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Abstract

We consider a queue with renewal arrivals and n exponential servers in the Halfin-Whitt
heavy traffic regime, where n and the arrival rate increase without bound, so that a crit-
ical loading condition holds. Server k serves at rate µk, and the empirical distribution of
{µk}k=1,...,n is assumed to converge weakly. We show that very little information on the ser-
vice rates is required for a routing mechanism to perform well. More precisely, we construct
a routing mechanism that has access to a single sample from the service time distribution of
each of n

1

2
+ε randomly selected servers (ε > 0), but not to the actual values of the service

rates, the performance of which is asymptotically as good as the best among mechanisms that
have the complete information {µk}k=1,...,n.

Keywords: Halfin-Whitt regime; routing policies; service time sampling
MSC2000: Primary: 60F17. Secondary: 68M20, 90B15, 90B22, 60K30, 60K25.

1 Introduction

In the many-server parametric regime of Halfin and Whitt [10], a critically loaded diffusively
scaled system has the property that the fraction of time when queues are empty is neither close
to 0 nor 1, a situation that is often observed in applications. Particularly, it has been suggested
that this regime is suitable for modeling large call centers [8], and various models motivated by
this application have been studied, where a many-server system operates in this regime (see [15]
for a review). In models that involve heterogenous servers, a principal problem is to find an
efficient routing policy [1, 2, 4, 5, 6, 9, 13, 14]. In all previous works on routing control in this
regime, the proposed routing mechanisms are assumed to have complete information about the
service rates of each server (where by ‘rate’ we refer to the parameter of the exponential service
time distribution, assumed by most authors; however see [13] for more general service times).
Since often in applications the routing control mechanism has little knowledge of the performance
of each individual server, it is natural to ask whether it can perform near optimality with less
information on these parameters. Our goal in this note is to argue that sufficient information for
this purpose is a single sample of service time from a negligible fraction of the servers.
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The pioneering work of Halfin and Whitt [10] considers a queue with renewal arrivals and
identical exponential servers, where the number of servers and the rate of arrivals are scaled up so
that the queue remains critically loaded. The second order asymptotics of the process representing
the number of customers in the system is shown to converge to a diffusion. When the servers are
heterogenous, it was shown in [1] that, in presence of customers of a single class, the policy which
routes jobs to the fastest server among those that are free at the time of routing (and does not
allow interruption of service) is asymptotically optimal in terms of the queue length as well as
the delay of an arriving customer. Analogous results are available for the case of random, i.i.d.
service rates [3] and, under appropriate assumptions, for hyperexponential service times [13].

We mention that works that characterize the fluid and diffusion scaling limits are available
for homogeneous servers with general service time distributions [11, 12]. The question that we
address here is also very natural in this wider context. Note, however, that for heterogenous
servers with general service times, an asymptotically optimal routing policy is not known even
when the routing mechanism has access to all service time distributions (with the exception of
[13]). For this reason we confine our treatment to the exponential case.

As mentioned above, we assume that the routing mechanism has access only to samples from
the service time distribution of some of the servers. We show that, perhaps counter-intuitively,
very little sampling is required for asymptotically optimal performance: It suffices to collect a
single sample from each server in a set of r randomly selected servers, where r is as small as n

1

2
+ε

(ε > 0). The proposed policy always routes jobs to non-sampled servers if such are available,
and otherwise, routes to the server for which the sampled service time is smallest among the
(sampled) servers that are available at the time. It is shown to be asymptotically optimal in
the sense that the diffusion limit of the process representing the total number of customers in
the system (characterized in Theorem 2.1) is stochastically dominated by any subsequential limit
under any (work conserving, nonanticipating) policy (see Theorem 2.2). This includes policies
that have access to the complete information on service rates. A similar statement holds for the
queue length processes (simply by (13)).

A clear practical advantage of our approach is that it is not necessary to invest in measuring
various characteristics precisely, or collect accurate information on the performance of the servers.
In addition, the policy proposed has a desired robustness property in that its performance is
nearly optimal regardless of the values of system parameters, as long as the basic assumptions
hold. These assumptions on the empirical measure of the rates and its first and second-order
limits (1)–(3) are quite general, and so are the assumptions on the limiting distribution.

The proofs are based on an estimate on the number of errors in ordering the servers according
to their sampled data (Lemma 3.1), an estimate on the total idle time encountered by servers that
have relatively high priority (Lemma 3.2), and the technique developed in [3] (proof of Theorem
2.1).

