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The generalized harmonic representation of Einstein’s equation is manifestly hyperbolic for a
large class of gauge conditions. Unfortunately most of the useful gauges developed over the past
several decades by the numerical relativity community are incompatible with the hyperbolicity of
the equations in this form. This paper presents a new method of imposing gauge conditions that
preserves hyperbolicity for a much wider class of conditions, including as special cases many of
the standard ones used in numerical relativity: e.g., K-freezing, Γ-freezing, Bona-Massó slicing,
conformal Γ-drivers, etc. Analytical and numerical results are presented which test the stability and
the effectiveness of this new gauge driver evolution system.

I. INTRODUCTION

The gauge (or coordinate) degrees of freedom in the
generalized harmonic (GH) form of the Einstein equa-
tions are determined by specifying the gauge source func-
tions Ha. These functions are defined as the results of
the covariant scalar-wave operator acting on each of the
spacetime coordinates xa:

Ha = ∇c∇c x
a. (1)

The GH form of the Einstein equations can be repre-
sented (somewhat abstractly) as

ψcd∂c∂dψab + ∂aHb + ∂bHa = Qab(H,ψ, ∂ψ), (2)

where ψab is the spacetime metric, Ha = ψabH
b, and

Qab represents lower order terms that depend on Ha, the
metric, and its first derivatives.
The GH form of the Einstein equation is manifestly

hyperbolic whenever Ha is specified as an explicit func-
tion of the coordinates and the metric: Ha = Ha(x, ψ).
In this case the terms ∂aHb that appear in Eq. (2) con-
tain at most first derivatives of the metric. The Einstein
equations become, therefore, a set of second-order wave
equations for each component of the spacetime metric:

ψcd∂c∂dψab = Q̂ab(x, ψ, ∂ψ). (3)

Thus the Einstein equations are manifestly hyperbolic for
any Ha = Ha(x, ψ).
Most of the useful gauge conditions developed by the

numerical relativity community over the past several
decades can not, unfortunately, be expressed in the sim-
ple form Ha = Ha(x, ψ) (unless the full spacetime metric
ψab = ψab[x] is known a priori). Many of these condi-
tions (e.g., maximal slicing or Γ-drivers) would require
gauge source functions that depend on the spacetime
metric and its first derivatives: Ha = Ha(x, ψ, ∂ψ). In
this case the terms ∂aHb in Eq. (2) depend on the sec-
ond derivatives of the metric, ψab, and this (generically)
destroys the hyperbolicity of the system.

Pretorius [1, 2, 3] proposed a way to expand signifi-
cantly the class of allowed gauge conditions, by elevating
Ha to the status of an independent dynamical field. A
separate gauge driver equation is introduced to evolve
Ha, for example,

∇c∇cHa = Qa(x,H, ∂H, ψ, ∂ψ), (4)

where∇c∇cHa denotes the wave operator1 acting onHa.
This gauge driver equation is solved together with the
GH Einstein equations to determine ψab and Ha simul-
taneously. In the combined evolution system, consisting
of Eqs. (2) and (4), the ∂aHb terms in Eq. (2) are now
lower-derivative terms that do not affect the hyperbolic-
ity of the system. Thus the combined GH Einstein plus
gauge driver system is manifestly hyperbolic so long as
Qa on the right in Eq. (4) depends only on the fields and
their first derivatives: Qa = Qa(x,H, ∂H, ψ, ∂ψ). Each
of the solutions, Ha = Ha(x), to these gauge driver equa-
tions is a gauge condition. So the gauge driver system
provides a way for Ha to be determined by the metric
and its derivatives in a flexible way without destroying
the hyperbolicity of the GH Einstein equations.
Pretorius used a particular gauge driver equation of

this form to determine Ht in his ground breaking binary
black-hole simulations:

∇c∇cHt = ξ1(1−N)N−p+ξ2
(

∂tHt−Nk∂kHt

)

N−1, (5)

where in this case ∇c∇c is the covariant scalar-wave op-
erator, N is the lapse, Nk is the shift, and ξ1, ξ2 and p
are constants. For suitable choices of these parameters,
Pretorius found this system to be quite effective in pre-
venting the lapse from “collapsing” toward zero as the
system evolves. Solutions to this gauge driver do not
correspond to any of the traditional gauge conditions of
numerical relativity as far as we know.

1 We define exactly what we mean by this wave operator in
Sec. II B.

http://arxiv.org/abs/0711.2084v1


2

In this paper we introduce a new class of gauge driver
equations that are general enough to provide implemen-
tations of (almost) all of the standard gauge conditions
used by the numerical relativity community. This is
done by choosing an appropriate “source” term Qa for
the right side of Eq. (4). The idea is to choose Qa so
that solutions Ha evolve quickly toward a target gauge
source function Fa. This Fa is chosen so that strict equal-
ity Ha = Fa corresponds exactly to the gauge condition
of interest to us. We limit Fa only by assuming that
it depends on the spacetime metric and its first (but
not second) derivatives: Fa = Fa(x, ψ, ∂ψ). These new
gauge driver equations are introduced in Sec. II, and we
show there that the combined GH Einstein plus gauge
driver system is symmetric hyperbolic for any target
gauge source function of this allowed form. In Sec. III
we present the target gauge functions Fa correspond-
ing to (many of) the gauge conditions commonly used
by the numerical relativity community, including max-
imal slicing, K-freezing, Bona-Massó slicing, conformal
Γ-freezing, and conformal Γ-drivers. In Sec. IV we use
analytical methods to analyze the solutions of the new
gauge driver system. We show in particular that Ha

approaches any (time independent) Fa exponentially for
evolutions of the gauge driver equations on flat space.
We also demonstrate the effectiveness of the coupled GH
Einstein and gauge driver system for the case of small
perturbations of flat space using Bona-Massó slicing and
one of the conformal Γ-driver conditions. In Sec. V we
show the effectiveness and stability of our implementa-
tion of a particular choice of Bona-Massó slicing and con-
formal Γ-driver condition using numerical solutions of the
full non-linear equations for perturbed single black-hole
spacetimes. We summarize and discuss these various re-
sults in Sec. VI.

II. GAUGE DRIVER EQUATIONS

We begin this section by deriving a system of gauge
driver equations in Sec. II A, and then constructing a
general first-order representation of these equations in
Sec. II B. We derive the characteristic fields for this sys-
tem and their associated speeds in Sec. II C, and show
that the coupled gauge-driver and GH Einstein system
is symmetric hyperbolic. We analyze the constraints in
Sec. II D, and derive constraint preserving boundary con-
ditions for the gauge-driver fields in Sec. II E.

A. Motivation

In this section we provide some motivation for our
choice of gauge driver equation. We consider first the
case of the gauge driver ∇c∇cHa = Qa acting on a fixed
flat-space background. The idea is to choose Qa so that
the solutions, Ha, to this equation quickly approach the
desired target gauge source function Fa. If Fa were con-

stant in space and time, there would be a fairly obvious
and simple choice:

∇c∇cHa = Qa = µ2(Ha − Fa) + 2µ∂tHa, (6)

where µ is a freely specifiable constant. If Ha like Fa

were independent of spatial position, the gauge driver
equation would be equivalent in this case to the ordinary
differential equation,

∂2t (Ha − Fa) + 2µ∂t(Ha − Fa) + µ2(Ha − Fa) = 0, (7)

whose solution has the form: Ha(t) = Fa + [Ha(0) −
Fa]e

−µt. A similar argument applied to the spatial
Fourier transform of Eq. (6) shows that spatially inho-
mogeneous Ha also approach Fa exponentially in time.
In this special case (i.e., spatially homogeneous and time
independent Fa) the simple gauge driver has the desired
behavior: all the solutions Ha approach the target gauge
source Fa exponentially on the adjustable time scale 1/µ.

This simple gauge driver, Eq. (6), fails unfortunately
even in flat space if Fa is a generic function of position.
An easy way to see this is to assume that all the solu-
tions Ha do approach Fa asymptotically as t→ ∞. Since
Fa and consequently Ha are independent of time in this
limit, Eq. (6) reduces to ∇k∇kHa = 0, where ∇k∇kHa

represents the spatial Laplacian of Ha. But this is im-
possible because ∇k∇kFa 6= 0 for generic Fa. So (not
surprisingly) the simple gauge driver fails in general.

This gauge driver can be modified in a fairly straight-
forward way, however, that corrects this problem. Define
an auxiliary dynamical field θa:

∂tθa + ηθa = ∇k∇kHa. (8)

This equation can be integrated analytically to obtain an
equivalent integral representation of θa:

θa = θa(0)e
−ηt +

∫ t

0

e−η(t−t′) ∇k∇kHa(t
′) dt′. (9)

Thus θa represents an exponentially weighted (in favor
of times near t) time average of the past evolution of the
term on the right side of Eq. (8). We can use this θa to
construct an improved gauge driver:

∇c∇cHa = Qa = µ2(Ha − Fa) + 2µ∂tHa + ηθa. (10)

If a solution to the improved gauge driver approaches
a time independent state, then Eq. (8) implies that
ηθa = ∇k∇kHa. Equation (10) reduces in this case to
0 = µ2(Ha − Fa). So the addition of the time averaging
field θa forces Ha to approach Fa in any time indepen-
dent state, even in the case of inhomogenous Fa. The
remainder of this paper is devoted to the analysis of this
improved gauge driver, Eq. (10), suitably generalized for
use in an arbitrary spacetime.
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B. First Order Form

We find it very useful to consider the first-order repre-
sentations of evolution systems (such as our gauge driver)
for a variety of reasons: from basic mathematical issues
(such as the formulation of appropriate boundary con-
ditions), to more practical code stability issues. This
section develops a first-order representation of the gauge
driver system, suitably generalized for use in an arbitrary
curved spacetime.

