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Abstract:  It is proposed that the mathematical formalism that is most appropriate for the 
study of spatially non-integrable cosmological models is the transverse geometry of a 
one-dimensional foliation (congruence) defined by a physical observer.  By that means, 
one can discuss the geometry of space, as viewed by that observer, without the necessity 
of introducing a complementary sub-bundle to the observer’s line bundle or a 
codimension-one foliation transverse to the observer’s foliation.  The concept of groups 
of transverse isometries acting on such a spacetime and the relationship of transverse 
geometry to spacetime threadings (1+3 decompositions) is also discussed. 
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1.  Introduction. 
 
 One of the most profound aspects of Einstein’s theory of relativity was the idea that 
physical phenomena were better modeled as taking place in a four-dimensional spacetime 
manifold M than by means of parameterized curves in a spatial three-manifold.  
However, the correspondence principle says that any new theory must duplicate the 
successes of the theory that it is replacing at some level of approximation.  Hence, a 
fundamental problem of relativity theory is how to reduce the four-dimensional 
spacetime picture of physical phenomena back to the three-dimensional spatial picture of 
Newtonian gravitation and mechanics. 

 The simplest approach is to assume that M is a product manifold of the form R×Σ, 

where Σ represents the spatial 3-manifold; indeed, most existing models of spacetime 
take this form.  However, since this is a purely mathematical assumption, it would be 
more physically satisfying if it were a consequence of some more physically motivated 
assumption. 
 The most physically elementary way of accounting for one of the spacetime 
dimensions is to assume that M is foliated by a congruence of curves, whether timelike or 
null, and often assumed to be geodesics; such a congruence would represent the motion 
of a physical observer.  This approach is sometimes referred to as a threading of 
spacetime (cf., [4, 9, 14, 15]).  However, one must proceed cautiously when going about 
the business of showing that such a threading actually results in a product structure for M.  
In general, one must first consider the leaf space of the foliation, whose points each 
consist of a distinct curve of the foliation.  Leaf spaces do not necessarily have to be 
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differentiable manifolds, depending upon the nature of the foliation, nor do they have to 
define fibrations of the curves over some 3-manifold Σ or orbit spaces of the action of the 

proper time group R.  Hence, it would seem to be more prudent to simply deal with the 

leaf space on its own terms. 
 A complementary approach to recovering space from spacetime is to assume that M 
has a spacelike codimension-one foliation, whose leaves might represent proper time 
simultaneity submanifolds, such as when one has a well-defined proper time function τ:M  

→ R on M.  This approach is often referred to as a slicing of spacetime (cf., [6, 14, 15]).  

It is especially suited to the representation of Einstein’s field equations for the spacetime 
metric tensor field g as a problem in time evolution, such as the ADM (Arnowitt, Deser, 
Misner [1]) formalism or the FOSH (first order symmetric hyperbolic) formalism [18]. 
 Generally, either type of foliation is obtained by integration of a sub-bundle of T(M).  
Hence, of the two formalisms, it is generally easier to obtain a threading of spacetime, 
since rank-one sub-bundles of the tangent bundle T(M) to M – i.e., line fields – are 
always integrable into a global congruence of curves, which are not generally given a 
unique or canonical parameterization.  Corank-one sub-bundles of T(M) do not have to be 
integrable in four-dimensional manifolds since they will be associated with a 3-form by 
Frobenius’s theorem, and the space of 3-forms does not have to vanish in dimension four. 
 Hence, the focus of this study is on how one goes about describing the geometry of 
“space,” as it is viewed by a given observer as an exercise in the transverse geometry of a 
one-dimensional foliation.  The primary point of application to physics will be the 
context of spatially non-integrable cosmological models, although the methodology is 
sufficiently general to be applicable to essentially any physical context that involves a 
dynamical system. 
 A cosmological model, as it is often defined (cf., [8, 28]), consists of a triple (M, g, u) 
in which M is a four-dimensional manifold that represents space-time, g is a Lorentzian 
metric tensor field of normal hyperbolic type, and u is a timelike unit vector field or a 
lightlike vector field that represents the time evolution of space, in some sense of both the 
terms “space” and “time.” 
 The sense in which u can be defined at all generally follows from the assumption that 
at some sufficiently large cosmological scale the matter distribution of the Universe can 
be represented by a continuous time-varying spatial mass distribution.  Hence, one 
essentially regards the evolution of the Universe at that cosmological scale as an exercise 
in relativistic continuum mechanics.  Moreover, since the mass density of the universe at 
that scale is quite small at present, it is also reasonable to assume that the sort of 
interactions that are responsible for shear forces and viscosity in the distribution become 
significant only in the early stages of the Big Bang.  Hence, it is also customary to regard 
the cosmic medium in the present epoch as a perfect fluid, which means that one can give 
the vector field u the interpretation of the relativistic flow velocity vector field of the 
fluid. 
 Any cosmological model contains the essential elements for a discussion of 
transverse geometry, which deals with the transverse (or normal) bundle to a foliation as 
the basis for all geometric constructions.  However, since most of the established 

cosmological models involve spacetimes of the form R×Σ, for some spatial 3-manifold Σ, 
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the question arises whether it is actually beneficial from a physics standpoint to 
generalize the usual geometric formalism.  The answer is simply that when the foliation 
of M that is generated by the vector field u is spatially non-integrable, which is equivalent 
to saying that the vorticity vector field associated with u (viz., the Poincaré dual of the 
Frobenius 3-form u ^ du, where u is the metric-dual covelocity 1-form) is non-vanishing 
the generalization is unavoidable.  Although the Gödel spacetime (cf, Hawking and Ellis 
[12], which involves precisely such non-vanishing vorticity, is often regard as somewhat 
unphysical, due to the existence of closed timelike geodesics, which are seen as a serious 
breakdown in causality, nevertheless, a recurring question concerning the early history of 
the Universe is whether the formation of spiral galaxies suggests that at least the early 
history of the Big Bang might have involved a significant amount of vorticity, as well as 
expansion; for instance, there may have been turbulence.  Hence, any such model would 
benefit from the methods of transverse geometry. 
 In section 2, we will briefly summarize the definition of a foliated manifold, give 
some relevant examples, and state Frobenius’s theorem in the forms that we will need in 
the rest of the article.  In section 3, we present the concept of a physical observer as 
essentially represented by a one-dimensional foliation; i.e., a congruence of curves.  
Section 4 contains a specialization of some of the elementary ideas in the transverse 
geometry of foliations to the case of one-dimensional foliations.  In section 5, we discuss 
how the formalism presented here relates to the more established formalism of 1+3 
splittings of spacetime; i.e., threadings.  In section 6, we then summarize the key points 
and mention some further avenues of research. 
 
