interesting to remark that,
due to the Hysteresis-like nature of the evolution, time
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reversibility is not respected. In other words, a shrinking
radiation dominated Universe will not undergo deflation.

FIG. 3: The early Universe phase transition, connecting the
inflationary (a < ac) and the radiation dominated (a > ac)
eras, is characterized by a finite jump in the Hubble constant
H . Remarkably, the two phases share the one and the same
physical energy density ρ(a) = σRS + A/a4.

To estimate the total number Ne of e-folds generated
by radiation driven inflation, one needs to calculate the
critical value ac of the FRW scale factor. On simplic-
ity grounds (nothing to do with fine tuning), let us do
it in the limit where ω approaches the right edge of the
physically allowed range specified by eq.(12), that is for
ω →

√
3Aξ−(∞), which is fully equivalent to setting

σRS → σ0. This simple limit is characterized by the fact
that the two branches ξ−(a) and ξ0(a) intersect, with the
intersection point serving as the origin of a local hyper-
bolic structure generated once ω deviates from the limit
value. For ω ≤

√
3Aξ−(∞), we have ac ≤ across.

We now claim that, up to the Λ∞ ≃ 0 fixing, which
is a severe fine-tuning problem by itself, our model is
free of the conventional inflation-oriented fine-tuning. To
address the naturalness issue of the various ratios in the
theory, we define the dimensionless positive constant

γ =
G5

G4

√

−Λ5

6
> 0 . (14)

Combining the entrance and exit scales, we can estimate
the total number of e-folds, and find

Ne ≤
1

4
ln

16π(γ + 1)GNAΛ0

9γ(γ + 2)k2
. (15)

It is customary to associate the entrance with the Planck
scale (the alternative being the GUT scale), that is
Λ0 ≃ 1/t2Planck , and further require, taking into account
today’s relative suppression of radiation versus matter
densities, A ≃ 10−4ρct

4
Hubble, where ρc = 3/8πGN t2Hubble

denotes today’s critical energy density. This brings us to
the region around

Ne ≤
1

2
ln

10−2tHubble

tPlanck,GUT
=

{

69 Planck

65 GUT
. (16)

Although the result is not that sensitive to the value of
γ (for example, changing γ by a factor of hundred will
only contribute ±1), it is fully consistent with γ being
roughly O(1), thus emphasizing the naturalness of radi-
ation driven inflation

To summarize, the general idea of radiation driven
inflation may seem to be self contradictory at the first
glance. After all, it takes a deviation from general rela-
tivity to allow the physical energy density ρ(a), stemming
from the brane matter Lagrangian, to differ from ρeff (a),
the effective source of the FRW geometry. Within the
framework of unified brane gravity, the interplay of
these two energy densities is taken one step beyond the
Randall-Sundram model, when noticing that ρeff (a) ≃
const actually dictates ρ(a) ∼ 1/a4 at small scales (note
that at such small scales all particles, massive as well,
would be ultra relativistic and thus radiation like). This
opens the door for the fascinating possibility that the
inflationary Universe and the subsequent radiation dom-
inated Universe are in fact two different phases governed
by one and the same physical energy/momentum tensor.
Furthermore, unlike other models of inflation, brane in-
flation models included, the present one does not invoke
ad hoc scalar fields. As a consequence, the Universe must
have been hot before as well as after the phase transition.
No re-heating is thus in order. Furthermore, notice that
unlike in early models of inflation, aexit and hence the
number of e-folds does not depend here on initial condi-
tions. Obviously, since a scalar potential is not a part
of our theory, conditions such as ’starting almost at rest
at the top of the hill’ and ’slow-roll’ are irrelevant. Alto-
gether, up to the usual Λ∞ ≃ 0, radiation driven inflation
is fine-tuning free. Needless to say, a number of theoret-
ical questions are still to be addressed in our inflation
model, most notably the issue of the phase transition.
In particular, it is crucial to understand the behavior of
the matter fields under such a transition. The research of
fluctuations is also in order. As in any phase transition in
physics, one expects the fluctuations to create ”islands”
of the second phase, that tend to expand and eventually
consume the entire universe, thereby ”smoothening” the
phase transition.
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