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1. Introduction.

One of the most profound aspects of Einstein’s theorglafivity was the idea that
physical phenomena were better modeled as taking plac®ur-dimensional spacetime
manifold M than by means of parameterized curves in a spatial thaedad.
However, the correspondence principle says that any hearyt must duplicate the
successes of the theory that it is replacing at sowed t& approximation. Hence, a
fundamental problem of relativity theory is how to redute four-dimensional
spacetime picture of physical phenomena back to the-thineensional spatial picture of
Newtonian gravitation and mechanics.

The simplest approach is to assume tMat a product manifold of the forfxz,

where Z represents the spatial 3-manifold; indeed, most existindelmoof spacetime
take this form. However, since this is a purely math@alaassumption, it would be
more physically satisfying if it were a consequence ofiesanore physically motivated
assumption.

The most physically elementary way of accounting dore of the spacetime
dimensions is to assume ti\tis foliated by a congruence of curves, whether timeadike
null, and often assumed to be geodesics; such a congruendd represent the motion
of a physical observer. This approach is sometimesreefeo as athreading of
spacetime (cf.,4, 9, 14, 15]). However, one must proceed cautiously when goingitabo
the business of showing that such a threading actualljtsaen a product structure fif.

In general, one must first consider tleaf spaceof the foliation, whose points each
consist of a distinct curve of the foliation. Lesdaces do not necessarily have to be
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differentiable manifolds, depending upon the nature ofdahation, nor do they have to
define fibrations of the curves over some 3-manilor orbit spaces of the action of the

proper time groufR. Hence, it would seem to be more prudent to simply wéhlthe

leaf space on its own terms.

A complementary approach to recovering space from spacés to assume that M
has a spacelike codimension-one foliation, whoseelawight represent proper time
simultaneity submanifolds, such as when one has ads#iied proper time functionM

- R onM. This approach is often referred to adieing of spacetime (cf.,g, 14, 19]).

It is especially suited to the representation of ein& field equations for the spacetime
metric tensor fieldy as a problem in time evolution, such as the ADM (Aritpvdeser,
Misner [1]) formalism or the FOSH (first order symmetric hypait) formalism [L8].

Generally, either type of foliation is obtained byegration of a sub-bundle ®{M).
Hence, of the two formalisms, it is generally easteobtain a threading of spacetime,
since rank-one sub-bundles of the tangent buid@\) to M — i.e., line fields — are
always integrable into a global congruence of curveschwvhre not generally given a
unique or canonical parameterization. Corank-one sublésindT(M) do not have to be
integrable in four-dimensional manifolds since they will bsoziated with a 3-form by
Frobenius’s theorem, and the space of 3-forms does wettbasanish in dimension four.

Hence, the focus of this study is on how one goestatiescribing the geometry of
“space,” as it is viewed by a given observer as an esengithe transverse geometry of a
one-dimensional foliation. The primary point of apption to physics will be the
context of spatially non-integrable cosmological modalthough the methodology is
sufficiently general to be applicable to essentially @hysical context that involves a
dynamical system.

A cosmological model, as it is often defined (d&,,28]), consists of a tripleM, g, u)
in which M is a four-dimensional manifold that represents space;tins a Lorentzian
metric tensor field of normal hyperbolic type, amds a timelike unit vector field or a
lightlike vector field that represents the time evolntof space, in some sense of both the
terms “space” and “time.”

The sense in which can be defined at all generally follows from the assionghat
at some sufficiently large cosmological scale thétenalistribution of the Universe can
be represented by a continuous time-varying spatial massbdii®n. Hence, one
essentially regards the evolution of the Universe dtabsmological scale as an exercise
in relativistic continuum mechanics. Moreover, sifoe tass density of the universe at
that scale is quite small at present, it is alsoamasle to assume that the sort of
interactions that are responsible for shear foroelsvascosity in the distribution become
significant only in the early stages of the Big Baktgnce, it is also customary to regard
the cosmic medium in the present epoch as a perfadt Which means that one can give
the vector fieldu the interpretation of the relativistic flow velocityector field of the
fluid.

Any cosmological model contains the essential efgsndor a discussion of
transverse geometry, which deals with the transversagqrmal) bundle to a foliation as
the basis for all geometric constructions. However, esinost of the established

cosmological models involve spacetimes of the f@®x&, for some spatial 3-manifol,
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the question arises whether it is actually beneficiainfra physics standpoint to
generalize the usual geometric formalism. The answeimply that when the foliation
of M that is generated by the vector fields spatially non-integrable, which is equivalent
to saying that the vorticity vector field associateithw (viz., the Poincaré dual of the
Frobenius 3-fornu * du, whereu is the metric-dual covelocity 1-form) is non-vanishing
the generalization is unavoidable. Although the Godatspme (cf, Hawking and Ellis
[12], which involves precisely such non-vanishing vorticisypften regard as somewhat
unphysical, due to the existence of closed timelike gexjasiuch are seen as a serious
breakdown in causality, nevertheless, a recurring questiocerning the early history of
the Universe is whether the formation of spiral g&aaxguggests that at least the early
history of the Big Bang might have involved a significantount of vorticity, as well as
expansion; for instance, there may have been turbuledeace, any such model would
benefit from the methods of transverse geometry.

In section 2, we will briefly summarize the definiti@f a foliated manifold, give
some relevant examples, and state Frobenius’s theartdma forms that we will need in
the rest of the article. In section 3, we preseatdbncept of a physical observer as
essentially represented by a one-dimensional foliati@n; a congruence of curves.
Section 4 contains a specialization of some of tleenehtary ideas in the transverse
geometry of foliations to the case of one-dimensidoigtions. In section 5, we discuss
how the formalism presented here relates to the rastablished formalism of 1+3
splittings of spacetime; i.e., threadings. In sec@ipmwe then summarize the key points
and mention some further avenues of research.