 
2.  Foliations. 
 
 A foliation of an n-dimensional differentiable manifold M is a partitioning L of M 

into a disjoint union of submanifolds of the same dimension m that one calls the leaves of 
the foliation.  One then says that the foliation has dimension m or codimension n−m.  
Furthermore, one demands that all coordinate charts on M must be adapted to the 
foliation, in the sense that if the coordinate functions on an open subset U M take the 
form (xi, xa), with i = 1, …, m, a = m+1, …, n then the intersections of U with the leaves 
of L can be parameterized by choosing specific values for the coordinates xa.  Hence, on 

the overlap of two such charts the coordinate transition must take leaves to leaves, and if 
the new coordinates are of the form (yj, yb) then the functional form of the transformation 
must be: 
 

yj = yj(xi, xa),  yb = yb(xa) .      (2.1) 
 
This implies that the differential map must take the form: 
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Hence, the differential maps take their values in the subgroup GL(n; n−m) of GL(n) that 
preserve the linear subspace defined by (0, …, 0, xa). 
 One can define an equivalence relation on a manifold M with a foliation L by saying 

that x ~ y iff x and y belong to the same leaf of L.  The quotient space M/L of all such 

equivalence classes then represents the leaf space of the foliation.  Since the topology of 
leaf spaces can be potentially pathological – in particular, they might not be differentiable 
manifolds – the real objective of transverse geometry is to describe the geometry of the 
leaf space indirectly by means of constructions that one makes on M itself. 
 The simplest example of a foliation on a manifold is given by a product manifold M = 
P ×Q.  Since either factor manifold can be regarded as representing the leaves, one can 
also consider the leaves of the foliation as being defined by the fibers of the relevant 
projection map − say, P × Q → Q.  The leaf space in this case is simply Q. 
 More generally, if p:M → Q is a submersion of M onto Q, which means that the 
differential map Dp|x has a rank equal to the dimension of Q at every x ∈ M, then the 
level hypersurfaces of p are submanifolds of dimension n−q and collectively define a 
foliation of M that has codimension q.  Molino [18] refers to this type of foliation as a 
simple foliation, and uses it as a local model for the constructions of transverse geometry.  
The manifold Q then serves as the leaf space of the foliation again.  Of particular interest 
are the foliations of codimension one that one defines on a manifold M by means of the 

level hypersurfaces of a smooth function f: M → R with no critical points. 

 Note that foliated manifolds always behave like this example locally on the charts.  
Hence, every foliation is locally simple. 
 A more specialized case of the latter foliation is defined when the submersion p:M → 
Q is defined by the fibration of a manifold M over a manifold Q as a fiber bundle.  In 
such a case, the leaves of the foliation are the fibers of the bundle and the leaf space is the 
base manifold. 
 In some cases, the orbits of a group action G × M → M can define the leaves of a 
foliation, so the orbit space coincides with the leaf space.  One calls such a foliation a Lie 
foliation.  A necessary condition for a group action to foliate a manifold is that the orbits 
all have the same dimension, which suggests that the isotropy subgroups of all the orbits 

must have the same dimension, as well.  For instance, the action of O(n) on Rn – 0 

foliates it by n−1-spheres, which all have isotropy subgroups conjugate to O(n-1).  An 
almost-free group action, for which the isotropy subgroups are all discrete, will also 
define a foliation by its orbits. 
 The apparent origin of the sequence of mathematical generalizations that led to the 
definition of foliated manifolds is in the foliation of spaces by the integral submanifolds 
of differential systems that are defined on these spaces.  In the context of manifolds, a 
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differential system of rank m on a manifold M is a sub-bundle D of the tangent bundle 

that has constant rank m everywhere.  Hence, the fiber Dx at x∈M represents an m-

dimensional linear subspace of Tx(M) that one calls an integral element.  A submanifold S 
→ M of dimension k ≤ m is called an integral submanifold of D iff the tangent space Sx to 

S at each x ∈ S is contained in Dx.  D is called integrable iff every x ∈ M has some 

integral submanifold through it, and, in particular, completely integrable if all the integral 
submanifolds have maximum dimension equal to the rank of D.  Hence, a differential 

system D on M is completely integrable iff it is the tangent bundle to a foliation of M by 

leaves whose dimension equals the dimension of the fibers of D. 

 The simplest differential systems are of rank one, and are thus defined by line fields.  
As we shall discuss in the next section, a line field L on a manifold M does not have to be 
generated by all scalar multiples of a global non-zero vector field u on M – indeed, such a 
vector field might not even exist – but when it does, the integral submanifolds, which are 

then integral curves γ: R → M, are the solutions to the first-order system of n ordinary 

differential equations: 
 

0

( )d

d τ τ

γ τ
τ =

= u(γ(τ0)).        (2.2) 

 
 In a local coordinate chart (U, xµ), µ = 1, …, n they then take the form: 
 

dx

d

µ

τ
= uµ(xν(t)),        (2.3) 

 
in which the components uµ of u are taken in the natural frame field ∂µ = ∂/∂xµ on U that 
is defined by the partial derivatives with respect to the coordinate functions. 
 Often, the differential system D is itself the algebraic solution to a system of exterior 

differential equations of the form: 
 

θα = 0,  α = 1, …, m,       (2.4) 
 
in which each θα is an exterior differential k-form for some k.  One calls such differential 
systems exterior differential systems. 
 To say that D is a solution to such a system is to say that when each of the exterior 

forms θα in the system is evaluated on vector fields that take their values in the fibers of 
D the result is zero.  One then says that the fibers of D are the annihilating subspaces of 

all the forms in the system.  When all of the exterior forms in the system are 1-forms, one 
calls the system a Pfaffian system.  In particular, when one has a non-zero 1-form θ on a 
manifold M the annihilating subspaces are the integral elements of a differential system 
of corank one and the exterior differential system is simply: 
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θ = 0.          (2.5) 
 
 The necessary and sufficient conditions for the complete integrability of a differential 
system D on a manifold M are given by Frobenius’s theorem, which says that D is 

completely integrable iff it is involutive.  By this, we mean that the vector space X(D) of 

sections of the sub-bundle D → M, which are then vector fields on M with values in the 

fibers of D, must also be a Lie sub-algebra of the Lie algebra X(M) of all vector fields on 

M.  That is, if v, w ∈ X(D) then [v, w] ∈ X(D). 

 This has the immediate consequence that any rank one differential system must be 
completely integrable, since one can then represent v = fu, w = gu (at least locally), 
which then makes: 
 

[v, w] = (fug – guf) u .       (2.6) 
 
 Note, in particular that this bracket does not have to vanish, even though the fibers are 
one-dimensional, since the Lie algebra X(D) is defined over the infinite-dimensional 

vector space of smooth functions on M, such as f and g.  Indeed, we could just as well 
write (2.6) in the form: 
 

[f, g] = fug – guf.        (2.7) 
 
Hence, any vector field on M defines a Lie algebra on C∞(M). 
 When a differential system is defined by an exterior differential system of the form 
(2.4) the form that Frobenius’s theorem takes is to say that the exterior differential system 
(2.4) is completely integrable iff either: 
 

θα ^ dθα = 0,  for all α       (2.8) 
 
or there are 1-formsα

βη  for each α such that: 

 
dθα  = α

βη ^ θβ   for all α .      (2.9) 

 
 In particular, any k-form θ defines a completely integrable differential system by way 
of θ  = 0 iff: 
 

θ ^ dθ = 0.         (2.10) 
 
 
3.  Physical observers. 
 
 A physical observer is defined by a congruence O of smooth curves in the space-time 

manifold M that represent a physical motion.  That is, one has a one-dimensional foliation 
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of some region in M.  The nature of this region can be that of a world-tube, as in the case 
of a spatially extended, but bounded, distribution of mass – or at least energy, in the case 
of photons – or perhaps all of M, as in the case of cosmological models.  Although it 
would also be prudent to leave open the possibility that there are degenerate curves – i.e., 
fixed points – in this congruence, that would expand the scope of the preset discussion to 
that of singular foliations, which we shall treat in a later investigation.  For the sake of 
simplicity, we confine our attention in the sequel to only that region of M in which the 
congruence exists, or − what amounts to the same thing − we assume that M is 
completely foliated by O. 