The gauge driver system described above evolves Ha

through a wave equation of the form ∇c∇cHa = Qa.
In a general curved spacetime, we assume that ∇c∇cHa

represents the covariant wave operator that treats Ha

as a co-vector. This choice needs a bit of clarification,
since the gauge source function Ha is not actually a co-
vector. One way of giving meaning to this equation is
to use the gauge driver system to determine a new field
H̃a that does transform as a co-vector: ∇c∇cH̃a = Qa.
Then fix Ha by setting Ha = H̃a in some particular co-
ordinate frame. This construction is not covariant, but
fixing coordinate conditions can never be completely co-
variant. An equivalent way to do this is to write out
and impose the gauge driver equation, ∇c∇cHa = Qa,
only in the special coordinate frame in which Ha = H̃a.
We adopt this second approach since it simplifies the no-
tation somewhat. So throughout this paper the gauge
driver equation, ∇c∇cHa = Qa, will only be imposed in
some particular coordinate frame that we must specify.
In our code we use a global Cartesian coordinate system,
and we will always impose the gauge driver equation in
that frame.

Before we discuss the first-order form of the gauge
driver equations, we also need to examine the somewhat
pathological covariant vector wave operator in more de-
tail. This operator acting on Ha (assumed here to be a
co-vector as discussed above) can be written out more
explicitly in the form:

∇c∇cHa = ψbc∂b∂cHa − Γb∂bHa − 2ψbcΓd
ac∂bHd

+(Ra
b − ∂aΓ

b)Hb, (11)

where Γa
bc is the Christoffel connection, Γa = ψbcΓa

bc,
and Ra

b is the associated Ricci curvature. This wave op-
erator is well behaved on a fixed background spacetime.
However the Hb∂aΓ

b term includes second derivatives of
the metric that would interfere with hyperbolicity, if it
were coupled in a non-trivial way to the full Einstein
equations. Fortunately this problem has a simple solu-
tion. Since we use the GH form of the Einstein equations,
this term can be transformed into the more benign form,
−Hb∂aH

b (or if a more linear looking form is preferred
Γb∂aH

b), using the gauge constraint Ha = −Γa [4]. We
regard the Ricci tensor Ra

b as being determined by the
matter sources via the Einstein equations; in particular,
it does not contain any second derivatives of the met-
ric. For notational convenience we introduce the quantity

Wa(H),

Wa(H) = 2ψbcΓd
ac∂bHd − (∂aH

b +Ra
b)Hb, (12)

that represents the parts of the vector wave operator that
are not present in the scalar wave operator. Our repre-
sentation of the covariant vector wave operator is there-
fore given by,

∇c∇cHa = ψbc∂b∂cHa − Γb∂bHa −Wa(H). (13)

To represent this equation in first-order form, we in-
troduce the usual additional first-order fields ΠH

a and ΦH
ia

representing (up to the addition of constraints) the ap-
propriate time and space derivatives of Ha respectively:

ΠH
a = −tb∂bHa, (14)

ΦH
ia = ∂iHa. (15)

Here (and throughout this paper) ta is the future directed
unit normal to the t = constant hypersurfaces; Latin
indices a through h are spacetime indices and run from
0 to 3; and Latin indices i through n are spatial indices
and run from 1 to 3. We also define the spatial metric
on the t = constant hypersurfaces,

gab = ψab + tatb. (16)

The covariant wave operator, ∇c∇cHa, can then be ex-
pressed in terms of these first-order field variables:

∇c∇cHa = tc∂cΠ
H
a + gij∂iΦ

H
ja − tbΓ

bΠH
a − ΓiΦH

ia

+
1

2
ΠH

a t
btcΠbc + gijΦH

iat
bΠbj

−Wa(H), (17)

where Wa(H) can be written as

Wa(H) = (taΠbc + ga
iΦibc)t

bψcd(ΠH
d − teHdHe)

+(taΠib + ga
jΦjib)ψ

bcgik(ΦH
kc +HkHc)

−gijtbΠiaΦ
H
jb + gijψbcΦiabΦ

H
jc

−gijΠH
j (Πai + tbΦiab)− gijgklΦikaΦ

H
lj

+(taΠ
H
b + ga

iΦH
ib )Γ

b −Ra
bHb. (18)

We note that leaving out the Wa(H) terms is equivalent
to applying the covariant scalar wave operator to each
component of Ha in our special coordinate frame. We
also note that the remaining Γb terms that appear in the
above equations are to be thought of as functions of the
first-order GH fields:

Γb = ψbctdΠcd + gijψbcΦijc −
1

2
ψcd(tbΠcd + gbiΦicd).

(19)

The representation of wave equations of this type in
first-order form is well understood, see e.g., Refs. [4, 5];
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the result for our gauge driver equation is

∂tHa − (1 + γH

1 )Nk∂kHa = −NΠH
a − γH

1 N
kΦH

ka,

(20)

∂tΠ
H
a −Nk∂kΠ

H
a +Ngki∂kΦ

H
ia − γH

1 γ
H

2 N
k∂kHa =

−γH

1 γ
H

2 N
kΦH

ka +NJkΦH
ka +NKΠH

a

+Qa +NWa, (21)

∂tΦ
H
ia −Nk∂kΦ

H
ia +N∂iΠ

H
a − γH

2 N∂iHa =

−ΠH
a ∂iN +ΦH

ka∂iN
k − γH

2 NΦH
ia. (22)

The quantities N , Nk, and gij that appear in these equa-
tions are the lapse, shift and spatial metric, defined by
the usual three-plus-one representation of the spacetime
metric:

ds2 = ψabdx
adxb

= −N2dt2 + gij(dx
i +N idt)(dxj +N jdt). (23)

The auxiliary quantities K and J i in Eq. (21) depend on
the background spacetime geometry and can be written
in terms of the first-order GH Einstein variables:

K =
1

2
gijΠij + gijtaΦija, (24)

J i =

(

gjkgli − 1

2
gijgkl

)

Φjkl +
1

2
gijtatbΦjab. (25)

The constants γH

1 and γH

2 are introduced (in analogy with
the first-order GH Einstein system [4]) to allow us to
control the growth of constraint violations, and to allow
us to adjust one of the characteristic speeds of the system.
The quantity Qa in Eq. (21) is defined by a natural

generalization of Eq. (10):

Qa = µ2
1(1− ξ1)N(Ha − Fa)

−2µ2(1− ξ2)NΠH
a + η1θa. (26)

The differences between this expression and Eq. (10) are
an overall factor of the lapse N (to convert from coordi-
nate time to proper time), the replacement of ∂tHa by
ΠH

a (the first order field representing −tc∂cHa), the in-
troduction of independent damping parameters µ1 and
µ2, and the introduction of new constant parameters
ξ1 and ξ2. The purpose of these latter parameters,
ξ1 and ξ2, is to move the damping terms (or fractions
thereof) into the source for the time-averaging field θa (cf.
Eq. (27) below), thus effectively replacing these terms by
their time averages. We assume as before that Fa is a
given function of the four-metric and its first derivatives:
Fa = Fa(x, ψ, ∂ψ).
The evolution equation for θa is chosen, in analogy

with Eq. (8), to include as its source all the terms in
Eq. (21) that do not vanish automatically in a time in-
dependent state:

∂tθa + η1θa = 2µ2[ξ3NΠH
a + (1− ξ3)(1 + γH

1 )Nk∂kHa]

+Ngki∂kΦ
H
ia −Nk∂kΠ

H
a − γH

1 γ
H

2 N
k∂kHa

−2µ2(1 − ξ3)γH

1 N
kΦH

ka + γH

1 γ
H

2 N
kΦH

ka

−NKΠH
a −NJ iΦH

ia −NWa

+µ2
1ξ1N(Ha − Fa)− 2µ2ξ2NΠH

a . (27)

The ξ3 parameter is introduced to add a multiple of ∂tHa

to the source of the time averaging field. We use Eq. (20)
to re-express this ∂tHa as the terms proportional to ξ3
that appear on the right side of Eq. (27). Assuming the
system approaches a state in which Ha becomes time in-
dependent, then θa exponentially approaches the time in-
dependent limit of the terms on the right side of Eq. (27).
These terms were chosen so that Eq. (21) then implies
that Ha → Fa in this limit. Our choices for the param-
eters, µ1, µ2, η1, ξ1, ξ2 and ξ3 that appear in Eqs. (26)
and (27) will be guided by the stability analysis that we
perform in Sec. IV.