2. Foliations.

A foliation of ann-dimensional differentiable manifoldl is a partitioningl of M

into a disjoint union of submanifolds of the same disi@mm that one calls theeavesof
the foliation. One then says that the foliation dasensionm or codimensiom—m.
Furthermore, one demands that all coordinate chartdlomust beadaptedto the
foliation, in the sense that if the coordinate fumasi on an open subsetM take the
form (X, %), withi = 1, ...,m, a=m+1, ...,n then the intersections &f with the leaves

of £ can be parameterized by choosing specific values farabelinates. Hence, on

the overlap of two such charts the coordinate tramsitiost take leaves to leaves, and if
the new coordinates are of the foryh ¢°) then the functional form of the transformation
must be:

y =Y(X, X, Yy =Y(x) (2.1)

This implies that the differential map must take thenfo
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Hence, the differential maps take their values in thEyoupGL(n; n-m) of GL(n) that
preserve the linear subspace defined by (0, .xX%)0,

One can define an equivalence relation on a maniollith a foliation£ by saying

thatx ~ y iff x andy belong to the same leaf @f The quotient spadel/L of all such

equivalence classes then representdadiespaceof the foliation. Since the topology of
leaf spaces can be potentially pathological — in particthay might not be differentiable
manifolds — the real objective of transverse geomstity idescribe the geometry of the
leaf space indirectly by means of constructions thatroakes oM itself.

The simplest example of a foliation on a manifoldiieen by a product manifolsll =
P xQ. Since either factor manifold can be regarded as reypnegehe leaves, one can
also consider the leaves of the foliation as beingnddfiby the fibers of the relevant
projection map- say,P x Q - Q. The leaf space in this case is simply

More generally, ifp:M - Q is a submersion ol onto Q, which means that the
differential mapDp|x has a rank equal to the dimension@at everyx [1 M, then the
level hypersurfaces gf are submanifolds of dimensiarn-q and collectively define a
foliation of M that has codimensioqm Molino [18] refers to this type of foliation as a
simplefoliation, and uses it as a local model for the anasions of transverse geometry.
The manifoldQ then serves as the leaf space of the foliation ag@irparticular interest
are the foliations of codimension one that one deforea manifoldVl by means of the

level hypersurfaces of a smooth functioM — R with no critical points.

Note that foliated manifolds always behave like thisngpda locally on the charts.
Hence, every foliation is locally simple.

A more specialized case of the latter foliation iBrael when the submersignM -

Q is defined by the fibration of a manifol over a manifoldQ as a fiber bundle. In
such a case, the leaves of the foliation are thesfibethe bundle and the leaf space is the
base manifold.

In some cases, the orbits of a group acbr M - M can define the leaves of a
foliation, so the orbit space coincides with the lgadice. One calls such a foliatiohia
foliation. A necessary condition for a group action to folmt@anifold is that the orbits
all have the same dimension, which suggests thatah®[yy subgroups of all the orbits

must have the same dimension, as well. For instaheeaction ofO(n) on R" — 0

foliates it byn—1-spheres, which all have isotropy subgroups conjuga@(rl). An
almost-freegroup action, for which the isotropy subgroups are allretis¢ will also
define a foliation by its orbits.

The apparent origin of the sequence of mathematicalgeations that led to the
definition of foliated manifolds is in the foliation gpaces by the integral submanifolds
of differential systems that are defined on these spate the context of manifolds, a
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differential systenof rankm on a manifoldM is a sub-bundlé& of the tangent bundle

that has constant rank everywhere. Hence, the fib&r, at x[IM represents am-
dimensional linear subspace{M) that one calls aimtegral element A submanifoldS
- M of dimensiork < m is called anntegral submanifolebf D iff the tangent spacs; to

S at eachx [J Sis contained iDy. D is calledintegrableiff every x 0 M has some
integral submanifold through it, and, in particulkompletely integrabld all the integral
submanifolds have maximum dimension equal to the rariR.ofHence, a differential

systemD onM is completely integrable iff it is the tangent buntlea foliation ofM by

leaves whose dimension equals the dimension of thes fide.

The simplest differential systems are of rank @megl are thus defined by line fields.
As we shall discuss in the next section, a line fieth a manifoldv does not have to be
generated by all scalar multiples of a global non-zeator fieldu onM — indeed, such a
vector field might not even exist — but when it does,inbegral submanifolds, which are

then integral curvegz R — M, are the solutions to the first-order systermafrdinary
differential equations:

dy(7r)

ar U(K 10))- (2.2)

In a local coordinate chatt)(x“), =1, ...,nthey then take the form:

e (X)), (2.3)
dr

in which the componentg’ of u are taken in the natural frame figéld= d/0x" onU that
is defined by the partial derivatives with respect toctiardinate functions.

Often, the differential syste is itself the algebraic solution to a system of gate
differential equations of the form:

89=0, a=1,..m, (2.4)

in which eact8? is an exterior differentidd-form for somek. One calls such differential
systemsexterior differential systems

To say thatD is a solution to such a system is to say that when ehathe exterior
forms 67 in the system is evaluated on vector fields that tak&e talues in the fibers of
D the result is zero. One then says that the fibef® are theannihilating subspacesf

all the forms in the system. When all of the exteforms in the system are 1-forms, one
calls the system Bfaffian system In particular, when one has a non-zero 1-féton a
manifold M the annihilating subspaces are the integral elementdiffiesential system
of corank one and the exterior differential systesingly:
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6=0. (2.5)

The necessary and sufficient conditions for the cetephtegrability of a differential
systemD on a manifoldM are given byFrobenius’s theoremwhich says tha®D is

completely integrable iff it isnvolutive By this, we mean that the vector spag®) of
sections of the sub-bundl - M, which are then vector fields & with values in the
fibers of D, must also be a Lie sub-algebra of the Lie algéi§) of all vector fields on

M. Thatis, ifv, w O X(D) then |, w] 0 X(D).

This has the immediate consequence that any rank ffeeedtial system must be
completely integrable, since one can then repregentfu, w = gu (at least locally),
which then makes:

[v,w] = (fug—guf) u . (2.6)

Note, in particular that this bracket does not haveanhish, even though the fibers are
one-dimensional, since the Lie algel®éD) is defined over thenfinite-dimensional

vector space of smooth functions bh such ag andg. Indeed, we could just as well
write (2.6) in the form:

[f, g] = fug —guf. (2.7)
Hence, any vector field ol defines a Lie algebra dZi"(M).