 By differentiation, each curve of the congruence is associated with a non-zero 

velocity vector field u(τ), where τ ∈ R represents the curve parameter.  If, as is usually 

the case in the general relativistic treatment of space-time, M is endowed with a 
Lorentzian structure, which we describe by a second-rank doubly-covariant tensor field g 
that is symmetric, non-degenerate, and globally of hyperbolic normal type (with signature 
type (+ − − − )) then the world lines of massive matter are characterized by τ being the 
proper time parameterization, viz., the one for which g(u, u) = 1, and one then calls the 
congruence timelike. 
 If the congruence consists of lightlike curves, for which g(u, u) = 0 then the proper 
time parameterization is impossible.  For such a null congruence, which might describe 
the photons of a laser beam or the radiation from a star, one generally chooses an affine 
parameterization, which are then ones for which the geodesic equation takes the form 
∇uu = 0.  These parameterizations are not unique, but represent an equivalence class 

under action of the one-dimensional affine group on R, namely:  A(1) × R → R, ([a, b], 

x) ֏ ax + b. 
 In the general case, one associates each curve of O with the tangent line Lx  ∈ Tx(M) 

at each of its points, which then defines a rank-one vector sub-bundle L of the tangent 
bundle T(M); i.e., a line field on M.  Although this generalization is not as necessary in 
the case the motion of pointlike matter, which involves only one smooth curve in M, in 
the case of extended matter the issue of whether one can actually give all of the curves of 
the congruence a common parameterization is more physically and mathematically 
involved that it might seem at first glance.  We shall elaborate upon this shortly. 
 More precisely, since one moral principle for physics research is to experiment 
locally and theorize globally we shall start with the locally defined construction that L 
represents as being the fundamental object. 
 From Frobenius’s theorem, the line bundle L is always integrable into a one-
dimensional foliation of integral curves.  However, this does not imply a number of 
stronger statements that sometimes get assumed in the process: 

i. The existence of a global section to L. 
ii. The existence of a global flow for such a global section of L, if it exists. 
iii.  The existence of a global slice to O. 

iv. The existence of a unique global complementary sub-bundle Σ to L. 
v. The existence of a global transverse foliation to O. 

We shall now clarify the precise meaning of these comments. 
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 The first issue in the list above amounts to the question of time-orientability.  The 
congruence O is said to be time-orientable iff the line bundle L is orientable.  This, in 

turn, is equivalent to the existence of a global non-zero vector field u on M that takes its 
values in the fibers of L; i.e., a global non-zero section u: M → L of the vector bundle L 
→ M; we shall denote the Lie algebra of all such sections by X(L).  If M is compact then 

a global non-zero vector field of any description can exist iff the Euler-Poincaré 
characteristic χ[M] vanishes.  However, this necessary condition for the existence of a 
non-zero section of L is not sufficient. 
 A further necessary, but not sufficient, condition for time-orientability in the compact 

case is that the first Stiefel-Whitney class w1[L] ∈ H1(M; Z2) of the vector bundle L − 

which is not to be confused with the first Stiefel-Whitney class of T(M) − must vanish.  

One notes that if M is simply connected then H1(M; Z2) will vanish regardless of the 

choice of L and any line field on a simply connected M will be time orientable.  Since any 
non-simply connected M has a simply connected covering manifoldM one sees that any 
non-time orientable congruence O will have a time orientable covering congruence inM . 

 Now suppose that O is time-orientable and L is generated by a non-zero velocity 

vector field u.  In general, the assumption that u is continuously differentiable will only 
imply the existence of local flows.  That is, about any x ∈ M one will have an action of 

some subset (−ε, +ε) ∈ R of the group (R, +) on some open neighborhood U of x: 

 
  Φ: (−ε, +ε) × U → M,  (τ, y) ֏Φτ(y), 
 
such that Φτ : U → M is a diffeomorphism onto its image for every τ ∈ (−ε, +ε).   By 
definition, this action has the property that the orbit of any y ∈ U will be an integral curve 
of the vector field u: 
 

  u(y) = 
0

( )d y

d
τ

ττ =

Φ
. 

 
 One must be careful when applying the basic group property of the action: 
 
  Φτ Φσ = Φτ+σ , 
 
since this property only applies to proper time invariant vector fields, which corresponds 
to the case of steady flow in hydrodynamics and autonomous systems of ordinary 

differential equations.  However, in the case of a proper time varying vector field, u: R × 

M → T(M),  one can extend u to a vector field uɶ on R × M in such a way that the 

extended system is autonomous by defining uɶ (τ, x) = (1, u(t, x)).  This is essentially the 
Galilean embedding of velocity vectors that one encounters in the non-relativistic limit of 
special relativity. 
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 In general, local flows do not extend to flows for which U = M, nor can one extend 

from the subset (−ε, +ε) to all of R; if both extensions are possible, one calls the flow 

global.  A global flow will always exist in the case of a compact M,  as well as the case of 

a linear u, which implies that M = Rn.  This shows that compactness is a sufficient, but 

not necessary condition for the existence of a global flow. 
 Issue iii  says that one cannot generally choose a unique point γ(0) from each curve 
γ(τ) in O that might serve as the proper time origin.  Such an association defines a global 

slice of the foliation, that is, a codimension-one submanifold S of M that intersects O 

transversely; hence, Tx(S) ⊕ Lx = Tx(M) at each x ∈ M.  Because this would define the set 
of all points in space-time that are proper time simultaneous at τ = 0 for O, one can see 

that such a construction must have a distinctly non-relativistic character to it.  Hence, a 
different foliation would generally have a different global slice, if it had one at all. 
 Furthermore, even if u has a global flow there is nothing to say that there is a global 
slice to it.  One has to note that any point x ∈ M can serve as the proper time origin along 
the integral curve through it as well as any other.  Hence, although (−ε, +ε) has a 
distinguished point in the form of 0, M does not, and neither do any of the integral curves 
of O.  Again, the issue of synchronizing the proper time parameters for all of the curves 