C. Characteristic Fields

The gauge driver evolution Eqs. (20)–(22) and (27)
comprise a first-order evolution system of the form,

∂tu
α +Ak α

β∂ku
β = Bα, (28)

for the fields uα = {Ha,Π
H
a ,Φ

H
ia, θa} (treating the space-

time metric for the moment as a fixed background field).
The characteristic fields of such an evolution system are
important for a number of reasons, including the for-
mulation of outer boundary conditions and exchanging
information across internal boundaries of the computa-
tional domain. The characteristic fields (in the direction
of a unit spacelike covector nk) are defined as the pro-
jections of the fields uα onto the left eigenvectors of the
characteristic matrix nkA

k α
β. For the gauge driver sys-

tem, these characteristic fields are

UH±

a = ΠH
a ± niΦH

ia − γH

2 Ha, (29)

ZH1
a = Ha, (30)

ZH2
ia = Pi

jΦH
ja, (31)

ZH3
a = θa +ΠH

a − 2µ2(1− ξ3)Ha, (32)

where Pij ≡ gij − ninj .
The eigenvalues associated with the characteristic

fields are called the characteristic speeds of the system.
For the gauge driver system, the characteristic fields UH±

a

have speeds ±N −niN
i, ZH1

a has speed −(1+ γH

1 )niN
i,

ZH2
ia has speed −niN

i, and ZH3
a has speed zero.

The inverse transformation between dynamical fields
and characteristic fields for our gauge driver system is

Ha = ZH1
a , (33)

ΠH
a =

1

2
(UH+

a + UH−

a ) + γH

2 Z
H1
a , (34)

ΦH
ia =

1

2
(UH+

a − UH−

a )ni + ZH2
ia , (35)

θa = ZH3
a − 1

2
(UH+

a + UH−

a )

+2µ2(1− ξ3)Z
H1
a − γH

2 Z
H1
a . (36)

The existence of this inverse transformation shows that
there is a one-to-one correspondence between the dynam-
ical fields and the characteristic fields. This implies that
the gauge driver system is strongly hyperbolic.
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A quasi-linear evolution system, Eq. (28), is symmetric
hyperbolic (a stronger condition than strong hyperbolic-
ity) if there exists a positive definite metric Sαβ (called a
symmetrizer) on the space of fields, such that SαγA

k γ
β =

SβγA
k γ

α. The gauge driver system, Eqs. (20)–(22) and
(27), does have such a symmetrizer:

dS2 = Sαβdu
αduβ

=
∑

a

{

Λ2
adH

2
a +

[

dθa − 2µ2(1− ξ3)dHa + dΠH
a

]2

+gijdΦH
iadΦ

H
ja + (dΠH

a − γH

2 dHa)
2
}

, (37)

where Λa are arbitrary (non-vanishing) constants. The
gauge driver system is therefore symmetric hyperbolic.
Up to this point the discussion has focused on the prop-

erties of the gauge driver system, Eqs. (20)–(22) and (27),
with the spacetime metric considered as a fixed back-
ground field. Our real interest of course is the case where
the gauge driver system is coupled to the GH Einstein
system, Eq. (2). Thus we need to consider the properties
of the combined evolution system having as dynamical
fields the gauge driver fields plus the GH Einstein system
fields: uα = {Ha,Π

H
a ,Φ

H
ia, θa, ψab,Πab,Φiab}. The fields

Πab and Φiab represent the first derivatives of the space-
time metric ψab, as defined for example in Ref. [4]. We
need to analyze the properties of the characteristic ma-
trix Ak α

β of this combined system to determine whether
the full coupled system is hyperbolic.
We have shown above that the gauge driver system,

Eqs. (20)–(22) and (27), is symmetric hyperbolic if the
spacetime metric is considered as a background field.
Similarly, the first-order representation of the GH Ein-
stein system [4] is symmetric hyperbolic if the gauge
source function Ha is considered as a background field.
The characteristic matrix Ak α

β of the combined system
is block diagonal, except for any cross terms that might
arise if derivatives of the gauge driver fields appear in evo-
lution equations for the GH fields or vice versa. The only
potential cross terms are as follows: The term 2∂(aHb)

occurs in the GH Einstein equations (2), the quantitiesK
and Ji in Eq. (21) depend on derivatives of the spacetime
metric, and the target gauge source function Fa appear-
ing in Eq. (21) may include derivatives of the spacetime
metric.
However, ∂(aHb) can be rewritten in terms of the first-

order gauge driver variables as

∂(aHb) = ΦH
i(agb)

i +ΠH
(atb). (38)

Likewise, K and Ji can be expressed as algebraic func-
tions of the first-order GH fields ψab, Πab, and Φiab, cf.
Eqs. (24) and (25). Finally, the target gauge source func-
tion Fa is assumed to be a function of the metric and its
first derivatives, so it also can be written as an algebraic
function of the first-order fields: Fa = Fa(x, ψ,Π,Φ).
Thus all of these potential cross terms can be written
as algebraic functions of the dynamical fields and do not
contribute to the characteristic matrix Akα

β at all.

The characteristic matrix of the combined evolution
system is therefore block diagonal. It follows that the
characteristic fields of the combined system are just the
collection of unmodified characteristic fields from the sep-
arate systems. Similarly the matrix Sαβ needed to sym-
metrize the full system is just the matrix whose diagonal
blocks are the symmetrizers of the individual systems.
It follows trivially that the combined GH Einstein and
gauge driver system is both strongly and symmetric hy-
perbolic.

D. Constraints

The basic gauge driver evolution system, Eq. (4), has
no fundamental constraints. However by transforming
the system to first-order form, Eqs. (20)–(22), we intro-
duce a set of new constraints:

CH
ia = ∂iHa − ΦH

ia, (39)

CH
ija = 2∂[iCH

j]a = −2∂[iΦ
H
j]a. (40)

These constraints vanish, CH
ia = CH

ija = 0, if and only
if a solution to the first-order system also represents a
solution to the original second-order equation.
These constraints are determined by the values of the

dynamical fields Ha and ΦH
ia, therefore their time evolu-

tion is determined by the gauge driver evolution system.
It is straightforward to show that these constraints sat-
isfy the evolution equations

∂tCH
ia − (1 + γH

1 )Nk∂kCH
ia = −(1 + γH

1 )∂iN
kCH

ka

−γH

2 NCH
ia − γH

1 N
kCH

kia, (41)

∂tCH
ija − Nk∂kCH

ija = ∂iN
kCH

kja + ∂jN
kCH

ika − γH

2 NCH
ija

−2γH

2 ∂[iNCH
j]a, (42)

as a consequence of Eqs. (20)–(22).
The characteristic matrix of this constraint evolution

system is diagonal, so the constraints are themselves
characteristic fields of this system. The constraint CH

ia

propagates at the speed −(1+γH

1 )nkN
k, while CH

ija prop-

agates at the speed −nkN
k. This constraint evolution

system is strongly (and also symmetric) hyperbolic.
The constraint evolution system is also homogeneous

in the constraints, i.e., the right sides of Eqs. (41) and
(42) are proportional to the constraints. This implies,
for example, that these constraints will remain satisfied
within the domain of dependence of the subset of the
initial surface on which they are satisfied.

E. Boundary Conditions

Boundary conditions are needed for any of the charac-
teristic fields having incoming (i.e., negative) character-
istic speeds on the boundary. Some of these boundary
conditions can be determined by the need to prevent the
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influx of constraint violations, while others can be cho-
sen to control the particular gauge condition being im-
posed at the boundary. In analogy with the scalar field
system [5], the needed constraint preserving boundary
conditions for this system are:

dtZ
H1
a = DtZ

H1
a − (1 + γH

1 )nkN
kniCH

ia , (43)

dtZ
H2
ia = DtZ

H2
ia − nkN

kPi
jnlCH

jla, (44)

where dtZ
H1
a = ∂tHa and dtZ

H2
ia = Pi

k∂tΦ
H
ka represent

the constraint field projections of the time derivatives of
the dynamical fields, while DtZ

H1
a and DtZ

H2
ia represent

the constraint field projections of the right sides of the
evolution equations for these fields.
The characteristic fields UH±

a need boundary condi-
tions whenever the corresponding speeds v± = ±N −
nkN

k are negative. Since v− < v+, typically the UH−
a

mode is the one needing a boundary condition. The
boundary condition on this field controls the incom-
ing part of the gauge condition being imposed on the
boundary. We often use a “freezing” boundary condi-
tion, ∂tU

H−
a = 0, or the boundary condition, ∂tU

H−
a =

−γH

2 ∂tZ
H1
a . Ideally the boundary condition on the char-

acteristic field UH−
a should be determined by the gauge

condition that the driver equation is trying to enforce,
however at present we do not know how to do this.

