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Abstract

We present a Friedmann-Robertson-Walker quantum cosmological model in the presence of Chaplygin

gas and perfect fluid for early and late time epoches. In this work, we consider perfect fluid as an effective

potential and apply Schutz’s variational formalism to the Chaplygin gas which recovers the notion of time.

These give rise to Schrödinger-Wheeler-DeWitt equation for the scale factor. We use the eigenfunctions

in order to construct wave packets and study the time dependent behavior of the expectation value of the

scale factor using the many-worlds interpretation of quantum mechanics. We show that contrary to the

classical case, the expectation value of the scale factor avoids singularity at quantum level. Moreover, this

model predicts that the expansion of Universe is accelerating for the late times.

Pacs : 98.80.Qc, 04.40.Nr, 04.60.Ds

1 Introduction

Supernova Ia (SNIa) observations show that the expansion of the Universe is accelerating [1], contrary to

Friedmann-Robertson-Walker (FRW) cosmological models, with non-relativistic matter and radiation. Also

cosmic microwave background radiation (CMBR) data [2, 3] is suggesting that the expansion of our Universe

seems to be in an accelerated state which is referred to “dark energy” effect [4]. Cosmological constant, Λ, as

the vacuum energy can be responsible for this evolution by providing a negative pressure [5, 6]. Unfortunately,

the observed value of Λ is 120 orders of magnitude smaller than the one computed from field theory models

[5, 6]. Quintessence is an alternative to consider a dynamical vacuum energy [7], involving one or two scalar

fields, some with potentials justified from supergravity theories [8]. However, the fine-tuning problem of these

models which arises from cosmic coincidence issue has no satisfactory solution.

The Chaplygin gas model is an interesting proposal [9], describing a transition from a Universe filled with

dust-like matter to an accelerating expanding stage. This model was later generalized in Ref. [9, 10]. The

∗Email: pouria.pedram@gmail.com
†Email: s-jalalzadeh@sbu.ac.ir

1

http://arxiv.org/abs/0711.1996v1


generalized Chaplygin gas model is described by a perfect fluid obeying an exotic equation of state [9, 10]

p = − A

ρα
, (1)

where A is a positive constant and 0 < α ≤ 1. The standard Chaplygin gas [9] corresponds to α = 1. Some

publications [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] and reviews [23, 24] which

studied the Chaplygin gas cosmological models have already appeared in the literature. The Chaplygin gas

can be obtained from the string Nambu-Goto action in the light cone coordinate [26]. Since the application

of string theory in principle is in very high energy when the quantum effects is important in early Universe, a

quantum cosmological study of the Chaplygin gas is also well founded.

Recently, Quantum mechanical description of a FRW model with a generalized Chaplygin gas has been

discussed in Ref. [30] in order to retrieve explicit mathematical expressions for the different quantum mechanical

states and determine the transition probabilities towards an accelerated stage. Moreover, quantization of FRW

model in the presence of Chaplygin gas has been discussed in Ref. [31]. There, we have considered matter as

the Chaplygin gas and discussed the early time behavior of expectation value of the scale factor through the

application of Schutz’s formalism. In this paper, aside from the Chaplygin gas which is coupled to gravity

and has an advantage of furnishing a variable connected to matter which can be identified with time, we also

include the perfect fluid in this scenario and investigate the analytical solutions in both early and late time

Universes. Schutz’s formalism [32, 33] gives dynamics to the matter degrees of freedom in interaction with

the gravitational field. Using proper canonical transformations, at least one conjugate momentum operator

associated with matter appears linearly in the action integral. Therefore, a Schrödinger-like equation can be

obtained with the matter variable playing the role of time. The application of Schutz’s formalism in Stephani

and FRW perfect fluid cosmological models has been discussed in Refs. [34, 35, 36]. Note that our approach in

principle is different from Monerat et. al [37], where they correspond the dynamical variable to the perfect fluid

instead of Chaplygin gas and resort to the numerical methods to obtain the time evolution of an initial wave