in O, even if they are all given the unit-speed parameterization for a given Lorentzian 

structure, is not something that even arises in the case of the motion of pointlike matter, 
which is what occupies a lot of the discussion in general relativity at its most elementary 
level. 
 A stronger requirement than the existence of a single global slice at τ = 0 is the 
existence of a global slice for each τ.  This would define a codimension-one foliation of 
M transverse to the observer O.  Whether or not such a transverse foliation exists 

depends entirely upon the nature of the observer.  If such a transverse foliation exists then 
one has a corank-one vector sub-bundle Σ of T(M) that is complementary to L and is 
defined by the tangent spaces to the leaves of the transverse foliation.  Each fiber Σx of Σ 
is defined by an equivalence class [α] of 1-forms α that annihilate all of the vectors in Σx, 
so α(v) = 0 for all v ∈ Σx.  Hence, the vector bundle Σ  can also be represented by a line 
field Σ* in T*(M). 
 One easily sees that if O admits a global slice S and a global flow then it will admit a 

transverse foliation.  In fact, one will then be able to represent M as R×S.  This is the 

usual consequence of the initial-value formulation of gravitation, since one starts with a 
global slice in the form of a maximal Cauchy hypersurface and hopes that its time 
evolution by a one-parameter group of diffeomorphisms will generate the rest of M. 
 As long as one deals with locally defined constructs, as is commonly the case in most 
of general relativity, one essentially has such a representation of M, or really, the open 

subset U on which a coordinate chart has been defined, as R×S.  For such a foliation, all 

of the issues above represent natural properties of such an elementary type of foliation.  
However, in this study of the geometry of physical observers, we shall not assume the 
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existence of transverse foliations or global slices, but deal with the congruence of curves 
as the fundamental object. 
 As a consequence of this assumption, we shall need to examine some of the other 
special cases of a one-dimensional foliation O of M.  A recurring issue is whether one 

can use the quotient space M/O of M by the relation x ~ y iff there is an integral curve of 

O that passes through both x and y.  This is, by definition, the leaf space of O.  In 

general, it not even a manifold, but sometimes one sees it represented as either a fibration 
or an orbit space, so we need to examine these possibilities more closely. 
 There are two possible ways of representing M/O as a fibration depending upon what 

one regards as the base manifold of that fibration, proper time or “space.”  One sees two 
immediate problems with this construction: 
 First, in either case, whether one regards the curves of M/O as fibers or a base 

manifold, they must all be diffeomorphic.  However, even in the absence of fixed points, 

the curves might be either open − hence diffeomorphic to R − or closed − hence, 

diffeomorphic to the circle S1.  For any congruence in a manifold M there is always a 
covering manifoldMɶ with a covering congruence whose integral curves are all open (see, 
Fried [11]).  Although the non-existence of closed timelike curves is a common 
assumption of most cosmological models, they do appear in some widely studied models, 
such as the Gödel model.  The possibility of all of the curves of the congruence being 
closed seems less physically motivated than all of them being open, but this might be 
unavoidable when considering the conformal compactification of M. 
 Second, suppose that one wishes to fiber M over M/O as a three-dimensional 

manifold.  Hence, all of curves in O must have the same diffeomorphism type in order to 

make them the fibers of M → M/O.  Even if we are assuming that M/O is a manifold that 

still would not necessarily imply the existence of a global slice to the congruence, since 
that would amount to a global section of the fibration.  However, if we are assuming that 
all of the curves of O are open − hence, contractible spaces – such a global section will 

exist from basic obstruction theory (see Steenrod [23] or Milnor and Stasheff [17]).  Such 
a section is by no means canonical, which can be traced to the fact that the fibers are 

assumed to be non-canonically diffeomorphic to R.  In the event that one assumes that all 

of the fibers are (non-canonically) diffeomorphic to S1, whose only non-trivial homotopy 

group is π1(S
1) = Z, the existence of a global section will be obstructed by the possible  

non-vanishing of a Z-cocycle in dimension two. 

 One must realize that even though it is customary in relativity theory to regard closed 
timelike curves in space-time as unphysical, one must keep in mind two possible ways 
that they might be simply unobservable: First, the period of the orbit could be of 
cosmological magnitude – probably much larger than the present age of the universe.  
Second, if one thinks in terms of extended matter instead of pointlike matter, there is 
nothing to say that the period is the same for all of the orbits of O, or even locally the 
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same.  Conceivably, by the time a chosen point P on one orbit returned to that point, the 
points that were in a neighborhood of P at the first time point  might not be close to their 
return points on a local slice through P when P returns.  Hence, the chosen reference 
point might not actually observe a duplication of a previous state of all the neighboring 
matter, except for some even larger “synodic” period.  One can consider the orbits of the 
planets as a motivating example. 
 Furthermore, the existence of closed timelike curves is not actually inconsistent with 
time orientability, even though it does imply an acausal nature to events along a closed 
curve.  A breakdown of time orientability would have to involve a curve through a 
reference point that goes into the future with a future-pointing velocity vector and comes 
back to that point with a past-pointing velocity vector, not merely returning to it by 
means of curve that comes from the past at that point.  For instance, one would expect 
that there would be a breakdown of time orientability if u were allowed to have zeroes.  
However, this might take the form of having all of the directions at such a point pointing 
into the future – e.g., if the zero were a source – or into the past, as in the case of a sink.  
This is essentially what happens at the north pole of the Earth, where all directions point 
south. 
 Clearly, O cannot be an orbit foliation unless one has a complete global flow for u 

and u has no fixed points, which means u has no zeroes.  Furthermore, an orbit must 
always have a discrete isotropy subgroup in this case.  In the case of an open orbit, the 

isotropy subgroup is 0, which makes the orbit diffeomorphic to R, and the action is 

referred to as simply transitive.  In the closed case, the isotropy subgroup is Z, which 

makes the orbit diffeomorphic to R/Z, which can be regarded as either the one-torus T1 or 

the circle S1.  In order for a global action of R to not produce a foliation, one would have 

to either allow fixed points or possibly something more exotic, such as a non-discrete 

isotropy subgroup – say, the rational numbers Q.  Of the two possibilities, considering 

vector fields with zeroes seems more physically motivated; however, we shall not pursue 
that option in the present study. 
 
 
4.  The transverse geometry of a one-dimensional foliation. 
 
 The basic approach of transverse geometry is to define geometric objects on a 
manifold M that has been given a foliation F in such a manner that they will behave like 

objects that could be defined on the leaf space M/F if it had been given the structure of a 

differentiable manifold.  Such objects will then have to be “projectable” under the 
quotient map M → M/F, in a sense.  Hence, it will generally be necessary for them to be, 

in some sense, “constant” on the leaves.  Since we are only concerned with a one-
dimensional foliation O in the present discussion, we shall specialize the more general 

definitions that are given for p-dimensional foliations (cf., Molino [18]) to that case. 
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 The result of these definitions and constructions will be to allow us to speak of 
“spatial geometry” without the necessity of having to require that the foliation O actually 

define a product structure R × Σ for M, or even a submersion M  → Σ, more generally.  