III. SPECIFIC GAUGE CONDITIONS

The gauge driver equations presented in Sec. II were
designed to evolve the gauge source function, Ha, toward
a target function Fa = Fa(x, ψ, ∂ψ). The question of how
well these equations accomplish this will be explored in
Secs. IV and V. Here we focus on the issue of construct-
ing target functions Fa for particular gauge conditions
used in numerical relativity.
Most of the gauge choices used by the numerical rel-

ativity community, including all the examples below,
are expressed as conditions on the spacetime metric
and its first (space and time) derivatives; so abstractly,
all such gauge conditions can be written in the form
Ga(x, ψ, ∂ψ) = 0. Whenever the GH Einstein constraints
are satisfied, it follows from Eq. (1) that Ha = −Γa ≡
−Γabcψ

bc, where Γabc is the four-dimensional Christoffel
symbol. An appropriate target gauge source function Fa

is therefore given by

Fa = −Γa − ρGa, (45)

where ρ is an arbitrary (non-vanishing) constant. When
the constraints are satisfied, this equation implies that
Ha − Fa = ρGa. So if the gauge driver system succeeds
in driving Ha − Fa → 0, it follows that Ga → 0 as well
for any ρ 6= 0. This Fa has the general form assumed
in the discussions of Sec. II, Fa = Fa(x, ψ, ∂ψ), when-
ever Ga has the form Ga = Ga(x, ψ, ∂ψ). Therefore the
gauge driver system with this target Fa should enforce

the desired gauge condition Ga = 0 asymptotically as the
system evolves.
The numerical relativity community traditionally sep-

arates gauge conditions into those that determine the
lapse N (often called slicing conditions) and those that
determine the spatial coordinates through the shift Nk.
Expressing Γa in terms of the three-plus-one representa-
tion of the spacetime metric, Eq. (23), reveals that differ-
ent components of Γa are naturally related to conditions
on the lapse and shift respectively:

Γt̂ ≡ taΓa = N−2(∂tN −N i∂iN) +K, (46)

Γi = −N−2gij(∂tN
j −Nk∂kN

j)−N−1∂iN

+(3)Γijk g
jk, (47)

where (3)Γijk is the Christoffel symbol associated with
the three-metric gij . We see that Γt̂ depends on the time
derivative of the lapse, and that Γi depends on the time
derivative of the shift. It is natural then to impose slic-
ing conditions using the Ft̂ component of the target gauge
source function, and to impose shift conditions through
the spatial components Fi. Once Ft̂ and Fi are speci-
fied, the time component Ft is obtained from the identity
Ft = NFt̂ + NkFk. Finally, we will want to express the
target gauge source function in terms of the first-order
GH Einstein system variables {ψab,Πab,Φiab}, therefore
the expression for Γa from Eq. (19) will be useful:

Γa = gijΦija + tbΠba −
1

2
ga

iψbcΦibc −
1

2
taψ

bcΠbc. (48)

The remainder of this section presents a list of target
gauge source functions, Fa, that describe commonly used
gauge conditions in numerical relativity. Slicing condi-
tions are described in Sec. III A and shift conditions are
given in Sec. III B.

A. Slicing Conditions

One of oldest gauge conditions used in numerical rel-
ativity is maximal slicing [6], where the trace of the ex-
trinsic curvature of the t = constant hypersurfaces van-
ishes: K = 0. More generally constant curvature slicings
are sometimes used, K = K0, where K0 is constant on
each slice (but may be a specified function of time). This
gauge condition can be written in the form Gt̂ = 0, where

Gt̂ = K0 −K = K0 −
1

2
gijΠij − gijtcΦijc. (49)

Using Eq. (45) with Eq. (48) and (49), we obtain

Ft̂ = −1

2
tatbΠab − ρ1K0 +

1

2
(ρ1 − 1)gijΠij

+(ρ1 − 1)tagijΦija. (50)

The choice of the arbitrary slicing gauge parameter, ρ1 =
1, gives a very simple expression for the constant curva-
ture target gauge source function Ft̂, but other choices
may be more stable or more effective.
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Perhaps the most widely used slicing conditions are
various members of the family introduced by Bona and
Massó [7]. These gauge conditions are evolution equa-
tions for the lapse N having the general form2

∂tN = −N2f(N)(K −K0), (51)

where f(N) is an arbitrary function of the lapse. The
particular case f(N) = 2/N corresponds to the widely
used one-plus-log slicing conditions [8, 9, 10, 11]. An
expression for the general form of this gauge condition in
terms of the first-order GH fields is given by

Gt̂ = K0 − gijtaΦija − 1

2
gijΠij

− 1

2f(N)
tatbΠab +

1

2Nf(N)
N itatbΦiab. (52)

Using this condition in Eq. (45) results in the needed tar-
get gauge source functions for these Bona-Massó slicing
conditions:

Ft̂ =
ρ1 − f(N)

2f(N)
tatbΠab −

ρ1
2Nf(N)

NktatbΦkab

−ρ1K0 + (ρ1 − 1)tagijΦija +
1

2
(ρ1 − 1)gijΠij . (53)

The slicing gauge parameter choice ρ1 = 1 makes this ex-
pression for the Bona-Massó gauge condition particularly
simple; however, any choice with ρ1 6= 0 is allowed.

B. Shift Conditions

The simplest shift condition (from our perspective) is
referred to as Γ-freezing [12]. This condition fixes the
trace of the Christoffel symbol associated with the con-
formal spatial metric g̃ij = gλgij , where g ≡ det gij and
λ is a constant. (Often λ is chosen to be λ = − 1

3
so that

det g̃ij = 1, but any value is allowed.) The relevant trace
of this conformal connection is defined by

(3)Γ̃i ≡ (3)Γ̃i
jk g̃

jk = g−λ

(

gikgjl − 1 + λ

2
gijgkl

)

Φjkl.

(54)

The Γ-freezing shift condition simply requires that

∂t
(3)Γ̃i = 0. (55)

For our purposes this must be translated into a condi-
tion on the spacetime metric and its first derivatives.
This is accomplished by integrating Eq. (55) to obtain
(3)Γ̃i = (3)Γ̃i(0), where (3)Γ̃i(0) is the trace evaluated at

2 The original gauge condition in [7] contains a derivative along
the timelike normal instead of a partial time derivative.

the initial time. This condition can be expressed in terms
of first-order GH fields as

Gi = gλgij
(3)Γ̃j(0)−

(

δi
lgjk − 1 + λ

2
δi

jgkl
)

Φjkl. (56)

Using Eq. (45) and (48), this gauge condition is easily
transformed into the needed target gauge source func-
tion:

Fi =
1

2

[

1− ρ2(1 + λ)
]

gjkΦijk − 1

2
tatbΦiab − taΠai

−ρ2gλgij (3)Γ̃j(0) + (ρ2 − 1)gjkΦjki, (57)

where the shift gauge parameter ρ2 6= 0 can be chosen
freely. As a modest generalization we might also want to
consider Γ-fixing conditions for which (3)Γ̃i is specified
as a function of time. For example we might want to set
(3)Γ̃i(t) = (3)Γ̃i(0)e−µt. This can be done by replacing
(3)Γ̃i(0) with the desired (3)Γ̃i(t) in Eqs. (56) and (57).
The most commonly used shift conditions in the nu-

merical relativity community are the Γ-driver conditions.
The simplest of these can be written as the following evo-
lution equations for the shift [10],

∂tN
i = Bi, (58)

∂tB
i + η2B

i = ν∂t
(3)Γ̃i, (59)

where (3)Γ̃i is the trace of the conformal spatial connec-
tion, Eq. (54), and ν and η2 are adjustable constants.
The parameter ν is usually set to ν = 3

4 on the basis
of causality arguments [9, 10]. But these arguments do
not apply when the lapse and shift are evolved with the
GH Einstein equations, so we leave ν as an adjustable
parameter. Unfortunately this shift condition is not of
the form Gi = Gi(x, ψ, ∂ψ), which is required by our
gauge driver system, because the right side of Eq. (59)
depends on second derivatives of the spacetime metric.
This particular Γ-driver condition, Eqs. (58) and (59),
can be transformed however into the more useful form

∂tN
i = ν

[

(3)Γ̃i − η2Υ
i
]

, (60)

∂tΥ
i + η2Υ

i = (3)Γ̃i. (61)

We note that Eqs. (60) and (61) are equivalent to
Eqs. (58) and (59) when η2 6= 0. This can be seen by

differentiating Bi = ν[(3)Γ̃i − η2Υ
i] with respect to time

to determine that Eq. (59) is equivalent to Eq. (61).
This transformed Γ-driver condition does not depend

on the second derivatives of the spacetime metric, so it
is of the form required for our gauge driver system. This
Γ-driver condition, Eq. (60), can be written in terms of
the first-order GH fields as

Gi = −taΠai +
1

N
taN jΦjai +

νη2
N2

gijΥ
j

− ν

N2gλ

(

gi
lgjk − 1 + λ

2
gi

jgkl
)

Φjkl, (62)
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where the auxiliary field Υi must be evolved using
Eq. (61), and is treated as an independent dynamical
field along with the GH and gauge driver fields. The
addition of Eq. (61) to the evolution system does not
affect hyperbolicity. (The combined system has the ad-
ditional characteristic fields Υi, all of which have charac-
teristic speed zero.) When evolving Eqs. (58) and (59),
it is common practice to set ∂tN

i = 0 initially [10]; the
equivalent condition in our notation is initially choosing
η2Υ

i = (3)Γ̃i. The target gauge source function Fi for
this Γ-driver is obtained from Eq. (62) using Eqs. (45)
and (48):

Fi =

(

νρ2
N2gλ

− 1

)(

gjkgi
l − 1

2
gi

jgkl
)

Φjkl

−1

2
tatbΦiab −

ρ2
N
taN jΦjai −

νη2ρ2
N2

gijΥ
j

− νλρ2
2N2gλ

gjkΦijk + (ρ2 − 1)taΠai. (63)

The shift gauge parameter ρ2 can be chosen to have any
non-zero value.