packet. Note that there is considerable evidence that the early Universe is dominated by radiation. Therefore,

a natural setting for quantum cosmology is the one where radiation has the predominant role [38]. On the

other hand the Chaplygin gas is dominated by the non-relativistic matter at early times (See the following
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section). This seems to be in contradiction with our knowledge of baby Universe. According to [39], inflation

can be accommodated within the generalized Chaplygin gas scenario. Hence, the way adopted to avoid this

inconsistency is that the radiation dominated phase is followed by Chaplygin dominated period so that we have

the so-called Chaplygin inflation [39]. Also, it would be more suitable to consider the field theory representation

of the Chaplygin gas [40] to describe quantum cosmology. In this way, the Chaplygin gas can be viewed as

a modification of gravity as was first pointed out in [40]. Also, the authors of [41] have recently shown that

the Chaplygin gas model has a geometrical explanation within the context of brane world theory for any α.

Consequently in these models the equation

ρ =

[

A+
B

a(t)3(α+1)

]
1

1+α

, (2)

is a consequence of stress-energy conservation for a scalar field on the brane [40], or conservation of induced

dark matter on the brane [41, 42]. Here, a(t) is the scale-factor of the universe and B is a positive integration

constant. Therefore, it is evocative to view the contribution of Chaplygin gas to the stress-energy tensor as a

brane induced modification of gravity. In this article, we used the fluid description for the Chaplygin gas and

for Lagrangian formalism, the corresponding pressure. Consequently, if we rely on the model described in [41],

we will have covariance in our model.

The paper is organized as follows. In Sec. 2, the quantum cosmological model with a Chaplygin gas, as a

portion of the matter content is constructed in Schutz’s formalism [32, 33] for early and late time Universes.

Then the Schrödinger-Wheeler-DeWitt (SWD) equation in minisuperspace is obtained to quantize the model

under the action of a perfect fluid effective potential. The wave function depends on the scale factor a and on

the canonical variable associated to the Chaplygin gas, which in the Schutz’s variational formalism plays the

role of time T . We separate the wave function into two parts, one depends only on the scale factor and the

other depends on the time. The time dependent part of the solution is eiEt, where E is the energy. In Sec. 3,

we construct wave packets from the eigenfunctions and compute the time-dependent expectation values of the

scale factor to investigate the existence of singularities at quantum level. Moreover, we present some analytical

solutions in both early and late time epoches. In Sec. 4, we present our conclusions.
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2 The Model

The action for gravity plus Chaplygin gas in Schutz’s formalism is written as

S =

∫

M

d4x
√−g R + 2

∫

∂M

d3x
√
hhabK

ab +

∫

M

d4x
√−g pf +

∫

M

d4x
√−g pc, (3)

here, Kab is the extrinsic curvature and hab is the induced metric over the three-dimensional spatial hypersur-

face, which is the boundary ∂M of the four dimensional manifold M . We choose units such that the factor

16πG becomes equal to one. pf and pc denote Chaplygin gas and perfect fluid pressure, respectively. Note

that, according to [32] the above action is equivalent to the usual Hawking-Ellis formalism for perfect fluid

description [43]. Perfect fluid satisfies the barotropic equation of state

pf = wρf , w ≤ 1. (4)

The first two terms were first obtained in [44] and the last term of (3) represents the matter contribution to the

total action. In Schutz’s formalism [32, 33] the fluid’s four-velocity can be expressed in terms of five potentials

Φ, ζ, β, θ and S

uν =
1

µ
(Φ,ν + ζβ,ν + θS,ν) (5)

where µ is the specific enthalpy. S is the specific entropy, and the potentials ζ and β are connected with

rotation which are absent of models in the Friedmann-Robertson-Walker (FRW) type. The variables Φ and θ

have no clear physical meaning. The four-velocity also satisfies the normalization condition

uνuν = −1. (6)