When one is dealing with non-integrable cosmological models, for which the vorticity 
vector (i.e., the Frobenius 3-form) of O is non-vanishing, this is essential. 

 It is simple enough to define constancy on the leaves for smooth functions, of course. 
A smooth function f ∈ C∞(M) is called basic if any of the following equivalent conditions 
are satisfied: 
 i. It is constant on the leaves of O. 

 ii . uf = 0 for any u ∈ X(O). 

 iii . In any adapted local coordinate chart (U, xµ) one has:  f = f(xi), i = 1, 2, 3. 
 
 If the foliation O were simple and defined by a submersion p:M → Σ then basic 

functions on M would all represent the pullbacks of smooth functions on Σ by the 
submersion p; i.e., f = f ⋅ p for some uniquef ∈ C∞(Σ).  We shall denote the ring of all 

basic functions on M by ( )bC M∞ . 

 In the absence of a connection on T(M), one must do more work to define the concept 
of constancy on the leaves for a vector field on M.  However, we can always use the Lie 
derivative, which means that we are essentially using convection along a flow to 
substitute for parallel translation along a curve.  However, it not desirable to require the 
vanishing of that Lie derivative, since we wish to avoid committing ourselves to a 
specific choice of generating vector field u for L, or even its orientability.  Since a change 
of parameterization for any integral curve γ would replace u with λu, where λ is a non-
zero function along γ, one sees that if X ∈ X(M) and [X, u] = 0 then one would have: 

 
[X, λu] = (Xλ)u .        (4.1) 

 
Hence, we say that the vector field X is foliate (or projectable) iff: 
 

LuX = αu,         (4.2) 
 
for any u ∈X(O) and some α ∈ C∞(M) that generally depends upon u. 

 Note that if λ is any basic function on M and X is a foliate vector field then for any u 
∈X(O): 

[λX, u] = λαu         (4.3) 
 
for some α ∈ C∞(M).  Hence, the set XO(M) of all foliate vector fields on M is a ( )bC M∞ –

module.  Furthermore, foliate vector field act on basic functions as derivations, just as for 
the vector fields on M do.  However, unlike the latter more general case, the 
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representation of a derivation on( )bC M∞ by a foliate vector field is not unique.  In 

particular, any X ∈ X(O) will give the zero derivation. 

 An equivalent condition for X to be foliate is that in any adapted local coordinate 
chart (U, xµ) the component functions Xµ with respect to the natural frame field must take 
the form Xµ(xi), i = 1, 2 , 3.  Hence, the condition that we gave satisfactorily generalizes 
the notion that the vector field should be transverse to the foliation. 
 If a covector field α on M – i.e., a 1-form – annihilates any vector tangent to the 
foliation, then it is tempting to use this as a definition of its transversality.  However, 
since one does not always have that the 2-form dα will also annihilate any such tangent 
vector, if one is to define the exterior derivative on transverse k-forms in general, it 
would be more useful to also require that dα will also annihilate any such tangent vector.  
Hence, we define a 1-form α to be basic iff iuα = 0 and iudα = 0 for any u ∈X(O).  Note 

that this is stronger than requiring that Luα = 0 for any u ∈X(O) since: 

 
Luα = diuα + iudα = 0        (4.4) 

 
for any basic 1-form α, but the vanishing of Luα does not have to imply that both of the 
terms in the sum vanish identically. 
 Once again, the condition that α be basic is equivalent to the condition that its 
component functions in any adapted local coordinate system must be functions only of 
the spatial coordinates.  We also have that the set 1 ( )b MΛ of all basic 1-forms on M is a 

( )bC M∞ –module. 

 Since the Lie derivative acts on tensor products of vector fields and covector fields as 
a derivation, one easily sees that tensor products of basic objects are again basic in the 
sense of being constant along the leaves of O with respect to Lie derivation.  Hence, we 

add the subscript b to the usual notations to refer to the spaces of basic tensor fields on M 
of various types. 
 In particular, the exterior product of k basic 1-forms is a basic k-form in the same 

sense as defined for 1-forms.  We can then define the exterior algebra * ( )b MΛ =
3

0

( )k
b

k

M
=

Λ⊕  

of basic forms on M.  The exterior algebra of basic forms is then a( )bC M∞ –module.  Note 

that since we are essentially generalizing the pull-backs of k-forms on Σ by p, as above, 
and Σ is three-dimensional, the basic 4-forms must vanish.   
 By definition, the exterior derivative of a basic k-form will be a basic k+1-form.  
Hence, one can define closed and exact basic forms in the predictable way, as well as the 
basic de Rham cohomology* ( ; )bH M ℝ .  However, one must then realize that the basic 

cohomology is more pertinent to the topology of the leaf space than the topology of M. 
 If the leaf space M/O were a differentiable manifold Σ then it would have a tangent 

bundle T(Σ) and one could pull it back by means of the projection p:M  → Σ to a vector 
bundle on M.  However, such a pull-back would not actually be a sub-bundle of T(M) 
since any tangent vector to M that is transverse of O will project to a non-zero vector 
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tangent to Σ.  That is, one associates a vector tangent to p(x) with x, not a vector tangent 
to x.  In the more general case, for which p is not necessarily a submersion, the vector 
bundle that one works with as a substitute for the “spatial tangent bundle” is the 
transverse vector bundle Q(M) to O. 

 A transverse (or normal) vectorX to O at x ∈ M is an equivalence class of all tangent 

vectors v, w ∈ Tx(M) such that v – w ∈ Tx(O).  One can form linear combinations of such 

equivalence classes in the obvious way, so the set Qx(M) of all transverse vectors to O at 

x ∈ M can be given the structure of a vector space.  Similarly, the disjoint union Q(M) of 
all these transverse vector spaces for all x can be given the structure of a vector bundle 
over M whose rank is complementary to that of T(O), namely, three in the present case.  

However, once again, although the equivalence classes consist of tangent vectors, Q(M) 
is not itself a sub-bundle of T(M).  The canonical projection q:T(M) → Q(M), X ֏ X  
behaves in a manner that is analogous to that of the projection of T(M) onto T(Σ) in the 
case of a simple foliation.  Hence, the transverse bundle Q(M) will be the starting point 
for the rest of transverse geometry. 
 We can define a transverse vector field to be a sectionX :M →Q(M) of the fibration 
Q(M) → M, and denote the set of all transverse vector fields by X(Q).  Note that although 

the dimension of the fibers of Q(M) is one less than the dimension of M, one could not 
think of a transverse vector field as “spatial” vector field unless it were constant along the 
orbits; i.e., unless it were a foliate vector field.  One thus has a projection XO(M) → X(Q) 

whose kernel is X(O).  One can then think of a transversal vector field as representing 

essentially a “time-varying spatial vector field” and a foliate vector field as “time-
invariant,” and therefore essentially spatial with respect to the observer O  (Compare this 

with the methodology of “parametric manifolds” that is described by Perjés [19] and in 
Boersma and Dray [5].) 
 The set X(Q) can be given not only the structure of an infinite-dimensional real vector 

space in the obvious way, but also the structure of an infinite-dimensional real Lie 
algebra by the definition: 
 

[ , ]X Y = q[X, Y],        (4.4) 
 
in which X, Y ∈ XO(M) are any foliate vector fields that project ontoX ,Y , resp. 