When a differential system is defined by an exteriffiedintial system of the form
(2.4) the form that Frobenius’s theorem takes is tdlsatythe exterior differential system
(2.4) is completely integrable iff either:

897 de“ =0, for alla (2.8)

or there are l-formysg for eacha such that:
do” =n5"6° for alla . (2.9)

In particular, ank-form @ defines a completely integrable differential systemvay
of @ = 0 iff:

6~ do= 0. (2.10)

3. Physical observers.

A physical observeis defined by a congruené2 of smooth curves in the space-time
manifold M that represent a physical motion. That is, one lm®adimensional foliation
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of some region itM. The nature of this region can be that of a worleet@s in the case
of a spatially extended, but bounded, distribution of magsat least energy, in the case
of photons — or perhaps all M, as in the case of cosmological models. Although it
would also be prudent to leave open the possibility that tiwer degenerate curves — i.e.,
fixed points — in this congruence, that would expand the sabite preset discussion to
that of singular foliations, which we shall treat imager investigation. For the sake of
simplicity, we confine our attention in the sequel to athigt region oM in which the
congruence exists, of what amounts to the same thirgwe assume thaM is

completely foliated byD.
By differentiation, each curve of the congruence isoasted with a non-zero

velocity vector fieldu(7), wherer O R represents the curve parameter. If, as is usually

the case in the general relativistic treatment of spmee, M is endowed with a
Lorentzian structure, which we describe by a second-rank glgolilriant tensor fielg
that is symmetric, non-degenerate, and globally of hypierbormal type (with signature
type (+———)) then the world lines of massive matter are charaed byr being the
proper time parameterization, viz., the one for wig@h u) = 1, and one then calls the
congruenceimelike.

If the congruence consists lidhtlike curves, for whiclkg(u, u) = 0 then the proper
time parameterization is impossible. For suahufl congruence, which might describe
the photons of a laser beam or the radiation fronaia she generally chooses affine
parameterizationwhich are then ones for which the geodesic equation takefortin
yu = 0. These parameterizations are not unique, but repraseequivalence class

under action of the one-dimensional affine grougRopmamely: A(1) xR - R, ([a, b],

X) > ax+b.
In the general case, one associates each cur@enath the tangent linéy [ Ty(M)

at each of its points, which then defines a rank-oneovesttb-bundld. of the tangent
bundleT(M); i.e., aline fieldon M. Although this generalization is not as necessary in
the case the motion of pointlike matter, which involeasy one smooth curve i, in

the case of extended matter the issue of whethecameactually give all of the curves of
the congruence a common parameterization is more pHysmad mathematically
involved that it might seem at first glance. We shialberate upon this shortly.

More precisely, since one moral principle for physicseagch is to experiment
locally and theorize globally we shall start withetlocally defined construction that
represents as being the fundamental object.

From Frobenius’s theorem, the line bundleis always integrable into a one-
dimensional foliation of integral curves. However,stlioes not imply a number of
stronger statements that sometimes get assumed pnoitess:

i. The existence of a global sectionL.to

ii. The existence of a global flow for such a global sectifL, if it exists.

iii. The existence of a global slice ¢
iv. The existence of a unique global complementary sublednb L.
v. The existence of a global transverse foliatiodto

We shall now clarify the precise meaning of these contgnen
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The first issue in the list above amounts to the quesif time-orientability. The
congruence? is said to bdime-orientableiff the line bundleL is orientable. This, in
turn, is equivalent to the existence of a global now-zector fieldu onM that takes its
values in the fibers df; i.e., a global non-zero sectionM - L of the vector bundlé
- M; we shall denote the Lie algebra of all such sectay®(L). If M is compact then
a global non-zero vector field of any description can tekisthe Euler-Poincaré

characteristicy{M] vanishes. However, this necessary condition foretistence of a
non-zero section df is not sufficient.
A further necessary, but not sufficient, conditiontfore-orientability in the compact

case is that the first Stiefel-Whitney clasgL] O H'(M; Z,) of the vector bundlé -

which is not to be confused with the first Stiefel-Wky¥ class off(M) — must vanish.
One notes that iM is simply connected thed*(M; Z,) will vanish regardless of the
choice ofL and any line field on a simply connectddwill be time orientable. Since any
non-simply connecte has a simply connected covering manifdidbne sees that any
non-time orientable congruenéewill have a time orientable covering congruencllin
Now suppose tha© is time-orientable andl is generated by a non-zero velocity

vector fieldu. In general, the assumption thats continuously differentiable will only
imply the existence of local flows. That is, abony & [J M one will have an action of

some subsetg, +¢) [ R of the groupR, +) on some open neighborhodf x:

D: (- +§ xU - M, (7, y) > PAY),

such thatd,: U - M is a diffeomorphism onto its image for evaryl (-¢, +¢). By
definition, this action has the property that the oobényy [J U will be an integral curve
of the vector fieldu:

_ do,(y)

u .
(v) ar |,

One must be careful when applying the basic gpaperty of the action:
q)T CDU = q)T+0'a

since this property only applies to proper timeainant vector fields, which corresponds
to the case of steady flow in hydrodynamics andommtnous systems of ordinary

differential equations. However, in the case pfaper time varying vector fields: R x

M - T(M), one can extend to a vector fieldion R x M in such a way that the

extended system is autonomous by defining; xX) = (1, u(t, X)). This is essentially the
Galilean embedding of velocity vectors that oneo@mters in the non-relativistic limit of
special relativity.
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In general, local flows do not extend to flows for @hU = M, nor can one extend
from the subset—g, +¢) to all of R; if both extensions are possible, one calls the flow

global. A global flow will always exist in the case o€ampactM, as well as the case of
a linearu, which implies thaM = R". This shows that compactness is a sufficient, but

not necessary condition for the existence of a gltal
Issueiii says that one cannot generally choose a unique p@nfrom each curve

A1) In O that might serve as the proper time origin. Suchssociation definesglobal

slice of the foliation, that is, a codimension-one submaaif® of M that intersectgD

transversely; hencd,(S) O Ly = Ty(M) at eachx (0 M. Because this would define the set
of all points in space-time that are proper time siandous at = 0 for O, one can see
that such a construction must have a distinctly rdativistic character to it. Hence, a
different foliation would generally have a different logo slice, if it had one at all.

Furthermore, even ii has a global flow there is nothing to say that therm global
slice to it. One has to note that any padiit M can serve as the proper time origin along
the integral curve through it as well as any other. ddemlthough ¢ +¢) has a
distinguished point in the form of ™ does not, and neither do any of the integral curves
of O. Again, the issue of synchronizing the proper time patensidor all of the curves

in O, even if they are all given the unit-speed parametior for a given Lorentzian
structure, is not something that even arises in the afadee motion of pointlike matter,
which is what occupies a lot of the discussion in gemetativity at its most elementary
level.