The FRW metric

ds2 = −N2(t)dt2 + a2(t)gijdx
idxj , (7)

can be inserted in the action (3), whereN(t) is the lapse function and gij is the metric on the constant-curvature

spatial section. Following the thermodynamic description of Ref. [45], the basic thermodynamic relations take

the form

ρc = ρ0[1 + Π], h = 1 + Π+ pc/ρ0, (8)
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τdS = dΠ+ pc d(1/ρ0),

=
(1 + Π)−α

1 + α
d

[

(1 + Π)1+α +
A

ρ1+α
0

]

. (9)

It then follows that to within a factor

τ =
(1 + Π)−α

1 + α
, (10)

S = (1 + Π)1+α +
A

ρ1+α
0

. (11)

Therefore, the equation of state takes the form

pc = −A
[

1

A

(

1− h
1+α

α

S1/α

)]

1+α

α

. (12)

The particle number density and energy density are, respectively,

ρc =

[

1

A

(

1− h
1+α

α

S1/α

)]

−1
1+α

, (13)

ρ0 =
ρ+ p

h
, (14)

where h = (Φ̇ + θṠ)/N . After dropping the surface terms, the final reduced action takes the form

S =

∫

dt

{

− 6
ȧ2a

N
+ 6kNa−Na3ρf −Na3A

[

1

A

(

1− (Φ̇ + θṠ)
1+α

α

N
1+α

α S1/α

)]

1+α

α }

. (15)

The reduced action may be further simplified using canonical methods [45], resulting in the super-Hamiltonian

H = − p2a
24a

− 6ka+ a3ρf +
(

Sp1+α
Φ +Aa3(1+α)

)
1

1+α

, (16)

where pa = −12ȧa/N and pΦ = ∂L
∂Φ̇

. However, an analytical quantum mechanical treatment of this FRW

minisuperspace with the above Hamiltonian does not seem feasible. Therefore, it requires some approximation.

We study the Chaplygin gas expression in early and late times limits, namely for small scale factors Sp1+α
Φ ≫

Aa3(1+α) [30, 31] and large scale factors Sp1+α
Φ ≪ Aa3(1+α), separately. So for early Universe, we can use the

following expansion

(

Sp1+α
Φ + Aa3(1+α)

)
1

1+α ≈ S
1

1+α pΦ

[

1 +
1

1 + α

Aa3(α+1)

Sp1+α
Φ

+
1

2

1

1 + α

(

1

1 + α
− 1

)

A2

S2p
2(1+α)
Φ

a6(α+1) + . . .

]

. (17)

Hence, up to the leading order, the super-Hamiltonian takes the form

H = − p2a
24a

− 6ka+ a3ρf + S
1

1+α pΦ. (18)
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The following additional canonical transformations

T = −(1 + α)p−1
Φ S

α

1+α pS , pT = S
1

1+α pΦ, (19)

and use of the explicit form of the energy density of the perfect fluid ρf = B
a3(1+w) , simplify the super-

Hamiltonian to

H = − p2a
24a

− 6ka+Ba−3w + pT , (20)

where B is a constant and the momentum pT is the only remaining canonical variable associated with matter.

It appears linearly in the super-Hamiltonian. The parameter k defines the curvature of the spatial section,

taking the values 0, 1,−1 for a flat, positive-curvature or negative-curvature Universe, respectively.

The classical dynamics is governed by the Hamilton equations, derived from Eq. (20) and Poisson brackets

as


















































ȧ = {a,NH} = −Npa12a ,

ṗa = {pa, NH} = − N
24a2 p

2
a + 6Nk + 3wNBa−3w−1,

Ṫ = {T,NH} = N ,

ṗT = {pT , NH} = 0 .