 It is immediate that if one defines the action of a transverse vector fieldX on a basic 
function f to be: 
 

 X f = Xf          (4.5) 
 
for any vector field X ∈ X(M) that projects toX then this definition is unambiguous.  

 Note that we can now characterize a foliate vector field X on M by the property that: 
 

q[X, u] = 0         (4.6) 
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for any u ∈X(O).  One can think of the expression on the left-hand side as essentially the 

transverse Lie derivative of X along the foliation O, since any other choice of u will give 

the same result. 
 It is important to point out that the evaluation of a basic k-form on a set of transverse 
vector fields does not have to produce a basic function.  Hence, one loses the 
interpretation of k-forms as ( )bC M∞ -multilinear functionals on transverse multivector 

fields.  In particular, the space 1 ( )b MΛ of basic 1-forms is not generally the dual vector 

space to X(Q). 

 Since the fibers of Q(M) are three-dimensional vector spaces they can be framed by 
linear 3-frames.  A transverse 3-frame { ie , i = 1, 2, 3} at x ∈ M then consists of three 

linearly independent transverse vectorsie in Qx(M).  Equivalently, one can regard a 

transverse frame as an isomorphism σ: R3 → Qx(M), vi ֏ vi
ie .  One can also think of a 

transverse 3-frame at x as an equivalence class of 3-frames ei in Tx(M) that are transversal 
to O, in the sense that the subspace of Tx(M) that they span is complementary to Tx(O), 

and project onto the corresponding transverse vectorsie under q.  There is also a well-

defined projection from adapted linear 4-frames in Tx(M) to transverse 3-frames since the 
frame member that is tangent to O will vanish under the projection q. 

 One can then define the GL(3)-principal bundle GL(Q) of all transverse frames, and 
one then calls it the transverse frame bundle for O. 

 Once again, if we have a local transverse 3-frame field ie : U → GL(Q) then we must 

note that there is a difference between representing it by means of three vector fields ei: U 
→ T(M) that project ontoie , which is the time-varying case, and three foliate vector fields 

that project in that manner, which is then the time-invariant case.  It is only in the latter 
case that one is dealing with a “projectable” transverse 3-frame field.  Since our foliation 
is one-dimensional, we can then characterize such 3-frame fields by saying that for any 
temporal vector field u one must have that the three vector fields L iue  are all temporal. 

One can then regard the triple of foliate vector fields on U as representing a spatial 3-
frame relative to O. 

 Such a projectable transverse 3-frame can be obtained locally when O is time-

orientable and defined by a non-zero vector field u.  If Φ: (−ε, +ε) × U → M is a local 
flow for u on U ⊂ M then if Φ has a slice S ⊂ U, which we assume to represent τ = 0, and 
a 3-frame field ie on S then one can extendie to the rest of the image of Φ by convection. 

That is: one pushes the frameie forward along the flow of u by means of the 

diffeomorphisms of the flow itself.  Such a construction is always possible when U is the 
domain of an adapted coordinate chart since one can then use any level set of the x0 
coordinate as a slice.  We shall then call a local transverse frame field that is obtained in 
this manner a convected local transverse frame field. 
 Now that we have defined a principal bundle of frames over M, we can then go about 
the usual business of differential geometry, as it is practiced on frame bundles (see 
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Kobayashi and Nomizu [16], Bishop and Crittenden [3], or Sternberg [21]), by starting 
with GL(Q) as if it were the bundle GL(Σ) of linear 3-frames on a spatial manifold Σ. 

 First, one notes that GL(Q) has a canonical 1-form iθ  with values in R3 that works 

essentially the same way as the canonical R
4-valued 1-form θµ on GL(M).  That is, if x ∈ 

M and ie ∈ GLx(Q) is a transverse 3-frame at x then ie has a reciprocal coframeiθ , which, 

by definition, then has the property that( )i
jθ e = δi

j .  One can also think of iθ as a linear 

isomorphism iθ :Qx(M) → R3, which is the inverse of the isomorphism defined by ie , or, 

for that matter, an R3-valued 1-form on Qx(M).  One then pulls this 1-form up to an R3-

valued 1-form on ( )xT GL Qe that we also denote byiθ .  It can also be characterized by: 

 

θ ( )i
e X = *( ( ))i

x pθ X ,        (4.7) 

 
in which the overbar on the right-hand side refers to the projection of the vector p*(X) 
Tx(M) into Qx(M). 
 By construction, the resulting 1-formiθ on GL(Q) will be GL(3)-invariant and if ie : U 

→  GL(Q) is a local transverse 3-frame field then the pull-down of iθ to U by way 
of ie will be the reciprocal coframe field toie . 

 A transverse linear connection is a linear connection on the bundle GL(Q).  Hence, it 
can be defined by a GL(3)-invariant horizontal sub-bundle H(Q) in T(GL(Q)) that is 
complementary to the vertical sub-bundle V(Q), which consists of all tangent vectors to 
GL(Q) that project to zero under the differential of the bundle map GL(Q) → M.  A 
transverse linear connection can also be defined by an Ad−1-equivariant vertical 1-form 

i
jω on GL(Q) with values in gl(3).  The horizontal subspaces on GL(Q) then become the 

annihilating subspaces of this 1-form. 
 If O were a simple foliation, so the projection p:M → M/O would be a submersion of 

manifolds, then the bundle GL(Q) would be the pull-back of the bundle GL(M/O) of 

linear 3-frames on the manifold M/O and a transverse linear connection i
jω  would be the 

pull-back of some corresponding linear connection on GL(M/O) by p, just as the 

fundamental 1-form iθ would be the pull-back of the corresponding fundamental 1-form 
on GL(M/O).  Hence, we shall call a transverse linear connection on GL(Q) projectable 

iff it has that property on any simple open subset of M; i.e., every open subset over which 
the restriction of the foliation is simple.  In general, transverse linear connections do not 
have to be projectable, but, as it turns out, the ones that we shall be concerned with 
shortly – viz., transverse Riemannian connections − are always projectable. 
 Given a local transverse frame fieldie : U →  GL(Q) one can pull down i

jω  to a basic 

1-form on U with values in gl(3).  If ie represents the natural frame field for an adapted 

local coordinate system then one can expressi
jω in terms of the coordinate 1-forms as: 
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i
jω = i k

jkΓ θ .         (4.8) 

 
for appropriate basic functionsijkΓ . 