IV. FLAT SPACE STABILITY ANALYSIS

The analysis of the gauge driver equations in the previ-
ous sections is concerned with rather general questions,
such as: Are the equations hyperbolic? What are the
appropriate boundary conditions? How are particular
gauge conditions implemented? In this section (and the
next) we focus on questions about the stability and effec-
tiveness of the gauge driver equations, such as: Are the
gauge driver evolution equations stable? How well do
the equations actually drive Ha toward the target gauge
source function Fa? In this section we use (mostly) an-
alytical methods to explore these questions for simple
cases that can be described as linear perturbations of flat
spacetime. We consider three successively more compli-
cated versions of this flat spacetime problem: First, we
analyze the solutions to the gauge driver equation with
a fixed Fa on a flat background spacetime. Second, we
generalize this problem by allowing Fa to have a pre-
scribed time dependence. Third, we analyze the more
realistic case of the coupled gauge driver and GH Ein-
stein systems for linear perturbations of flat spacetime.
We present this analysis in some detail for the case of a
target Fa representing Bona-Massó slicing and a Γ-driver
shift condition.
Before we specialize to these three specific problems

however, we first establish some common notation and
present the basic equations. Since we are perturb-
ing about flat spacetime, it is convenient to decom-
pose the solutions into spatial Fourier basis functions.
Thus we assume that the spatial dependence of each

of the perturbed fields is eikjx
j

, where kj is a (con-
stant) wave vector, and xj are the spatial Cartesian
coordinates. We assume that the gauge source func-

tion Ha, the target function Fa and the time averag-

ing field θa have the forms Ha(t, x) = δHa(t)e
ikjx

j

,

Fa(t, x) = δFa(t)e
ikjx

j

, and θa(t, x) = δθa(t)e
ikjx

j

. We
also assume that the spacetime metric ψab has the form

ψab(t, x) = ηab + δψab(t)e
ikjx

j

, where ηab is the fixed
background Minkowski metric with N = 1, gij = δij
and N i constant. With these assumptions the linearized
gauge driver system, Eqs. (20)–(22) and (27), can be
written in the form:

∂tδHa − iβkδHa =

−δΠH
a − γH

1 N
j(δΦH

ja − ikjδHa), (64)

∂tδΠ
H
a +

[

2µ2(1 − ξ2)− iβk
]

δΠH
a = −ikjδΦH

ja

+η1δθa + µ2
1(1− ξ1)(δHa − δFa)

−γH

1 γ
H

2 N
j(δΦH

ja − ikjδHa), (65)

∂t(δΦ
H
ja − ikjδHa) =

+ikjγH

1 N
l(δΦH

la − iklδHa)

−(γH

2 − iβk)(δΦH
ja − ikjδHa), (66)

∂tδθa + η1δθa =
[

2µ2ikβ(1− ξ3) + µ2
1ξ1

]

δHa

+
[

2µ2(ξ3 − ξ2)− iβk
]

δΠH
a + ikjδΦH

ja

−2µ2(1 − ξ3)γH

1 N
j(δΦH

ja − ikjδHa)

+γH

1 γ
H

2 N
j(δΦH

ja − ikjδHa)− µ2
1ξ1δFa, (67)

where k2 = kjkj , βk = kjN
j , and contractions are done

with the flat background metric.
This linearized gauge driver system, Eqs. (64)–(67),

can be simplified somewhat. We note that Eq. (66)
implies that violations in the gauge constraint δCH

ja =

δΦH
ja− ikjδHa always decrease toward zero exponentially

on the timescale 1/γH

2 . Since the system is linear, we
can (without loss of generality) confine our attention to
the constraint satisfying solutions, δΦH

ja = ikjδHa. This
condition and Eq. (64) can be used to eliminate the fields
δΠH

a and δΦH
ja from the system, resulting in the following

simplified evolution system for δHa and δθa:

∂2t δHa + 2
[

µ2(1− ξ2)− iβk
]

∂tδHa

+
[

k2(1− β2) + µ2
1(1− ξ1)− 2iµ2βk(1− ξ2)

]

δHa

= −η1δθa + µ2
1(1 − ξ1)δFa, (68)

∂tδθa + η1δθa = −
[

2µ2(ξ3 − ξ2)− iβk
]

∂tδHa

−
[

k2(1− β2)− µ2
1ξ1 − 2iµ2βk(1− ξ2)

]

δHa

−µ2
1ξ1δFa. (69)

We note that the linearized gauge driver system,
Eqs. (68)–(69), does not depend on the metric pertur-
bations δψab, except through the target function δFa.
This rather weak coupling means that the gauge driver
equations just respond to whatever target δFa the gauge
and spacetime geometry dictate. It makes sense then to
investigate the intrinsic response of the gauge driver sys-
tem to a given δFa. We consider two simple test cases.
First, in Sec. IVA we consider the case where the target
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gauge source function, δFa, is time independent. Second
in Sec. IVB, we consider the more general case where
δFa = δFa(t) is a prescribed function of time. Then fi-
nally, in Sec. IVC we consider the more interesting and
realistic case where the gauge driver and GH Einstein
systems are coupled, using the target δFa appropriate
for Bona-Massó slicing and a Γ-driver shift condition.

A. Time Independent δFa.

We consider first the case where the target gauge

source function has the form, Fa = δFae
ikjx

j

, for con-
stant δFa. We also assume that the shift of the back-
ground spacetime vanishes: β = 0. In this case the gen-
eral solution to Eqs. (68) and (69) has the form:

δHa(t) = δFa +
∑

r

δHr
ae

srt, (70)

δθa(t) = −k
2

η1
δFa

−
∑

r

k2 + 2srµ2(ξ3 − ξ2)− µ2
1ξ1

sr + η1
δHr

ae
srt, (71)

where the δHr
a are constants and sr are the roots (as-

sumed to be non-degenerate) of the characteristic poly-
nomial,

0 = s3r + [2µ2(1− ξ2) + η1] s
2
r

+
[

k2 + µ2
1(1− ξ1) + 2µ2η1(1− ξ3)

]

sr + η1µ
2
1. (72)

Equation (72) is the necessary and sufficient condition
that the solution satisfies Eqs. (68) and (69). The three
roots of Eq. (72) consist of a real root, s0, and a complex
conjugate pair, s±.
Figure 1 illustrates the dependence of the real parts of

the roots, s0 and s±, on the wavenumber k for the case
µ = µ1 = µ2 = η1 and 0 = ξ1 = ξ2 = ξ3. These roots
have strictly negative real parts for all k, so the gauge
source function δHa is always driven toward the target
gauge source function δFa. At least for this simple case,
δHa approaches the target δFa exponentially.
Simple analytical expressions for the roots of the char-

acteristic polynomial, Eq. (72), exist in the limits of small
and large k. The large k limit is the most interesting,
because it describes the sufficently short wavelength per-
turbations of any spacetime. The asymptotic expressions
for the large k roots are,

Re (s0) = −η1
(µ1

k

)2

+O
(

k−4
)

, (73)

Re (s±) = −µ2(1− ξ2)−
η1
2

+
η1
2

(µ1

k

)2

+O
(

k−4
)

.

(74)

These results show that the s± modes are damped at
approximately the rate µ2(1 − ξ2) + η1/2 in the large k
limit, while the damping rate for the s0 mode approaches

0 2 4 6 8 10
-1.5

-1.0

-0.5

0.0

k / µ

Re(s
0
/µ)

Re(s±/µ)

FIG. 1: Real part of the characteristic frequencies of the gauge
driver system: s0 and s±.

zero. These modes are stable for large enough k, then,
as long as η1µ

2
1 > 0 and µ2(1− ξ2) + η1/2 > 0.

B. Time Dependent δFa

Next we consider solutions to Eqs. (68) and (69) for
the case where δFa is a specified function of time: δFa =
δFa(t). In principle the equations could be solved ana-
lytically by Laplace transforming the equations in time,
and solving for each frequency component of δHa(t) sep-
arately. Instead it is more straightforward, and perhaps
more instructive, to integrate the equations numerically
for some illustrative δFa(t). We assume for this simple
example that the shift of the background spacetime van-
ishes, β = 0, and the other parameters that determine the
system take the values: µ = µ1 = µ2 = η1 and 0 = ξ1 =
ξ2 = ξ3. We have solved the resulting simplified equa-

tions numerically for the case δFa(t) = 3 + e−(t−10)2/9

with k = 1. Equations (68) and (69) require initial con-
ditions for δHa, ∂tδHa and δθa. We use δHa(0) = δFa(0),
∂tδHa(0) = 0 and µδθa(0) = −k2δHa(0). These initial
data for δHa and its time derivative were chosen to be
fairly well matched with the target δFa. They are similar
to the initial conditions used in our more realistic tests
in Sec. V. This target δFa changes significantly for times
near t = 10, so this test explores how well the gauge
driver system is able to track an evolving target δFa.
Figure 2 shows that the gauge driver equation is fairly
successful (at the few percent accuracy level) in driving
δHa(t) toward δFa(t) for µ & 2 even in this rather dy-
namical situation.
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FIG. 2: Response of the gauge driver system to a time depen-

dent δFa of the form, δFa = 3+ e−(t−10)2/9, initial conditions
δHa(o) = δFa(0), ∂tδHa(0) = 0, and a range of values for the
damping parameter µ = µ1 = µ2 = η1. This test uses k = 1
and ξ1 = ξ2 = ξ3 = 0.

C. Coupled Systems

Finally we investigate the stability of the coupled
gauge driver and GH Einstein equations for perturba-
tions of flat spacetime. The perturbed Einstein system
reduces to a relatively simple form3 in this case:

ηcd∂c∂dδψab + ∂aδHb + ∂bδHa = 0. (75)

We study the stability of the coupled system, Eqs. (68),
(69), and (75), by Laplace transforming the equations in
time, i.e., by considering solutions with time dependence
est. In this case Eqs. (68) and (69) can be reduced to the
single equation,

P (s)δHa = µ2
1

(

1− ξ1s

s+ η1

)

δFa, (76)

where P (s) is defined by,

P (s) = ŝ2 + 2µ2(1− ξ2)ŝ+ k2 + µ2
1(1− ξ1)

− η1
s+ η1

{

k2 − µ2
1ξ1 − 2iβkµ2(1 − ξ3)

+ŝ
[

2µ2(ξ3 − ξ2)− iβk
]

}

. (77)

3 In this analysis we assume that the gauge constraint δHa+δΓa =
0 is satisfied. The analysis of the GH Einstein constraint evo-
lution system in Ref. [4] shows that violations of this constraint
are damped exponentially for perturbations of flat spacetime.