(21)

We also have the constraint equation H = 0. Choosing the gauge N = 1, we have the following solutions for

the system

T = t, (22)

pT = const., (23)

ä = − ȧ
2

2a
− k

2a
− 1

4
wBa−3w−2, (24)

0 = −6aȧ2 − 6ka+Ba−3w + pT . (25)

The WD equation in minisuperspace can be obtained by imposing the standard quantization conditions on the

canonical momenta (pa = −i ∂∂a , pT = −i ∂∂T ) and demanding that the super-Hamiltonian operator annihilate

the wave function (h̄ = 1)

∂2Ψ

∂a2
− (144ka2 − 24Ba1−3w)Ψ− i24a

∂Ψ

∂t
= 0. (26)
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In this equation according to (22), T = t corresponds to the time coordinate. As discussed in [46, 47], in order

for the Hamiltonian operator Ĥ to be self-adjoint the inner product of any two wave functions Φ and Ψ must

take the form

(Φ,Ψ) =

∫ ∞

0

aΦ∗Ψda, (27)

On the other hand, the wave functions should satisfy the following boundary conditions

Ψ(0, t) = 0 or
∂Ψ(a, t)

∂a

∣

∣

∣

∣

a=0

= 0. (28)

The SWD equation (26) can be solved by separation of variables as follows

ψ(a, t) = eiEtψ(a), (29)

where the a dependent part of the wave function ψ(a) satisfies

−ψ′′(a) + (144ka2 − 24Ba1−3w)ψ(a) = 24Eaψ(a), (30)

and the prime means derivative with respect to a.

Now, we consider late time Universe when Sp1+α
Φ ≪ Aa3(1+α). Using the expression

(

Sp1+α
Φ +Aa3(1+α)

)
1

1+α ≈ A
1

1+α a3
[

1 +
1

1 + α

Sp1+α
Φ

Aa3(α+1)
+

1

2

1

1 + α

(

1

1 + α
− 1

)

S2p
2(1+α)
Φ

A2a6(α+1)
+ . . .

]

, (31)

up to the first order, the super-Hamiltonian (16) takes the form

H = − p2a
24a

− 6ka+ a3ρf +A
1

1+αa3 +
A

α

1+α

1 + α
a−3αSp1+α

Φ , (32)

The following additional canonical transformations

T = −(1 + α)A− α

1+α p
−(1+α)
Φ pS , pT =

A
α

1+α

1 + α
Sp1+α

Φ , (33)

simplify the super-Hamiltonian to

H = − p2a
24a

− 6ka+Ba−3w +A
1

1+α a3 + a−3αpT . (34)
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The classical dynamics is governed by the Hamilton equations, derived from Eq. (20) and Poisson brackets as


































































ȧ = {a,NH} = −Npa12a ,

ṗa = {pa, NH} = − N
24a2 p

2
a + 6Nk + 3wNBa−3w−1

−3NA
1

1+α a2 + 3αN a−3α−1pT ,

Ṫ = {T,NH} = Na−3α ,

˙pT = {pT , NH} = 0 .

(35)

We also have the constraint equation H = 0. Choosing the gauge N = a3α, we have the following solutions for

the system

T = t, (36)

pT = const., (37)

ä = (3α− 1

2
)
ȧ2

a
− k

2
a6α−1 − 1

4
wBa6α−3w−2 +

1

4
A

1
1+α a6α+1 − 1

4
αpT a

3α−2, (38)

0 = −6a−6α+1ȧ2 − 6ka+Ba−3w +A
1

1+α a3 + a−3α pT . (39)

It is important to note that these equations predict an accelerating Universe for late times. For large values of

the scale factor we can simplify the above equations and find the acceleration parameter

q =
aä

ȧ2
= 3α− 1, (40)

which is positive for α > 1/3. Now, imposing the standard quantization conditions on the canonical momenta

and demanding that the super-Hamiltonian operator annihilates the wave function, we are led to SWD equation

in minisuperspace (h̄ = 1)

∂2Ψ

∂a2
− (144ka2 − 24Ba1−3w − 24A

1
1+αa4)Ψ− i24a1−3α∂Ψ

∂t
= 0. (41)

Here, according to (36), T = t corresponds to the time coordinate. Demanding that the Hamiltonian operator

Ĥ to be self-adjoint, the inner product of any two wave functions Φ and Ψ must take the form [46, 47]