 Although the Cartan structure equations for the connection i
jω can be deduced as 

consequences of other definitions for the torsion 2-form iΘ  and curvature 2-form i
jΩ on 

GL(Q), we shall simply use those equations as the definitions themselves. 
 

iΘ = i∇θ = ^i i j
jd ωθ + θ ,  i

jΩ = i
jω∇ = ^i i k

j k jdω ω ω+ .  (4.9) 

 
 The 2-forms thus defined satisfy the usual Bianchi identities: 
 

 i∇Θ = ^i i j
jd ωΘ + Θ = ^i j

jΩ θ , i
j∇Ω = ^i i k

j k jd ωΩ + Ω = 0.  (4.10) 

 
 A connection on GL(Q) allows one to define a notion of the parallel translation of a 
transverse 3-frameie  along a curve γ(s).  If v(s) is the velocity vector field of γ and ( )i se is 

a transverse 3-frame field along γ then one can think of ( )i se as a differentiable curve in 

GL(Q) that projects onto γ.  If the velocity vector field ( )i seɺ , which is called the lift  of 

v(s), is horizontal, so: 
 

( ( ))i
j i sω eɺ = 0         (4.11) 

 
then one can regard the transverse frame field( )i se as parallel along γ. 
 One can also define a transverse linear connection by means of a covariant 
differential operator on the transverse vector fields: 
 

∇ : X(Q) → T*(M) ⊗ X(Q), Y ֏ ∇Y .     (4.12) 

 
The reason for the appearance of T*(M) is the fact that the ordinary differential map for a 
section Y : M → Q(M), takes T(M) to T(Q). 
 The easiest way to relate such a definition to the previous one is to choose a local 
transverse 3-frame fieldie , so Y = i

iY e and: 

 
∇Y = ( )i i j

j idY Yω+ e .        (4.13) 

 
 The evaluation of ∇Y on a vector field X then produces a transverse vector 
field ∇XY that represents the covariant derivative of Y in the direction of X.  Its local 

form is: 
∇XY = ( )i i j k

jk iY X Y+ ΓX e .       (4.14) 
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 We can then characterize a transverse frame field( )i se along a smooth curve γ as 

being parallel along that curve iff: 
 

( ) ( )s i s∇v e = 0  i = 1, 2, 3, all s      (4.15) 

 
which has the local form: 
 

ii Dv e = ( )j
i jω v e .        (4.16) 

 
 If we wish to define transverse geodesics for this connection, we must be careful to 
note the subtlety associated with the difference between the velocity vector field w(s) to a 
curve γ(s) in M and its projection onto a transverse vector field ( )sw .  Many tangent 
vectors in each Tγ(s)(M) will project onto the same transverse vector, so although one can 
define the differential equation to be satisfied along such a curve in the predictable way, 
if one defines the differential equation for a geodesic vector field in the same manner 
then its integrability becomes ambiguous.  Hence, we shall define transverse geodesics 
only for the Riemannian case later on. 
 A transverse covariant derivative that figures crucially in the study of characteristic 
classes of foliated bundle is the Bott connection.  It is defined by means of: 
 

o

∇ XY = p[X, Y] = pLXY,       (4.17) 
 
in which X ∈ X(M) is arbitrary,Y ∈X(Q), and Y ∈∈∈∈ X(M) is any vector field that projects 

ontoY .  This definition is unambiguous because the effect of choosing a different Y will 
only add a temporal vector field, which then projects to zero.  One can then think of the 
Bott connection as defining essentially a transverse Lie derivative operator on transverse 
vector fields.  As a consequence of the Jacobi identities, and the definition of curvature in 
terms of covariant derivatives: 
 

o

( , )R X Y Z =
o o o o o

[ , ]∇ ∇ − ∇ ∇ − ∇X Y Y X X YZ Z Z      (4.18) 
 
it will have vanishing curvature. 
 If G is a subgroup of GL(3) then we can consider reducing the bundle GL(Q) to a 
bundle G(Q) of transverse 3-frames that all lie with the orbits of the action of G on 
GL(Q).  Such a reduction of GL(Q) to a G-principle bundle is called a transverse G-
structure.  For the sake of space-time structure, the most elementary subgroups to 
consider are GL+(3), SL(3), SO(3), and{e}, the identity subgroup. 
 The subgroup GL+(3) consists of invertible 3×3 real matrices with positive 
determinant, which then have the property that they preserve a choice of orientation on 

R
3.  A transverse GL+(3)-structure on M then represents a transverse orientation, if it 

exists; i.e., an orientation on the bundle Q(M).  If T(M) and T(O) are both orientable then 
it follows that Q(M) is orientable. 
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 The subgroup SL(3) consists of invertible 3×3 real matrices with unit determinant, 
which then have the property that they preserve the unit volume element e1 ^ e2 ^ e3 on 

R
3.  Hence, a transverse SL(3)-structure on M then represents a choice of unit-volume 

element on Q(M), which then can be regarded as a transverse unit volume element.  If 
Q(M) is orientable then the reduction to a transverse SL(3)-structure is automatic, since 
SL(3) is a deformation retract of GL+(3). 
 Of course, SO(3) represents the subgroup of SL(3) that consists of (Euclidian) 
orthogonal matrices.  Hence, a transverse SO(3)-structure O(Q) on M is equivalent to a 
choice of Riemannian metricg on Q(M), for which O(Q) becomes the bundle of 

orthonormal frames.  In this case, O is commonly called a Riemannian foliation. 

 Finally, a transverse {e}-structure on M is a choice of a unique transverse 3-frame at 
each of its points, which one then calls a transverse parallelism.  One also calls says that 
such a foliation is framed.  Although one usually thinks of the global parallelizability of a 
manifold as something that is hard to come by, even for homogeneous spaces, and 
especially for dimension four, it is intriguing that in the case of dimension three one has 
the useful fact that any compact orientable 3-manifold is parallelizable.  Hence, if one is 
attempting to generalize compact orientable spatial manifolds then the possibility of 
Q(M) being trivializable is worth considering. 
 Let us return to the case of Riemannian foliations.  One notes that if the foliation O 

were simple then the pull-backg = p*g of a Riemannian metric g on M/O would have to 

be degenerate because vectors tangent to the leaves of O would project to zero.  In 

relativity, one naturally wishes to know how one could obtaing by the projection of a 
non-degenerate metric, such a Lorentzian metric.  In the terminology of Reinhart [20, 
21], a metric g on T(M) is called bundle-like iff whenever X, Y ∈ XO(U) are foliate 

vector fields on any open set U that are orthogonal to the leaves of O the function g(X, 

Y) on U is basic.  Hence, such a metric on T(M) is essentially constant on the leaves of O 

when restricted to the tangent spaces that are orthogonal to the leaves. 
 One has the usual consequences of defining a transverse metric g on Q(M): There is a 
unique metric connection with vanishing torsion associated with g that one calls the 
transverse Levi-Civita connection.  For a simple foliation, it is the pull-back of the Levi-
Civita connection on O(M/O) that is defined by the projected metricg on T(M/O).  