We use the notation ŝ ≡ s − ikβ. The analogous ex-
pressions for the Laplace transform of the GH Einstein
system, Eq. (75), are given by

0 = (ŝ2 + k2)δψt̂t̂ − 2ŝδHt̂, (78)

0 = (ŝ2 + k2)δψt̂j − ŝδHj − ikjδHt̂, (79)

0 = (ŝ2 + k2)δψjl − ikjδHl − iklδHj , (80)

where δHt̂ = δHt −N jδHj , etc. These equations can be
used to express δHa and δψjl in terms of δψt̂a for the
case ŝ 6= 0:

δHt̂ =
ŝ2 + k2

2ŝ
δψt̂t̂, (81)

δHj =
ŝ2 + k2

ŝ2

(

ŝ δψt̂j −
1

2
ikjδψt̂t̂

)

, (82)

δψjl = ŝ−2
(

iŝkjδψt̂l + iŝklδψt̂j + kjklδψt̂t̂

)

. (83)

The case ŝ = 0 case is essentially trivial: In this case
k2δψt̂t̂ = 0, k2ψt̂j = ikjδHt̂, k

2δψjl = ikjδHl + iklδHj

and δHa = δFa. The metric perturbation in this case
is pure gauge (an infinitesimal coordinate transforma-
tion generated by the time independent δHa/k

2), and
the gauge source function δHa is identical to the target
δFa in this case. So we focus on the ŝ 6= 0 case for the
remainder of this discussion.
We consider in detail now the coupled gauge driver

system for the case of Bona-Massó slicing and the Γ-
driver shift condition. The perturbed flat space limit of
δFa for the Bona-Massó driver, Eq. (53), is given by

δFt̂ =

[

ŝ
f(1)− ρ1
2f(1)

− iβkρ1
2f(1)

]

δψt̂t̂

+i(ρ1 − 1)klδψt̂l −
1

2
(ρ1 − 1)ŝδψl

l, (84)

while the target for the Γ-driver shift condition, Eq. (63),
reduces to

δFj = (ŝ− ρ2s)δψt̂j + i

(

νρ2s

s+ η2
− 1

)

δψjlk
l

− i

2
kjδψt̂t̂ −

i

2

[

νρ2s(1 + λ)

s+ η2
− 1

]

kjδψ
l
l. (85)

The spatial metric perturbations, δψjl, that appear in
Eqs. (84) and (85) can be replaced by δψt̂a using Eq. (83):

δFt̂ =

[

ŝ
f(1)− ρ1
2f(1)

− iβkρ1
2f(1)

− k2(ρ1 − 1)

2ŝ

]

δψt̂t̂, (86)

δFj =
i

2

[

k2

ŝ2

(

νρ2s
1− λ

s+ η2
− 1

)

− 1

]

kjδψt̂t̂

−
[

k2

ŝ

(

νρ2s

s+ η2
− 1

)

+ ρ2s− ŝ

]

δψt̂j

+
νρ2sλ

ŝ(s+ η2)
kjk

lδψt̂l. (87)

Now substitute these expressions for δFa, Eqs. (86) and
(87), and the expressions for δHa, Eqs. (81) and (82),
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into the perturbed gauge driver Eq. (76). The result
is a system of linear algebraic equations for δψt̂a. This
system can be decoupled and non-trivial solutions exist
if and only if the frequency s satisfies one of the following
characteristic polynomials:

0 =
ŝ2 + k2

ŝ
P (s) + µ2

1

(

1− ξ1s

s+ η1

)

×
[

ŝ
ρ1 − f(1)

f(1)
+
iβkρ1
f(1)

+ (ρ1 − 1)
k2

ŝ

]

, (88)

0 =
ŝ2 + k2

ŝ
P (s) + µ2

1

(

1− ξ1s

s+ η1

)

×
[

k2

ŝ

(

νρ2s
1− λ

s+ η2
− 1

)

+ ρ2s− ŝ

]

, (89)

0 =
ŝ2 + k2

ŝ
P (s)

+µ2
1

[

k2

ŝ

(

νρ2s

s+ η2
− 1

)

+ ρ2s− ŝ

]

, (90)

where P (s) is defined in Eq. (77).
The flat space stability analysis presented here is rele-

vant to generic spacetimes when the wavenumber k of the
perturbation becomes sufficiently large. We have solved
the characteristic polynomials in Eqs. (88)–(90) in this
limit. The leading order expressions for the real parts
of these roots are given as follows. For the time slicing
modes (in which δψt̂t̂ 6= 0), the roots of Eq. (88), we have

Re (s) = − η1µ
2
1ρ1

(1− β2)2k2
+O(k−4), (91)

Re (s) = ±1

4

{

[

η1 + 2µ2(1− ξ2)
]2

−4µ2
1ρ1(1− ξ1)

1− f(1)± β

f(1)

}1/2

−1

4

[

η1 + 2µ2(1− ξ2)
]

+O
(

k−2
)

. (92)

The asymptotic forms of the roots of the longitudinal
modes (in which kjδψt̂j 6= 0), Eq. (89), are given by

Re (s) = −η2 +O(k−2), (93)

Re (s) = ±1

4

{

[

η1 + 2µ2(1 − ξ2)
]2

−4µ2
1ρ2(1− ξ1)[1± β − ν(1 − λ)]

}1/2

−1

4

[

η1 + 2µ2(1− ξ2)
]

+O(k−2). (94)

Finally the asymptotic forms of the roots of the trans-
verse modes (in which [k2gij − kikj ]δψt̂j 6= 0), Eq. (90),
are given by

Re (s) = −η2 +O(k−2), (95)

Re (s) = ±1

4

{

[

η1 + 2µ2(1 − ξ2)
]2

0 0.5 1 1.5
-0.25

-0.2

-0.15

-0.1

-0.05

0

µ = 1/4
µ = 1/2
µ = 1
µ = 2
µ = 4

f(1)

M
ax

[R
e(

s)
]

FIG. 3: Maximum damping rate of the modes as a function of
the Bona-Massó slicing condition parameter f(1). The other
parameters used for this case are k = 1, β = 0, µ = µ1 =
µ2 = η1 = 1
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−4µ2
1ρ2(1− ξ1)[1± β − ν]

}1/2

−1

4

[

η1 + 2µ2(1− ξ2)
]

+O(k−2). (96)

All four ± sign combinations represent distinct roots in
Eqs. (92), (94), and (96). Stability of the gauge driver
system requires Re(s) < 0. Therefore, stability of the
short wavelength modes requires the following inequali-
ties on the system parameters:

0 < η1ρ1, (97)

0 < η1 + 2µ2(1− ξ2), (98)

0 < ρ1(1− ξ1)
1− f(1)± β

f(1)
, (99)

0 < η2, (100)

0 < ρ2(1− ξ1)
[

1± β − ν(1− λ)
]

, (101)

0 < ρ2(1− ξ1)
[

1± β − ν
]

. (102)

We note thate these conditions can be satisfied for small
values of β by taking η1 > 0, η2 > 0, µ2 > 0, ξ1 < 1,
ξ2 < 1, ρ1 > 0, ρ2 > 0, 0 < f(1) < 1, ν < 1, ν(1−λ) < 1.
We have also explored the roots of these characteristic

polynomials numerically. Figure 3 illustrates Max[Re(s)],
the root of these equations having the largest real part,
as a function of the parameter f(1) that characterizes the
Bona-Massó slicing condition in this flat space limit. The
curves correspond to the roots for the driver system with
various values of µ = µ1 = µ2 = η1 = 1

32η2, λ = − 1
3 ,

ν = 3
4 , and k = 1. These parameter values were chosen

because they satisfy the inequalities in Eqs. (97)–(102),
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FIG. 4: Maximum damping rate of the modes as a function of
the wavenumber k. The other parameters used for this case
are β = 0, µ = µ1 = µ2 = η1 = 1

32
η2, ξ1 = ξ2 = ξ3 = 0,

ρ1 = ρ2 = 1
2
, f(1) = 1

2
, ν = 3

4
, and λ = − 1

3
.

and because they perform fairly well for the 3D numerical
tests discussed in Sec. V. We see that the maximum real
part of s is negative for f(1) in the range 0 < f(1) <
1, and so the coupled gauge driver system is stable for
these values. The system is most stable for f(1) ≈ 1

2 , so
we adopt this value in our numerical tests of the gauge
driver system in Sec. V. We also note that the standard
value, f(1) = 2, used for one-plus-log slicing by most
of the numerical relativity community [8, 9, 10, 11] is
unstable when used in our gauge driver equations. This
does not imply that f(1) = 2 is a bad choice when used
in a standard three-plus-one evolution, only that it is
unstable when used with our gauge driver system.