(Φ,Ψ) =

∫ ∞

0

a1−3α Φ∗Ψda. (42)

The SWD equation (41) can be solved by separation of variables as follows

ψ(a, t) = eiEtψ(a), (43)
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where the a dependent part of the wave function ψ(a) satisfies

−ψ′′(a) +
(

144ka2 − 24Ba1−3w − 24A
1

1+α a4
)

ψ(a) = 24Ea1−3α ψ(a), (44)

and the prime means derivative with respect to a. Note that effective Chaplygin gas term (24A
1

1+α ) plays the

role of a positive cosmological constant. In particular, when α = 1/3 and w = 1/3, this equation reduces to

the FRW model with positive cosmological constant and radiation which has been studied in Ref. [48].

3 Results

In this Section we first study the issue of singularity avoidance in quantum cosmology in the early Universe

and then present some analytical solutions in both early and late Universes.

For k = 0 the time-independent Wheeler-DeWitt equation (30), in the dust dominated Universe (w = 0),

reduces to

ψ′′ + 24(E +B)aψ = 0. (45)

The above equation has the following general time-dependent solutions under the form of Bessel functions

Ψ′
E = eiEt√a

[

c1J 1
3

(

√
96E′

3
a

3
2

)

+c2Y 1
3

(

√
96E′

3
a

3
2

)]

, (46)

where E′ = E + B. Now, the wave packets can be constructed by superimposing these solutions to obtain

physically allowed wave functions. The general structure of these wave packets are

Ψ(a, t) =

∫ ∞

0

A(E′)Ψ′
E(a, t)dE

′. (47)

We choose c2 = 0 for satisfying the first boundary condition (28). Defining r =
√
96E′

3 , simple analytical

expressions for the wave packet can be found by choosing A(E′) to be a quasi-gaussian function

Ψ(a, t) =
√
ae−iBt

∫ ∞

0

rν+1e−γr2+i 3
32 r

2tJν(ra
3
2 )dr, (48)

where ν = 1
3 and γ is an arbitrary positive constant. The above integral is known [49], and the wave packet

takes the form

Ψ(a, t) = a
e−

a
3

4Z −iBt

(−2Z)
4
3

, (49)
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Figure 1: The time behavior of the expected value for the scale factor 〈a〉(t) (solid line) and the classical scale
factor a(t) (dashed line) for dust dominated Universe (w = 0) and flat space time (k = 0).

where Z = γ− i 3
32 t. Now, we can verify what these quantum models predict for the behavior of the scale factor

of the Universe. By adopting the many-worlds interpretation [50, 51], and with regards to the inner product

relation (27), the expectation value of the scale factor

< a > (t) =

∫∞
0
aΨ(a, t)∗aΨ(a, t)da

∫∞
0
aΨ(a, t)∗Ψ(a, t)da

, (50)

is easily computed, leading to

< a > (t) ∝
[

9

(32)2γ2
t2 + 1

]
1
3

. (51)

These solutions represent a no singular Universe which goes asymptotically over to the corresponding flat

classical model for dust (w = 0) dominated epoch (22-25)(Fig. 1)

a(t) ∝ t2/3. (52)

In the case k = 1 and w = 0 the time-independent Wheeler-DeWitt equation (30) reduces to

−ψ′′(a) +
(

−24E′a+ 144a2
)

ψ(a) = 0. (53)

Defining new variable x = 12a− E′ we find

−d
2ψ

dx2
+

[

−E
′2

144
+

x2

144

]

ψ(a) = 0. (54)

Equation (54) is similar to the time-independent Schrödinger equation for a simple harmonic oscillator with

unit mass and energy λ

−d
2ψ

dx2
+
[

−2λ+ w2x2
]

ψ(x) = 0, (55)
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where 2λ = E′2/144 and w = 1/12. Therefore, the allowed values of λ are w(n + 1/2) and the possible values

of E′ are

E′
n =

√

12(2n+ 1) , n = 0, 1, 2, ... . (56)

therefore, the stationary solutions are

Ψn(a, t) = eiEntϕn (12a− E′
n) , (57)

where

ϕn(x) = Hn

(

x√
12

)

e−x2/24 , (58)

and Hn are Hermite polynomials. The wave functions (57) are similar to the stationary quantum wormholes as

defined in [52]. However, neither of the boundary conditions (28) can be satisfied by the these wave functions.