A stronger requirement than the existence of a siglglbal slice atr = 0 is the
existence of a global slice for each This would define a codimension-one foliation of
M transverse to the observ&x Whether or not such a transverse foliation exists

depends entirely upon the nature of the observer. Ifatidnsverse foliation exists then
one has a corank-one vector sub-buriklef T(M) that is complementary tb and is
defined by the tangent spaces to the leaves of the ér@esioliation. Each fibeX, of
is defined by an equivalence clag$ pf 1-formsa that annihilate all of the vectors iy,
so a(v) = 0 for allv [ Z,. Hence, the vector bundie can also be represented by a line
field =" in T (M).

One easily sees that@ admits a global slic& and a global flow then it will admit a

transverse foliation. In fact, one will then be atderepresenM asRxS. This is the

usual consequence of the initial-value formulation of gatieih, since one starts with a
global slice in the form of a maximal Cauchy hypersurfand hopes that its time
evolution by a one-parameter group of diffeomorphismsgeitierate the rest M.

As long as one deals with locally defined constructss asmmonly the case in most
of general relativity, one essentially has such a sgmtation oM, or really, the open

subsetU on which a coordinate chart has been define®>% For such a foliation, all

of the issues above represent natural properties of auahementary type of foliation.
However, in this study of the geometry of physical obses, we shall not assume the
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existence of transverse foliations or global slides,deal with the congruence of curves
as the fundamental object.
As a consequence of this assumption, we shall need toirexaome of the other

special cases of a one-dimensional foliat@rof M. A recurring issue is whether one
can use the quotient spadO of M by the relatiorx ~y iff there is an integral curve of

O that passes through boxhandy. This is, by definition, théeaf spaceof O. In

general, it not even a manifold, but sometimes oneiseggresented as either a fibration
or an orbit space, so we need to examine these posssbitibre closely.

There are two possible ways of representiti@® as a fibration depending upon what

one regards as the base manifold of that fibration, prtpe or “space.” One sees two
immediate problems with this construction:

First, in either case, whether one regards the curfdd/O as fibers or a base
manifold, they must all be diffeomorphic. However, evethe absence of fixed points,
the curves might be either openhence diffeomorphic t&®® — or closed- hence,

diffeomorphic to the circl&S'. For any congruence in a manifdil there is always a

covering manifoldM with a covering congruence whose integral curves ampath (see,
Fried [11]). Although the non-existence of closed timelike curiesa common
assumption of most cosmological models, they do appesrme widely studied models,
such as the Gddel model. The possibility of all of ¢heves of the congruence being
closed seems less physically motivated than all of theimg open, but this might be
unavoidable when considering the conformal compactificatidw.

Second, suppose that one wishes to fibkrover M/©O as a three-dimensional
manifold. Hence, all of curves @ must have the same diffeomorphism type in order to

make them the fibers & - M/O. Even if we are assuming tHdf© is a manifold that

still would not necessarily imply the existence oflabgl slice to the congruence, since
that would amount to a global section of the fibratidtowever, if we are assuming that

all of the curves o are open- hence, contractible spaces — such a global sectibn wi

exist from basic obstruction theory (see Steen28figr Milnor and Stasheffl]7]). Such
a section is by no means canonical, which can be trac#tetfact that the fibers are

assumed to be non-canonically diffeomorphi@®toln the event that one assumes that all

of the fibers are (non-canonically) diffeomorphic3p whose only non-trivial homotopy
group is7a(S) = Z, the existence of a global section will be obstructethbypossible

non-vanishing of &-cocycle in dimension two.

One must realize that even though it is customarylativity theory to regard closed
timelike curves in space-time as unphysical, one must keepnd two possible ways
that they might be simplynobservable First, the period of the orbit could be of
cosmological magnitude — probably much larger than the mregge of the universe.
Second, if one thinks in terms of extended matter instégubintlike matter, there is

nothing to say that the period is the same for all efdtbits ofO, or even locally the
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same. Conceivably, by the time a chosen pBioh one orbit returned to that point, the
points that were in a neighborhoodrbét the first time pointmight not be close to their
return points on a local slice throughwhenP returns. Hence, the chosen reference
point might not actually observe a duplication of a previstate of all the neighboring
matter, except for some even larger “synodic” peri@he can consider the orbits of the
planets as a motivating example.

Furthermore, the existence of closed timelike curve®isactually inconsistent with
time orientability, even though it does imply an acausdlre to events along a closed
curve. A breakdown of time orientability would have twdlve a curve through a
reference point that goes into the future with a futuetmg velocity vector and comes
back to that point with a past-pointing velocity vectoot merely returning to it by
means of curve that comes from the past at that pdiot. instance, one would expect
that there would be a breakdown of time orientability iere allowed to have zeroes.
However, this might take the form of having all of theections at such a point pointing
into the future — e.qg., if the zero were a source —tortime past, as in the case of a sink.
This is essentially what happens at the north polaetarth, where all directions point
south.

Clearly, O cannot be an orbit foliation unless one has a comgletaal flow foru

andu has no fixed points, which meanshas no zeroes. Furthermore, an orbit must
always have a discrete isotropy subgroup in this casehel case of an open orbit, the

isotropy subgroup is 0, which makes the orbit diffeomorpbi®t and the action is
referred to asimply transitive In the closed case, the isotropy subgroug,isvhich
makes the orbit diffeomorphic f&/Z, which can be regarded as either the one-t6tus

the circleS". In order for a global action & to not produce a foliation, one would have
to either allow fixed points or possibly something more iexa@uch as a non-discrete
isotropy subgroup — say, the rational numbid@rs Of the two possibilities, considering

vector fields with zeroes seems more physically mtgtiahowever, we shall not pursue
that option in the present study.

4. Thetransverse geometry of a one-dimensional foliation.

The basic approach of transverse geometry is to demwemetric objects on a
manifold M that has been given a foliatidhin such a manner that they will behave like

objects that could be defined on the leaf spdtE if it had been given the structure of a
differentiable manifold. Such objects will then have b® “projectable” under the
guotient magM — M/F, in a sense. Hence, it will generally be necessarthém to be,
in some sense, “constant” on the leaves. Since re@eoaly concerned with a one-
dimensional foliation® in the present discussion, we shall specialize the meneral
definitions that are given f@-dimensional foliations (cf., MolinolB]) to that case.
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The result of these definitions and constructions Wl to allow us to speak of
“spatial geometry” without the necessity of having tquiee that the foliatior® actually

define a product structuf@ x > for M, or even a submersidvi - X, more generally.