Figure 4 illustrates the k dependence of Max[Re(s)]
for a range of values of the gauge driver damping coeffi-
cients µ = µ1 = µ2 = η1 = 1

32η2. For short wavelength
perturbations, i.e. for values of k with k & µ, Max[Re(s)]
decreases as µ increases. Thus the solutions with large
k are damped more effectively as µ increases. However,
for long wavelength perturbations, i.e. for values of k
with k . µ, Max[Re(s)] increases as µ increases. Thus
the solutions with small k are less efficiently damped as
µ increases. It follows that there is an optimal value of µ
to use for any particular problem: choose µ ≈ kc, where
1/kc corresponds to the lengthscale on which the gauge
condition needs to be enforced most effectively.

Figure 5 illustrates the dependence of Max[Re(s)] on
the background shift parameter β for a range of values
of the gauge driver damping coefficients µ = µ1 = µ2 =
η1 = 1

32η2. For small values of β we see that the system is

stable, however for β > 1
2 the system becomes unstable.

This instability may be important in more realistic prob-
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FIG. 5: Maximum damping rate of the modes as a function
of the shift parameter β. The other parameters used for this
case are k = 1, µ = µ1 = µ2 = η1 = 1
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lems that involve black holes. Even for single black-hole
spacetimes, the usual time-independent coordinate rep-
resentations have non-vanishing shifts with β ≈ 1 near
the horizon. Binary black hole spacetimes also use large
shifts (with β > 1 in many cases) when coordinates that
co-rotate with the black holes are used. We explore the
stability of this gauge-driver system for the case of single
black-hole spacetimes in Sec. V.

We have also examined several other slicing and shift
conditions using these perturbation techniques. As a
consequence of section IVA, our gauge driver system is
stable for harmonic slicing δFt̂ = 0 and harmonic shift
δFi = 0. We also find that the combinations of a stable
Bona-Massó slicing condition with harmonic shift, and
of harmonic slicing with the Γ-driver shift condition are
stable. However, we find that the maximal slicing and
Γ-freezing conditions are unconditionally unstable when
enforced through our gauge driver equations.

V. NUMERICAL TESTS

In this section we describe the results of 3D numerical
tests of the gauge driver system. We consider two cases:
first a Schwarzschild black hole with perturbed lapse and
shift, and second a Schwarzschild black hole with a super-
imposed outgoing physical gravitational wave pulse. The
full coupled non-linear GH Einstein and gauge driver sys-
tems are solved numerically for these cases. We measure
the stability and effectiveness of the gauge driver system
in these tests as it attempts to drive the gauge toward
Bona-Massó slicing and Γ-driver shift conditions.
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These numerical tests are conducted using the infra-
structure of the Caltech/Cornell Spectral Einstein Code
(SpEC). This code uses pseudospectral collocation meth-
ods, as described for example in Refs. [13, 14]. We use
the generalized harmonic form of the Einstein equations,
as described in Ref. [4]. The evolution equations for the
combined GH Einstein and the gauge driver system are
integrated in time using the adaptive fifth-order Cash-
Karp method [15]. We use a form of spectral filtering, as
described in Ref. [13], that sets to zero in each time step
the changes in the top four tensor spherical harmonic
expansion coefficients of each of our evolved quantities.
This filtering step is needed to eliminate an instability as-
sociated with the inconsistent mixing of tensor spherical
harmonics in our approach.
Initial conditions are needed for any evolution of the

combined GH Einstein and gauge driver systems, and
these initial data consist of the spacetime metric ψab,
the gauge source function Ha, and their time derivatives.
For the tests described here we take the initial spacetime
metric ψab to be the Schwarzschild geometry plus per-
turbations as described in Secs. VA and VB. We set the
time derivatives of the spatial components of the metric
to zero for the pure gauge perturbation test in Sec. VA,
and equal to the appropriate time derivative of the su-
perimposed physical gravitational wave pulse for the test
in Sec. VB. The remaining initial data needed for these
evolutions, ∂tN , ∂tN

i, Ha, and ∂tHa, are pure gauge
quantites. The time derivatives of the lapse and shift are
chosen here to ensure that Ha satisfies the desired gauge
condition, Ha = Fa, initially. And finally the initial value
of Ha is chosen here to ensure that the gauge constraint,
Ca = Ha + Γa = 0, vanishes initially.

A. Black Hole with Gauge Perturbation

For this test we consider a Schwarzschild black hole
with perturbations in the lapse and shift. For the un-
perturbed hole we use isotropic spatial coordinates and
maximal time slices [16, 17]. The unperturbed spatial
metric in this representation is given by,

ds2 = gijdx
idxj =

(

R

r

)2
(

dx2 + dy2 + dz2
)

, (103)

where r2 = x2 + y2 + z2, and R(r) (the areal radius)
satisfies the differential equation,

dR

dr
=

R

r

√

1− 2M

R
+
C2

R4
. (104)

The constantM is the mass of the hole, and C is a param-
eter that specifies the particular maximal slicing. Finally,
the unperturbed lapse N and shift N i for this represen-
tation of Schwarzschild are given by,

N =

√

1− 2M

R
+
C2

R4
, (105)

N i =
Cr̂i

R2

(

1− 2M

R
+
C2

R4

)

, (106)

where r̂i is the outward directed radial unit vector:
gij r̂

ir̂j = 1.
We perturb this spacetime by changing the initial val-

ues of the lapse and shift, and their time derivatives. This
type of perturbation changes the spacetime coordinates
(or gauge) of the solution, but not its geometry. For
these tests we perturb the lapse and shift of Eqs. (105)
and (106) by adding,

δN = A sin(2πr/r0)e
−(r−rc)

2/w2

Ylm, (107)

δN i = A sin(2πr/r0)e
−(r−rc)

2/w2

Ylmr̂
i, (108)

where Ylm is the standard scalar spherical harmonic. In
our numerical tests we use the background metric with
C = 1.73M2, and perturbations with A = 0.01, rc =
15M , w = 3M , l = 2, m = 0, and various values of the
radial wavelength r0.
We perform these numerical tests on a computational

domain consisting of a spherical shell that extends from
r = 0.78M (just inside the horizon in these coordinates)
to r = 30M . We divide this domain into eight subdo-
mains. In each subdomain we express each Cartesian
component of each dynamical field as a sum of Cheby-
chev polynomials of r (through order Nr − 1) multiplied
by scalar spherical harmonics (through order L). The
radii of the inner and outer edges of the various sub-
domains are adjusted to distribute the truncation error
for this problem more or less uniformly. The specific
radii of the subdomain boundaries used in this test are
0.78M, 2.38M, 4.6M, 8.83M, 13.07M, 17.30M, 21.53M,
25.77M, and 30.0M respectively. The values of the pa-
rameters associated with the gauge driver system used
for this test are: ν = 3

4 , λ = − 1
3 , ρ1 = ρ2 = 1

2 ,
ξ1 = ξ2 = ξ3 = 0, and various values of the parameter
µ = µ1 = µ2 = η1 = 1

32η2. The Bona-Massó slicing con-
dition includes a target value for the extrinsic curvature
K0; for this test we set K0 = 0.
Figure 6 illustrates the constraint violations for a set

of representative evolutions from this test, and demon-
strates the exponential convergence of our numerical
method. The solid curves represent the constraints as-
sociated with the GH Einstein system, while the dotted
curves represent the constraints of the gauge driver sys-
tem. We measure the constraint violations of the GH
Einstein system for these tests using the norm || CGH|| de-
fined in Eq. (71) of Ref. [4]. The norm || CGH|| is scaled so
that it becomes of order unity when constraint violations
start to dominante the solution. We define an analogous
norm || CH|| for the gauge driver system:

|| CH||2 =

∫ √
g mabgij

(

CH
iaCH

jb + gklCH
ikaCH

jlb

)

d 3x

×
[
∫ √

g mcdgij
(

∂iHc∂jHd + ∂iΠ
H
c ∂jΠ

H
d

+gkl∂iΦ
H
kc∂jΦ

H
ld

)

d 3x

]−1

.(109)
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FIG. 6: Solid curves show the constraints of the GH Ein-
stein system || CGH||, dotted curves show the constraints of
the gauge driver system || CH|| for a test with µ = 1.0/M and
radial wavelength r0 = 6.0M evolved at several numerical
resolutions.