In k = −1 and w = 0 case, equation (30) reduces to

ψ′′(a) +
(

24E′a+ 144a2
)

ψ(a) = 0, (59)

where the solutions are

Ψ(a, t) = eiEt(12a+ E′)−1/2

{

C1M iE2

48 , 14

(

i(12a+ E′)2

12

)

+ C2W iE2

48 , 14

(

i(12a+ E′)2

12

)}

, (60)

whereMκ,λ andWκ,λ are Whittaker functions. The Whittaker functions do not automatically vanish at a = 0.

Therefore, we need to take both C1 6= 0 and C2 6= 0 to satisfy Ψ(0, t) = 0.

For w = −1/3, the SWD equation (30) can be written as

−ψ′′(a) + 24(6k − B)a2ψ(a) = 24Eaψ(a), (61)

which as before, has the solutions in the form of Simple Harmonic Oscillator (57) with discrete spectrum or

Whittaker function (60) for positive or negative value of (6k −B), respectively.

For k = 0 and w = 1/3 (radiation), the WD equation (30) reduces to

−ψ′′(a)− 24Bψ(a) = 24Eaψ(a), (62)

which can be rewritten as

ψ′′(a) + 24E

(

a+
B

E

)

ψ(a) = 0, (63)
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by taking x = a+ B
E we have

d2

dx2
ψ(x) + 24Exψ(x) = 0, (64)

which is the Airy’s differential equation. We solve this equation for E > 0 and E < 0, separately.

For E > 0, this equation has two solutions as Ai
[

−(24E)1/3x
]

and Bi
[

−(24E))1/3x
]

. First one is ex-

ponentially decreasing function of x and the second one grows exponentially and is physically unacceptable.

Therefore, the solution is

ψ(a) = Ai

[

−(24E))1/3
(

a+
B

E

)]

. (65)

We choose the first boundary condition (28), which leads to

Ai

[

−(24E)
1/3B

E

]

= 0. (66)

Airy’s function Ai(x) has infinitely many negative zeros zn = −an, where an > 0, therefore, the energy levels

quantize and take the values

En =

(

241/3B

an

)3/2

. (67)

The time-dependent eigenfunctions take the form

Ψn(a, t) = eiEntAi

[

−(24En)
1/3

(

a+
B

En

)]

. (68)

For E < 0, this equation has also two solutions as Ai
[

(24|E|)1/3x
]

and Bi
[

(24|E|))1/3x
]

. Since the second

one grows exponentially and is physically unacceptable, the solution is

ψ(a) = Ai

[

(24|E|))1/3
(

a− B

|E|

)]

. (69)

We choose the first boundary condition (28), which leads to

Ai

[

−(24|E|)1/3 B|E|

]

= 0, (70)

therefore, the energy levels quantize and take the values

En = −
(

241/3B

an

)3/2

. (71)

The time-dependent eigenfunctions take the form

Ψn(a, t) = eiEntAi

[

(24|En|)1/3
(

a− B

|En|

)]

. (72)
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Figure 2: Plot of the wave function (ψ(a)) for B = 1 and n = 8, showing the oscillatory behavior for the small
values of the scale factor and exponential damping for the large values of the scale factor.

It is important to note that Airy’s function Ai(x) has an oscillatory behavior for x < 0 (a < B
|En| ) whiles

for x > 0 (a > B
|En| ) decreases monotonically and is an exponentially damped function for large x (Fig. 2).