When one is dealing with non-integrable cosmological modetswhich the vorticity
vector (i.e., the Frobenius 3-form) ©fis non-vanishing, this is essential.

It is simple enough to define constancy on the leéaresmooth functions, of course.
A smooth functiorf O C*(M) is calledbasicif any of the following equivalent conditions
are satisfied:

i. Itis constant on the leaves©f
ii. uf =0 foranyu O X(0O).
iii. In any adapted local coordinate chat %) one has:f =f(x),i =1, 2, 3.

If the foliation O were simple and defined by a submergmi - X then basic
functions onM would all represent the pullbacks of smooth functionszohy the
submersiorp; i.e.,f = f [p for some uniqué 0 C*(Z). We shall denote the ring of all
basic functions oM byC;’ (M).

In the absence of a connection™iv), one must do more work to define the concept
of constancy on the leaves for a vector fielddbn However, we can always use the Lie
derivative, which means that we are essentially usingvexdion along a flow to
substitute for parallel translation along a curve. Haweit not desirable to require the
vanishing of that Lie derivative, since we wish to avoid cotting ourselves to a
specific choice of generating vector fieldor L, or even its orientability. Since a change
of parameterization for any integral curyevould replacau with Au, whereA is a non-
zero function along; one sees that X [ X(M) and X, u] = 0 then one would have:

[X, Au] = (XA)u . (4.1)
Hence, we say that the vector fiedds foliate (or projectablg iff:
LuX = au, (4.2)

for anyu 0X(0) and somex O C*(M) that generally depends upon
Note that ifA is any basic function ol andX is a foliate vector field then for any
0x(0):
[AX, u] = Aau (4.3)

for somea O C”(M). Hence, the se% (M) of all foliate vector fields oM is aC.’ (M) —

module. Furthermore, foliate vector field act on basictions as derivations, just as for
the vector fields onM do. However, unlike the latter more general case, the
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representation of a derivation Gfi(M)by a foliate vector field is not unique. In

particular, anyX [0 X(O) will give the zero derivation.

An equivalent condition foX to be foliate is that in any adapted local coordinate
chart U, X) the component function$’ with respect to the natural frame field must take
the formX#(x), i = 1, 2, 3. Hence, the condition that we gave satwsfihc generalizes
the notion that the vector field should be transvesgbe foliation.

If a covector fieldad on M — i.e., a 1-form — annihilates any vector tangent to the
foliation, then it is tempting to use this as a defimtwf its transversality. However,
since one does not always have that the 2-fdemwill also annihilate any such tangent
vector, if one is to define the exterior derivative oansversek-forms in general, it
would be more useful to also require thatwill also annihilate any such tangent vector.

Hence, we define a 1-foramto bebasiciff iya = 0 andi,da = 0 for anyu 00X(0). Note
that this is stronger than requiring thaiol= 0 for anyu 0X(O) since:

Lya =diya+i,da=0 (4.4)

for any basic 1-fornm, but the vanishing of la does not have to imply that both of the
terms in the sum vanish identically.

Once again, the condition that be basic is equivalent to the condition that its
component functions in any adapted local coordinate systast be functions only of

the spatial coordinates. We also have that the\$&¥) of all basic 1-forms oM is a
C, (M)—module.

Since the Lie derivative acts on tensor products ctiovdields and covector fields as
a derivation, one easily sees that tensor productssié¢ bhjects are again basic in the
sense of being constant along the leave® @fith respect to Lie derivation. Hence, we

add the subscridid to the usual notations to refer to the spaces of bassor fields oM
of various types.
In particular, the exterior product &fbasic 1-forms is a baslcform in the same

3
sense as defined for 1-forms. We can then define teei@xalgebra\, (M) =[] AL(M)
k=0

of basic forms oM. The exterior algebra of basic forms is th&{ &M )—-module. Note

that since we are essentially generalizing the Ipatks ofk-forms onZ by p, as above,
andZ is three-dimensional, the basic 4-forms must Vanis

By definition, the exterior derivative of a baskdorm will be a basick+1-form.
Hence, one can define closed and exact basic forthe predictable way, as well as the

basic de Rham cohomologl (M;RR). However, one must then realize that the basic
cohomology is more pertinent to the topology ofldedf space than the topologyMf

If the leaf spac&/O were a differentiable manifold then it would have a tangent
bundleT(Z) and one could pull it back by means of the prtagegp:M - Z to a vector
bundle onM. However, such a pull-back would not actuallyébsub-bundle oT(M)
since any tangent vector M that is transverse aP will project to a non-zero vector
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tangent tax. That is, one associates a vector tangep{Xpwith x, not a vector tangent
to x. In the more general case, for whighs not necessarily a submersion, the vector
bundle that one works with as a substitute for theatiap tangent bundle” is the

transverse vector bundle(RQ) to O.

A transverse (or normal) vectdrto O atx 0 M is an equivalence class of all tangent
vectorsv, w [1 Ty(M) such thaty —w [0 T,(O). One can form linear combinations of such
equivalence classes in the obvious way, so th@gdt) of all transverse vectors t0 at

x O M can be given the structure of a vector space. Slypikhe disjoint uniorQ(M) of
all these transverse vector spaces fox @hn be given the structure of a vector bundle

over M whose rank is complementary to thatTéf)), namely, three in the present case.
However, once again, although the equivalence classestcohtangent vector (M)
is not itself a sub-bundle @(M). The canonical projectiog T(M) - Q(M), X > X
behaves in a manner that is analogous to that of thecpomeof T(M) onto T(Z) in the

case of a simple foliation. Hence, the transvéxssdle Q(M) will be the starting point
for the rest of transverse geometry.