The quantity mab is a positive definite matrix, which we
set to the identity matrix,mab = δab, for these tests. Fig-
ure 6 shows the constraints for a particular test run with
µ = 1.0/M and r0 = 6.0M . The analogous graphs for the
other tests reported here are qualitatively similar, with
somewhat larger but still convergent “spikes” in || CGH ||
at early times (t . 25M) for the µ = 0.5/M case. Fig-
ure 6 shows that the constraints are well satisfied in our
evolutions, and demonstrates that our numerical meth-
ods are (exponentially) convergent. The mild power law
growth in the constraints seen at late times is sublinear,
and is not something that concerns us.
Figure 7 illustrates the effectiveness of the gauge driver

system, at least for this test problem. We measure the
difference between the gauge source function Ha and the
target function to which it is being driven, Fa, using the
following L2 norm:

||H − F ||2
||F ||2 =

∫√
gmab(Ha − Fa)(Hb − Fb) d

3x
∫√

gmcdFcFd d 3x
, (110)

where (as before) the matrix mab is set to the identity,
mab = δab, for these tests. This norm is scaled so that
Ha bears little resemblance to the target Fa whenever the
norm becomes of order unity. Figure 7 shows that the
gauge perturbation used in this test violates the desired
gauge conditions rather severly at early times. The norm
||H−F ||/||F || is driven to values as large as 0.7 at about
t = 20M when the ingoing part of the gauge perturbation
interacts most strongly with the black hole. After this
initial interaction, the gauge driver system takes over and
effectively drives ||H −F ||/||F || to values below 10−3 on
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FIG. 7: Effectiveness of the gauge driver equation is demon-
strated by showing ||H − F ||/||F || for evolutions with ra-
dial wavelength r0 = 6M and several values of the gauge
damping parameter µM ∈ { 1

2
, 1, 3

2
, 2}. These tests evolve a

Schwarzschild black hole with strongly perturbed lapse and
shift.

timescales of 40M to 60M , depending on the value of the
gauge damping parameter µ used in the evolution. Fig-
ure 7 shows evolutions of gauge perturbations with radial
wavelength r0 = 6M , and several values of the damping
parameter µM ∈ { 1

2 , 1,
3
2 , 2} computed with numerical

resolution Nr = 17 and L = 13. The gauge driver sys-
tem is more effective at reducing ||H − F ||/||F || quickly
at early times, t < 75M , for larger values of µ.
The µ = 2/M case shown in Fig. 7 has a mild in-

stability, that first appears at about t = 300M . This
is a gauge instability since it does not affect any of the
constraint quantities. Larger values of µ are progres-
sively more unstable. This instability may be related
to the rather unusual dispersion relation for this gauge
driver, as shown for the flat space case in Fig. 4. The
gauge driver equation becomes increasingly ineffective
for driving the long wavelength components of Ha to-
ward Fa as µ increases. This poor damping efficiency
for long wavelengths, together with our rather simplistic
boundary conditions or the inherent instability associ-
ated with large shifts, may well be the cause of this in-
stability. Figure 8 provides some additional insight into
the way the gauge driver equation responds to differ-
ent perturbations. The evolutions shown in Fig. 8 are
all performed with µ = 0.5/M but several different val-
ues of the radial wavelength of the gauge perturbation:
r0 ∈ {4M, 6M, 8M, 10M}. These tests show that the
gauge driver system causes ||H − F ||/||F || to approach
zero more quickly (at least at early times) for shorter
wavelength perturbations. Our hope is that this ability to
efficiently control short wavelength features of the gauge
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FIG. 8: Effectiveness of the gauge driver equation is demon-
strated by showing ||H − F ||/||F || for evolutions with µ =
0.5/M and several values of the radial wavelength of the per-
turbation r0 ∈ {4M, 6M, 8M, 10M}. These tests evolve a
Schwarzschild black hole with strongly perturbed lapse and
shift.

is what will be needed to prevent the kinds of localized
gauge singularities that often appear in our evolutions of
binary black hole spacetimes.

B. Black Hole with Physical Perturbation

Our second numerical test of the gauge driver system
uses a Schwarzschild black hole with a superimposed out-
going gravitational wave pulse, as described in Refs. [13,
18]. The background solution is a Schwarzschild black
hole in Kerr-Schild coordinates,

ds2 = −dt2 + 2M

r
(dt+ dr)2 + dx2 + dy2 + dz2, (111)

where r2 = x2 + y2 + z2 and M is the mass. We super-
impose an odd-parity outgoing quadrupolar gravitational
wave perturbation constructed using Teukolsky’s method
[19]. Its generating function is taken to be a Gaussian,
G(r) = A exp[−(r − rc)

2/w2], with A = 4 × 10−3, rc =
5M , and w = 1.5M . Using this perturbed Schwarzschild
solution as the input conformal metric, the full non-linear
initial value equations (in the conformal thin sandwich
formulation) are solved to obtain initial data that sat-
isfy the constraints [20]. This procedure yields initial
values for the spatial metric, extrinsic curvature, lapse,
and shift. We note that the resulting solution to the
constraints is still nearly (but not completely) outgoing.
The computational domain for this test problem is

taken to be a spherical shell extending from r = 1.9M
(just inside the horizon in these coordinates) out to
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FIG. 9: Effectiveness of the gauge driver equation is demon-
strated by showing ||H − F ||/||F || for evolutions with µ =
0.25/M obtained with a variety of numerical resolutions. This
test uses a Schwarzschild black hole with a superimposed out-
going gravitational wave pulse.

r = 41.9M . This domain is subdivided into four
spherical-shell subdomains of width ∆r = 10M . On
each subdomain, the numerical solution is expanded in
Chebyshev polynomials and spherical harmonics as be-
fore. For these tests we use numerical resolutions with
Nr ∈ {21, 31, 41, 51} coefficients per subdomain for the
Chebyshev series and l 6 L with L ∈ {8, 10, 12, 14} for
the spherical harmonics.

Figure 9 illustrates the effectiveness of the gauge driver
equation for imposing the Bona-Massó slicing and Γ-
driver shift conditions in evolutions of a Schwarzschild
black hole with physical gravitational wave perturbation.
These tests were performed with the gauge damping pa-
rameter µ = 0.25/M . For this test we set the target
value for the extrinsic curvature K0 to that of an un-
perturbed Kerr-Schild spacetime. The various curves in
Fig. 9 illustrate how ||H−F ||/||F || changes for evolutions
performed with different numerical resolutions. The re-
sults are qualitatively similar to those of the first test:
the black hole with physical gravitational wave perturba-
tion does not satisfy the target gauge conditions exactly
at early times, but the gauge driver equation reduces
||H − F ||/||F || to very small values by about t = 75M .
This test is less severe in some sense than our first pure
gauge perturbation test, since the initial data in this case
contains an outgoing gravitational wave pulse that never
interacts very strongly with the black hole.
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VI. DISCUSSION

We have presented a new gauge driver evolution sys-
tem in Sec. II that makes it possible to impose a wide
range of gauge conditions in the generalized harmonic
(GH) formulation of the Einstein equations, without de-
stroying its hyperbolicity. The key idea is to construct
an auxiliary hyperbolic evolution equation for the gauge
source function Ha that drives it toward the desired tar-
get Fa. Section III shows how many of the gauge condi-
tions widely used by the numerical relativity community
can be included in this way. In Sec. IV we analyze the
effectiveness and stability of the combined GH Einstein
and gauge driver system for the case of perturbations
of flat spacetime. This analysis shows that the gauge
driver equation effectively drives Ha toward Fa, when Fa

is specified a priori as a function of the spacetime coor-
dinates. We were somewhat surprised to find, however,
that the gauge driver system can be quite unstable when
it is coupled to the GH Einstein system. We found that
common gauge conditions like maximal slicing and the
Γ-freezing gauge conditions are unconditionally unstable
when implemented using our gauge driver equation. This
does not imply of course that those conditions are unsuit-
able for use with other forms of the Einstein system (like
BSSN), just that they cannot be implemented in a com-
pletely stable way in the GH Einstein system coupled
to the particular gauge driver equations introduced here.
Fortunately, we were able to find some of the commonly
used gauge conditions that can be implemented in this
way: certain Bona-Massó slicing conditions and a com-
monly used form of the Γ-driver shift conditions. Our
3D numerical tests in Sec. V show that the gauge driver
system can impose these gauge conditions stably and ef-
fectively for the evolutions of perturbed single black hole
spacetimes.
There has been a great deal of discussion in the litera-

ture about the formation of shocks when certain dynam-
ical gauge conditions are imposed [21, 22, 23]. However,
these discussions do not apply when those same gauge
conditions are imposed using a driver condition. The
gauge driver system imposes the desired gauge condition
only approximately, not exactly. At best, the desired
gauge condition is imposed exactly only asymptotically
in time as the system approaches a time independent
equilibrium state, and even in this state shocks do not
necessarily form. On the contrary, there are many so-
lutions even to bad gauge conditions that do not have
shocks. What determines whether an evolution system
develops shocks is the structure of the operator that
evolves the spacetime metric and auxiliary fields. Our
evolution system (including the gauge driver system) has

been carefully designed to be linearly degenerate, a con-
dition that prevents the formation of shocks (resulting
from a crossing of characteristics) from smooth initial
data [24]. Linear degeneracy does not prevent the for-
mation of curvature singularities, of course, or even the
formation of coordinate singularities that may arise from
non-linearities in the non-principal parts of the evolution
equations.

Causality is another issue that appears to be less re-
strictive for our gauge driver system than it is for directly
imposed gauge conditions. For example, the parameter ν
that appears in the Γ-driver system discussed in Sec. III B
must take values in the range 0 ≤ ν ≤ 3

4 in order for that
Γ-driver to evolve the shift in a causal way in the BSSN
system [25]. There is no such restriction on ν, however,
when this Γ-driver is imposed through our gauge driver
system. In our system the shift is evolved, along with the
rest of the spacetime metric, by the GH Einstein system.
This system is manifestly hyperbolic, and all of the fields
propagate within the physical light cone, no matter what
target gauge source function is used in the gauge driver
system.

It is easy to imagine that the system presented here
could be improved in several ways. It may be possible,
for example, to improve the performance of the system by
formulating boundary conditions for Ha that impose the
desired gauge condition Ha = Fa exactly at the bound-
aries. It may also be possible to formulate a different evo-
lution operator for Ha that drives it more stably and/or
more efficiently toward the desired target Fa. Finally it
may be possible to find better target gauge conditions Fa.
The ones studied here are those which have been found
useful in evolutions of traditional three-plus-one formu-
lations of the Einstein system like BSSN. But there may
exist gauge conditions having much better stability and
effectiveness properties when used as target gauge condi-
tions within a gauge driver system. These questions, and
others, will be addressed in future work on this problem.
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