Hence, the transverse Levi-Civita connection is a projectable connection on O(Q). 
 We define transverse geodesics for this connection by means of a bundle-like metric 
g on T(M) that locally projects tog .  That is, a transverse geodesic for the transverse 
Levi-Civita connection associated withg is a geodesic for the Levi-Civita connection of g 

that is orthogonal to the leaves of O.  Such a transverse geodesic has the following two 

properties, which also completely characterize such curves: 
 i.  If a geodesic of g is orthogonal to a leaf of O at one point then it is it orthogonal to 

the leaves at all of its other points; i.e., it is a transverse geodesic. 
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 ii .  If U is a simple open subset then the intersection of a transverse geodesic with U 
projects onto a geodesic in U/O for the projected metric. 

 These properties were also established by Reinhart [20]. 
 For the sake of cosmological models − certainly, the case of Bianchi cosmologies − 
which invariably involve the existence of Killing vector fields and the action of isometry 
groups, it is important to define what such objects turn into when one no longer assumes 

that there is a spatial manifold Σ and a product foliation R×Σ of space-time.  The 

definition is straightforward: A vector field X on M is a transverse Killing vector field for 
the transverse metricg iff: 
 

L gX = 0.         (4.19) 

 
In this equation, we clarify thatg is also represented by the degenerate metric on T(M): 
 

g (X, Y) ≡ ( , )g X Y .        (4.20) 
 
The flow of a transverse Killing vector field then consists of isometries for the metricg . 
 A basic property of transverse Killing vector fields is that they are always foliate.  
(See, Molino [18].)  Note that this does not imply that they must always be transverse to 
the given one-dimensional foliation O, only that they be constant along it in the Lie 

sense.  Whenever a transverse Killing vector field is tangent to O the tangent vector at 

that point will then project to zero in Q(M), which defines a fixed point of the local flow 
of isometries. 
 Since most cosmological models – in particular, Bianchi cosmologies [8, 28] – 
involve the imposition of the action of a group of isometries on the spacetime, we see that 
the isometry groups that can be represented by transverse Killing vector fields are 
primarily relevant to the assumptions concerning the spatial homogeneity, isotropy, and 
self-similarity of the model in question.  However, if the orbit space (i.e., the surfaces of 
homogeneity) of a transverse group action defines a Lie foliation, in which case all of the 
isotropy subgroups must have the same dimension, one cannot have orbits that are both 
three-dimensional and transverse to O unless the foliation O is spatially integrable (i.e., 

hypersurface normal). 
 
5.  Relationship to 1+3 splittings. 
 
 A more established manner of obtaining spatial geometry from space-time geometry 
when one is given a congruence of curves defined by a physical observer O is to 

complete the line bundle L(M) that is tangent to the congruence with a rank three sub-
bundle Σ(M) so that one obtains a Whitney sum splitting of T(M) into L(M) ⊕ Σ(M).  
Such a decomposition is then called a 1+3 splitting of T(M), or a “threading” of space-
time [4, 9, 14, 15], to distinguish it from the complementary case, in which one has a 
“slicing” of space-time by a codimension-one foliation of proper-time simultaneity 
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hypersurfaces; in such a case, one refers to a 3+1 splitting [4, 6, 15]  Once again, the 
advantage of a threading over a slicing is most meaningful when one is dealing with a 
spatially non-integrable congruence; i.e., one that is not hypersurface normal. 
 Because the fibers of Σ(M), in either event, will be transverse to L(M) – i.e., 
transverse to the foliation – one sees that the restriction of the projection p:T(M) → Q(M) 
to Σ(M) will be a vector bundle isomorphism.  Because of this isomorphism, one can 
think of any choice of Σ(M) as basically a “faithful representation” of the transverse 
bundle Q(M).  Hence, a 1+3 splitting of T(M) plays essentially the same role in regard to 
Q(M) that a choice of frame plays in regard to a fiber of T(M). 
 When M is given a Lorentzian structure in addition to O, the natural choice of 1+3 

splitting is an orthogonal splitting, for which the fibers of Σ(M) are the orthogonal 
complements to the lines of L(M).  In the event that the sub-bundle Σ(M) is non-
integrable, it is important to point out that one cannot have an adapted local coordinate 
chart (U, xµ) whose natural frame field ∂µ is also orthonormal for the metric.  That is 
because the tangent spaces to the local foliation of U defined by the level surfaces of x0 
would have to agree with the fibers of Σ(U), but the local foliation would necessarily be 
integrable.  Hence, one must represent the fibers of Σ(U) as the annihilating hyperspaces 
of a timelike 1-form M on U: 
 
 

M = M0 dx0 + Mi dxi         (5.1) 
 
that does not coincide with dx0.  Up to sign and normalization, the M0 component of this 
1-form is called the lapse function and the components Mi define the shift covector for 
the threading defined by O. 

 We point out that the methodology of transverse geometry also has an immediate 
relevance to the geometry of “anholonomic spaces” (see, Vranceanu [27], Horak [13], 
Synge [25]), or Schouten [22]), which also start with 1+3 splittings of T(M) for which the 
Σ(M) sub-bundle is non-integrable, as well as “nonlinear connections” (see, Vacaru, et al. 
[26], Bejancu and Farran [2], or Delphenich [7] and references therein).  In the methods 
of nonlinear connections, one regards a 1+3 splitting of T(M) as a generalization of the 
splitting of the tangent bundle to a principal fiber bundle into a horizontal and vertical 
sub-bundle that one uses to define a connection. 
 
6.  Discussion. 
 
 We have seen that when one is dealing with a spatially non-integrable cosmological 
model (M, g, u), viz., one for which the vorticity vector field of u is non-vanishing, it is 
still possible to speak of the spatial geometry of M relative to the physical observer u by 
employing the methodology of the transverse geometry of foliations, suitably specialized 
to the case of one-dimensional foliations.  It is not necessary to either introduce a 
complementary sub-bundle to the tangent line bundle generated by u or a transverse 
foliation.  Indeed, although such a complementary sub-bundle will always exist, the 
existence of a transverse foliation would imply the spatial integrability of u. 
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 Some obvious directions to pursue in the name of adapting transverse geometry to the 
established methods of relativity and cosmology would be: 
 i. Detailing the form that decomposition of the Riemannian curvature tensor into the 
Weyl curvature tensor, the Ricci part, and the scalar curvature would take, especially the 
form of the electric and magnetic parts of the Weyl tensor, since they are commonly 
introduced to account for spatial tidal gravitational forces. 
 ii . Investigating the corresponding form that geodesic deviation takes, including the 
aforementioned decomposition of curvature. 
 iii . Formulating the Newtonian limit in terms of transverse geometry. 
 iv. Examining the form that the Bianchi classification scheme for homogeneous 
cosmologies takes in transverse geometry. 
 v. Applying the methodology to some existing solution with non-vanishing vorticity, 
such as the Gödel solution. 
 vi. Seeing whether the formalism leads to any new spatially non-integrable solutions. 
 Nevertheless, in advance of such extensions, one can still see that the formalism of 
transverse geometry seems to be a natural addition to the differential geometry of 
spacetime. 
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