We can define &ransverse vector fieltb be a sectiok :M — Q(M) of the fibration
Q(M) - M, and denote the set of all transverse vector figyd(Q). Note that although

the dimension of the fibers &(M) is one less than the dimensionMf one could not
think of a transverse vector field as “spatial” vecteldfiunless it were constant along the

orbits; i.e., unless it were a foliate vector fiefdne thus has a projectidi,(M) - X(Q)

whose kernel is£(0). One can then think of a transversal vector fieldepsesenting
essentially a “time-varying spatial vector field” andfaiate vector field as “time-
invariant,” and therefore essentially spatial withpexs to the observe® (Compare this

with the methodology of “parametric manifolds” thatdisscribed by Perje49] and in
Boersma and Dray].)
The setX(Q) can be given not only the structure of an infinite-disienal real vector

space in the obvious way, but also the structure of anitevdimensional real Lie
algebra by the definition:

[X,Y]=d[X, Y], (4.4)

in whichX, Y O X,(M) are any foliate vector fields that project oXtoY , resp.

It is immediate that if one defines the action dfamsverse vector field on a basic
functionf to be:

X f=Xf (4.5)

for any vector fieldK 0 X¥(M) that projects t&X then this definition is unambiguous.
Note that we can now characterize a foliate vefzeéd X onM by the property that:

qX,u] =0 (4.6)
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for anyu OX(0). One can think of the expression on the left-handasdessentially the

transverse Lie derivative of along the foliationD, since any other choice ofwill give

the same result.
It is important to point out that the evaluationadbasidk-form on a set of transverse
vector fields does not have to produce a basic functidhence, one loses the

interpretation ofk-forms as C;’(M)-multilinear functionals on transverse multivector
fields. In particular, the spaca; (M) of basic 1-forms is not generally the dual vector

space tax(Q).
Since the fibers o(M) are three-dimensional vector spaces they can besdrdon
linear 3-frames. Aransverse3-frame {€, i = 1, 2, 3} atx O M then consists of three

linearly independent transverse vec®is Q«(M). Equivalently, one can regard a

transverse frame as an isomorphien®® - Q (M), v HV‘E. One can also think of a

transverse 3-frame atas an equivalence class of 3-fraraga Tx(M) that are transversal
to O, in the sense that the subspacd,d#) that they span is complementaryTtgO),
and project onto the corresponding transverse vegtarderq. There is also a well-
defined projection from adapted linear 4-frame3,{M) to transverse 3-frames since the
frame member that is tangent@will vanish under the projectiam

One can then define ti&L(3)-principal bundleGL(Q) of all transverse frames, and
one then calls it theansverse frame bundfer O.

Once again, if we have a local transverse 3-fraglddi: U — GL(Q) then we must

note that there is a difference between represeittimgmeans of three vector fields U

- T(M) that project onte , which is the time-varying case, and three foliate¢oeftelds
that project in that manner, which is then the timeariant case. It is only in the latter
case that one is dealing with a “projectable” transv@fame field. Since our foliation
is one-dimensional, we can then characterize suchrBef fields by saying that for any
temporal vector fieldi one must have that the three vector fieldg are all temporal.

One can then regard the triple of foliate vector fiedddJ as representing a spatial 3-
frame relative taD.

Such a projectable transverse 3-frame can be obtainadlyloghen O is time-

orientable and defined by a non-zero vector fieldIf ®: (¢ +&§ x U - M is a local
flow for u onU O M then if® has a slic& [ U, which we assume to represent 0, and
a 3-frame field&g on Sthen one can extemto the rest of the image df by convection.

That is: one pushes the framfrward along the flow ofu by means of the

diffeomorphisms of the flow itself. Such a construct®always possible whdu is the
domain of an adapted coordinate chart since one can theanystevel set of the®
coordinate as a slice. We shall then call a loeaisverse frame field that is obtained in
this manner @onvected local transverse frame field.

Now that we have defined a principal bundle of frames Bl we can then go about
the usual business of differential geometry, as it actiwed on frame bundles (see
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Kobayashi and Nomizulf], Bishop and Crittender3], or Sternberg41]), by starting
with GL(Q) as if it were the bundl&L(Z) of linear 3-frames on a spatial manifald

First, one notes thaL(Q) has a canonical 1-for' with values inR® that works

essentially the same way as the canori¢alalued 1-formB” onGL(M). That is, ifx O

M and € 0 GL«(Q) is a transverse 3-framejatheng has a reciprocal cofran®é, which,
by definition, then has the property tBafe )= Jj. One can also think & as a linear

isomorphisn® :Q«(M) — R3 which is the inverse of the isomorphism definedépyor,

for that matter, aiR>-valued 1-form orQ,(M). One then pulls this 1-form up to &i-

valued 1-form off,GL, (Q) that we also denote BY. It can also be characterized by:

0.(X)=8,(p.(X)), (4.7)

in which the overbar on the right-hand side refergheoprojection of the vectgs(X)
T«(M) into Q«(M).

By construction, the resulting 1-foBhon GL(Q) will be GL(3)-invariant and if§ : U
- GL(Q) is a local transverse 3-frame field then the pull-dayf 6'to U by way
of & will be the reciprocal coframe field &.

A transverse linear connectias a linear connection on the bun@&(Q). Hence, it
can be defined by &L(3)-invariant horizontal sub-bundld(Q) in T(GL(Q)) that is
complementary to the vertical sub-bunt¥€)), which consists of all tangent vectors to
GL(Q) that project to zero under the differential of thenddle mapGL(Q) - M. A
transverse linear connection can also be defined by ahedivariant vertical 1-form
chj on GL(Q) with values ingl(3). The horizontal subspaces Gh(Q) then become the
annihilating subspaces of this 1-form.

If O were a simple foliation, so the projectipiM — M/O would be a submersion of

manifolds, then the bundl&L(Q) would be the pull-back of the bund@&L(M/O) of
linear 3-frames on the manifoM/® and a transverse linear connect@h would be the

pull-back of some corresponding linear connection G(M/O) by p, just as the
fundamental 1-forr' would be the pull-back of the corresponding fundamentai i f
on GL(M/©). Hence, we shall call a transverse linear conoecinGL(Q) projectable

iff it has that property on any simple open subséiipfe., every open subset over which
the restriction of the foliation is simple. In geal, transverse linear connections do not
have to be projectable, but, as it turns out, the omaswe shall be concerned with

shortly — viz. transverse Riemannian connectiohare always projectable.
Given a local transverse frame fi@dU - GL(Q) one can pull dowrﬂ to a basic

1-form onU with values ingl(3). Iferepresents the natural frame field for an adapted
local coordinate system then one can expﬁ;B’sterms of the coordinate 1-forms as:
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@ =F 8" (4.8)

for appropriate basic functiofs, .
Although theCartan structure equationfor the connectiocﬁ can be deduced as

consequences of other definitions for thesion 2-form®' andcurvature 2-forn® on
GL(Q), we shall simply use those equations as the defmsitibemselves.