Therefore, the solutions (72) show a classical behavior for small a and a quantum behavior for large a. This is

contrary to usually expected results for previous case. In fact detecting quantum gravitational effects in large

Universes is noticeable which has been also observed in FRW, Stephani, and Kaluza-Klein models [53, 35, 54].

In k = 1 and w = 1/3 (radiation) case, the WD equation (30) reduces to

−ψ′′(a) + (144a2 − 24B)ψ(a) = 24Eaψ(a). (73)

The above equation can be written as

−ψ′′(a) + 144

[

(

a− E

12

)2

−
(

E

12

)2
]

ψ = 0, (74)

by taking x = a− E
12 we have

− d2

dx2
ψ(x) + 144x2ψ(x) = (E2 + 24B)ψ(x). (75)

This equation is identical to the time-independent Schrödinger equation for a simple harmonic oscillator with

unit mass and energy λ

−d
2ψ(x)

dx2
+ ω2x2ψ(x) = 2λψ(x), (76)

where 2λ = (E2 + 24B) and ω2 = 144. Therefore, the allowed values of λ are ω(n + 1/2) and the possible
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values of E are

En =
√

6(n+ 1/2)− 24B , n = 0, 1, 2, ... , (77)

therefore, the stationary solutions are

Ψn(a, t) = eiEntϕn

(

a− En

12

)

, (78)

ϕn(x) = Hn

(

(12)
1
2x
)

e−3 x2

, (79)

where Hn are Hermite polynomials. However, neither of the boundary conditions (28) can be satisfied by these

wave functions.

Now, we present some analytical solutions for the late time Universe. For flat space time (k = 0), dust

epoch (w = 0), and standard Chaplygin gas (α = 1), equation (44) reduces to

−ψ′′(a) +
(

−24Ba− 24A
1

1+α a4
)

ψ(a) = 24Ea−2 ψ(a), (80)

where the solutions are

Ψ(a, t) = eiEte2i
√

2
3A

1
2(1+α) a3

a
1
2−

1
2

√
1−96E

×
{

C1 U

(

1

6

(

−2i
√
6BA

−1
2(1+α) −

√
1− 96E + 3

)

, 1− 1

3

√
1− 96E,−4i

√

2

3
A

1
2(1+α) a3

)

+ C2 L
− 1

3

√
1−96E

1
6 (2i

√
6BA

−1
2(1+α) +

√
1−96E−3)

(

−4i

√

2

3
A

1
2(1+α) a3

)

}

. (81)

Here U(a, b, c) is the confluent hypergeometric function and La
n(x) is the generalized Laguerre polynomial. We

need to take both C1 6= 0 and C2 6= 0 to satisfy Ψ(0, t) = 0.

For flat space time (k = 0), stiff matter (w = 1), and standard Chaplygin gas (α = 1), equation (44) reduces

to

−ψ′′(a) +
(

−24Ba−2 − 24A
1

1+α a4
)

ψ(a) = 24Ea−2 ψ(a), (82)

with the solutions as

Ψ(a, t) = eiEt

{

C1

√
a J

− 1
6

√
−96(B+E)+1

(

2

√

2

3
A

1
2(1+α) a3

)

+ C2

√
a J 1

6

√
−96(B+E)+1

(

2

√

2

3
A

1
2(1+α) a3

)

}

. (83)

Here again, we have C1 6= 0 and C2 6= 0 in order to satisfy the first boundary condition (28).
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4 Conclusions

In this work we have investigated minisuperspace FRW quantum cosmological models with Chaplygin gas and

perfect fluid as the matter content in early and late times. The use of Schutz’s formalism for the Chaplygin

gas allowed us to obtain SWD equations with the perfect fluid’s effective potential. We have obtained eigen-

functions and therefore acceptable wave packets were constructed by appropriate linear combination of these

eigenfunctions. The time evolution of the expectation value of the scale factor has been determined in the

spirit of the many-worlds interpretation of quantum cosmology. We have showed that contrary to the classical

case, the expectation value of the scale factor avoids singularity at the quantum level. Moreover, this model

predicts an accelerated Universe for late times.
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