& =06=d6 +a@ "0, 0\ = Od=da +a @ . (4.9)
The 2-forms thus defined satisfy the usBenchi identities:
06'=d6 +&~6' =0\ "8,  00=dd+a"3=0. (4.10)

A connection orGL(Q) allows one to define a notion of the parallel tratish of a
transverse 3-fram@ along a curve(s). If v(s) is the velocity vector field ofande(s) is

a transverse 3-frame field alopghen one can think o&(s) as a differentiable curve in

GL(Q) that projects ontg. If the velocity vector fiel@&(s), which is called thdift of
Vv(s), is horizontal, so:

@ (&(5) =0 (4.11)

then one can regard the transverse framediélasparallel alongy.

One can also define a transverse linear connection nsnef acovariant
differentialoperator on the transverse vector fields:

0:%0Q - TMM O XQ), Y 0OYv. (4.12)

The reason for the appearancd¥{fM) is the fact that the ordinary differential map &or
sectionY : M — Q(M), takesT(M) to T(Q).

The easiest way to relate such a definition to tleipus one is to choose a local
transverse 3-frame fiell, so Y =Y'g and:

Oy =@dY' +@dY)g. (4.13)

The evaluation of0JY on a vector fieldX then produces a transverse vector
field 0, Y that represents theovariant derivativeof Y in the direction ofX. Its local
form is:

O,Y =(XY'+, X ¥)&. (4.14)
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We can then characterize a transverse framegi@hlong a smooth curvg as
being parallel along that curve iff:

0,48(9)=0 i=1,2,3 alb (4.15)
which has the local form:
i,D&= @ (V)E, . (4.16)

If we wish to define transverse geodesics for this eotion, we must be careful to
note the subtlety associated with the difference eéetvihe velocity vector field(s) to a

curve s) in M and its projection onto a transverse vector fi@i(s) . Many tangent

vectors in eacfTyy(M) will project onto the same transverse vectoral§aough one can
define the differential equation to be satisfiedngl such a curve in the predictable way,
if one defines the differential equation for a gesid vector field in the same manner
then its integrability becomes ambiguous. Hence,shall define transverse geodesics
only for the Riemannian case later on.

A transverse covariant derivative that figurescally in the study of characteristic
classes of foliated bundle is tBett connection It is defined by means of:

0¥ =p[X, Y] = pLxY, (4.17)

in whichX O X(M) is arbitraryY 0%(Q), andY O X(M) is any vector field that projects

ontoY . This definition is unambiguous because the efiéchoosing a different will
only add a temporal vector field, which then prtgeo zero. One can then think of the
Bott connection as defining essentially a transvéiie derivative operator on transverse
vector fields. As a consequence of the Jacobitiies) and the definition of curvature in
terms of covariant derivatives:

R(X,Y)Z =0x Oy Z = Oy Ox Z Dy Z (4.18)

it will have vanishing curvature.

If G is a subgroup oGL(3) then we can consider reducing the bur@l€Q) to a
bundle G(Q) of transverse 3-frames that all lie with the tglf the action ofc on
GL(Q). Such a reduction d&L(Q) to a G-principle bundle is called &ansverse G-
structure. For the sake of space-time structure, the mosmehtary subgroups to
consider ar&L*(3), SL(3), SA3), andf}, the identity subgroup.

The subgroupGL*(3) consists of invertible 3x3 real matrices witlospive
determinant, which then have the property that fhegerve a choice of orientation on

R®. A transversesL’(3)-structure orM then represents tansverse orientatianif it

exists; i.e., an orientation on the bun@@). If T(M) andT(O) are both orientable then
it follows thatQ(M) is orientable.
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The subgrouBL(3) consists of invertible 3x3 real matrices with unitedetinant,
which then have the property that they preserve the uhimeoelemene; * e, ™ e; on

R®. Hence, a transvers®i(3)-structure orM then represents a choice of unit-volume

element omQ(M), which then can be regarded afgansverse unit volume elementf
Q(M) is orientable then the reduction to a transv&ig@)-structure is automatic, since
SL(3) is a deformation retract GfL"(3).

Of course,SQO3) represents the subgroup 8L(3) that consists of (Euclidian)
orthogonal matrices. Hence, a transve3§§3)-structureO(Q) on M is equivalent to a
choice of Riemannian metrigcon Q(M), for which O(Q) becomes the bundle of
orthonormal frames. In this cas®,is commonly called &iemannian foliation.

Finally, a transversee}-structure onM is a choice of a unique transverse 3-frame at
each of its points, which one then callBansverse parallelismOne also calls says that
such a foliation igramed Although one usually thinks of the global paralleliziapibf a
manifold as something that is hard to come by, even fonolgeneous spaces, and
especially for dimension four, it is intriguing thattime case of dimension three one has
the useful fact that any compact orientable 3-manifofuhrallelizable. Hence, if one is
attempting to generalize compact orientable spatial mldsifthen the possibility of
Q(M) being trivializable is worth considering.

Let us return to the case of Riemannian foliationsie @otes that if the foliatio®
were simple then the pull-bagk= p'g of a Riemannian metrig on M/© would have to

be degenerate because vectors tangent to the leav@swaiuld project to zero. In
relativity, one naturally wishes to know how one couldaot by the projection of a
non-degenerate metric, such a Lorentzian metric. héntérminology of Reinhart2),

21], a metricg on T(M) is calledbundle-likeiff wheneverX, Y O X,(U) are foliate

vector fields on any open setthat are orthogonal to the leaves®@the functiong(X,

Y) onU is basic. Hence, such a metric M) is essentially constant on the leave£of

when restricted to the tangent spaces that are orthotgothed leaves.
One has the usual consequences of defining a transvetrgeghon Q(M): There is a

unique metric connection with vanishing torsion associatéd githat one calls the
transverse Levi-Civita connectiorFor a simple foliation, it is the pull-back of thevi-
Civita connection onO(M/Q) that is defined by the projected mefion T(M/O).

Hence, the transverse Levi-Civita connection is a ptafde connection 00(Q).
We define transverse geodesics for this connection bysm&faa bundle-like metric
g on T(M) that locally projects tg. That is, atransverse geodesior the transverse

Levi-Civita connection associated wihs a geodesic for the Levi-Civita connectiorgof
that is orthogonal to the leaves ©f Such a transverse geodesic has the following two
properties, which also completely characterize such curves

i. If a geodesic of is orthogonal to a leaf @ at one point then it is it orthogonal to
the leaves at all of its other points; i.e., it Bansverse geodesic.
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ii. If U is a simple open subset then the intersection Hresverse geodesic with
projects onto a geodesic O for the projected metric.

These properties were also established by ReinP@rt |

For the sake of cosmological modelgertainly, the case of Bianchi cosmologies

which invariably involve the existence of Killing vectorlfie and the action of isometry
groups, it is important to define what such objects turnwiten one no longer assumes

that there is a spatial manifold and a product foliatioRx% of space-time. The

definition is straightforward: A vector field onM is atransverse Killing vector fieldbr
the transverse metrgiff:

L,g=0. (4.19)
In this equation, we clarify thatis also represented by the degenerate metri i
gX,Y)=g(X,Y). (4.20)

The flow of a transverse Killing vector field then cotsisf isometries for the metrig.

A basic property of transverse Killing vector fieldsthat they are always foliate.
(See, Molino 18].) Note that this does not imply that they must alsvhg transverse to

the given one-dimensional foliatiof?, only that they be constant along it in the Lie

sense. Whenever a transverse Killing vector fieldmgéent toO the tangent vector at

that point will then project to zero @(M), which defines a fixed point of the local flow
of isometries.

Since most cosmological models — in particular, Bwraosmologies §, 28] —
involve the imposition of the action of a group of isomeston the spacetime, we see that
the isometry groups that can be represented by transvellsey Kiector fields are
primarily relevant to the assumptions concerning thelapadmogeneity, isotropy, and
self-similarity of the model in question. Howeverthé orbit space (i.e., the surfaces of
homogeneity) of a transverse group action defines a liaifm, in which case all of the
isotropy subgroups must have the same dimension, onetcaawve orbits that are both

three-dimensional and transverseaunless the foliatior© is spatially integrable (i.e.,
hypersurface normal).

5. Relationship to 1+3 splittings.

A more established manner of obtaining spatial geomeirng pace-time geometry
when one is given a congruence of curves defined by a phydisarver© is to
complete the line bundle(M) that is tangent to the congruence with a rank tbrde
bundleZ(M) so that one obtains a Whitney sum splittingT@¥1) into L(M) O Z(M).
Such a decomposition is then called+8 splitting of T(M), or a “threading” of space-
time [4, 9, 14, 15], to distinguish it from the complementary casewinich one has a
“slicing” of space-time by a codimension-one foliati@f proper-time simultaneity
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hypersurfaces; in such a case, one refers 3@lasplitting [4, 6, 15] Once again, the
advantage of a threading over a slicing is most meaningieh one is dealing with a
spatially non-integrable congruence; i.e., one thabtidwpersurface normal.

Because the fibers af(M), in either event, will be transverse tdM) — i.e.,
transverse to the foliation — one sees that theietstr of the projectiomp:T(M) —» Q(M)
to 2(M) will be a vector bundle isomorphism. Because of igagnorphism, one can
think of any choice o&(M) as basically a “faithful representation” of thensaerse
bundleQ(M). Hence, a 1+3 splitting af(M) plays essentially the same role in regard to
Q(M) that a choice of frame plays in regard to a filfeF(M).

WhenM is given a Lorentzian structure in additiond the natural choice of 1+3

splitting is an orthogonal splitting, for which thebdrs of Z(M) are the orthogonal
complements to the lines df(M). In the event that the sub-bundi€M) is non-
integrable, it is important to point out that one cdnmave an adapted local coordinate
chart U, ¥) whose natural frame field, is also orthonormal for the metric. That is
because the tangent spaces to the local foliatidsh @éfined by the level surfaces xf
would have to agree with the fibersXfU), but the local foliation would necessarily be
integrable. Hence, one must represent the fibeEgWY as the annihilating hyperspaces
of a timelike 1-formM onU:

M = Mo + M; dX (5.1)

that does not coincide witdh’. Up to sign and normalization, thd component of this
1-form is called thdapsefunction and the componeni4 define theshift covector for

the threading defined b$.

We point out that the methodology of transverse gégnaso has an immediate
relevance to the geometry of “anholonomic spacess, (s&anceanud/], Horak [13],
Synge P5]), or Schouteng?2]), which also start with 1+3 splittings &{M) for which the
>(M) sub-bundle is non-integrable, as well as “nonlineanections” (see, Vacaru, et al.
[26], Bejancu and Farrar®], or Delphenich 7] and references therein). In the methods
of nonlinear connections, one regards a 1+3 splitting(bff) as a generalization of the
splitting of the tangent bundle to a principal fiber benitito a horizontal and vertical
sub-bundle that one uses to define a connection.

6. Discussion.

We have seen that when one is dealing with a spatialtyintegrable cosmological
model M, g, u), viz., one for which the vorticity vector field afis non-vanishing, it is
still possible to speak of the spatial geometrivofelative to the physical observery
employing the methodology of the transverse geometryliatitms, suitably specialized
to the case of one-dimensional foliations. It ® mecessary to either introduce a
complementary sub-bundle to the tangent line bundlergmte byu or a transverse
foliation. Indeed, although such a complementary lmuidle will always exist, the
existence of a transverse foliation would imply the igpattegrability ofu.
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Some obvious directions to pursue in the name of adapéingvierse geometry to the
established methods of relativity and cosmology would be:

i. Detailing the form that decomposition of the Riemangianvature tensor into the
Weyl curvature tensor, the Ricci part, and the scalarature would take, especially the
form of the electric and magnetic parts of the Weylste, since they are commonly
introduced to account for spatial tidal gravitational forces

ii. Investigating the corresponding form that geodesic dewidtikes, including the
aforementioned decomposition of curvature.

iii. Formulating the Newtonian limit in terms of transegeometry.

iv. Examining the form that the Bianchi classificatiorhesme for homogeneous
cosmologies takes in transverse geometry.

v. Applying the methodology to some existing solution with-aanishing vorticity,
such as the Godel solution.

vi. Seeing whether the formalism leads to any new sjyati@ah-integrable solutions.

Nevertheless, in advance of such extensions, omestdhsee that the formalism of
transverse geometry seems to be a natural additiothetodifferential geometry of
spacetime.
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