In the next section we describe the model and the proposed policy, and state the main results.
The proofs appear in Section 3.

2 Model and main results

We fix some notation. Denote by D the space of functions from R+ to R that are right continuous
on R+ and have finite left limits on (0,∞) (RCLL), endowed with the usual Skorohod topology
[7]. If Xn, n ∈ N and X are processes with sample paths in D (respectively, real-valued random
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variables) we write Xn ⇒ X to denote weak convergence of the measures induced by Xn on D

(respectively, on R) to the measure induced by X, as n → ∞. For X ∈ D we write |X|∗,t :=
sup0≤s≤t|X(s)|. For x ∈ R, write x+ = max{x, 0} and x− = max{−x, 0}.

A complete probability space (Ω,F , P ) is given, supporting all random variables and stochastic
processes defined below. Expectation w.r.t. P is denoted by E. We consider a single queue fed by
renewal arrivals, with parallel exponential servers. The model is parameterized by n ∈ N, where
n also represents the number of servers. The n servers are labeled as 1, . . . , n, and, for the nth
system, deterministic parameters µnk ∈ [µ, µ̄] are given, where µnk represents service rate of server
k, and 0 < µ ≤ µ̄ < ∞ are constants independent of n. We assume weak convergence of the
empirical measure of {µnk},

Ln = n−1
∑

k

δµn
k
→ m, (1)

where m is a probability measure on R (supported on [µ, µ̄]). The mean is denoted by µ =
∫
xdm.

A second order type approximation is further assumed on the rate parameters, namely that the
limit

lim
n
n−

1

2

n∑

k=1

(µnk − µ) := µ̂ (2)

exists as a finite number. Denoting µ∗ = ess infm, we finally assume

lim
n→∞

#{k : µnk < µ∗ − ε}n−
1

2 = 0, ε > 0. (3)

Example 2.1 A special case of assumptions (1), (2) and (3) is when there is a fixed number of
pools of servers with ain+ O(1) servers at pool i, and where each server at pool i serves at rate

bi + cin
− 1

2 (for constant ai, bi, ci; ai > 0), a setting that is common (for example [1] in a single
class setting, and [14] in a multiclass setting).

Example 2.2 We point out that there is more flexibility in the choice of the parameters. For
example, if we have two pools of size 0.2n + n

3

4 and 0.8n + n
4

5 with rates 1 + 4n−
1

6 + n−
1

2 and,
respectively, 2 − n−

1

6 , then our assumptions still hold. A more general case is as follows. We
have a fixed number of pools of sizes ain+ fi(n), with respective rates bi + cin

− 1

2 + gi(n). Then
assumptions (1)–(3) hold provided that fi(n) = o(n), gi(n) = o(1) and that the limit

lim
n→∞

n
1

2

∑

i

aigi(n)

exists. This is verified by a straightforward, if lengthy calculation using µ =
∑

i aibi.

Example 2.3 It is sometimes very natural to regard the rates {µk} as random variables, and thus
to consider the queueing process, as well as its scaling limit, as processes in random environment.
The case where the service rates are i.i.d. random variables, drawn from a common distribution
m, was considered in [3]. In this case, the law of large numbers implies that (1) and (3) hold with
probability one, and the central limit theorem implies a variation of (2), in which µ̂ is a normal
random variable. Although we assume throughout that the service rates are deterministic, we
would like to comment that all our results can be formulated for an i.i.d. random environment,
with basically the same proofs.
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The initial configuration is now described. Let Qn0 be a Z+-valued random variable, representing
the initial number of customers in the buffer. Let Bn

k,0, k = 1, . . . , n be {0, 1}-valued random
variables representing the initial state of each server, where Bn

k,0 = 1 if and only if server k
initially serves a customer. We restrict to non-idling policies, so that in particular Qn0 > 0 only
if Bn

k,0 = 1 for all k = 1, . . . , n. The total number of customers initially in the system is denoted

by Xn
0 = Qn0 +

∑n
k=1B

n
k,0. Note that, by assumption, we have the relation Qn0 = (Xn

0 − n)+. We
assume

X̂n
0 := n−

1

2 (Xn
0 − n) ⇒ ξ0, (4)

where ξ0 is a random variable.
To define the arrival process, we are given parameters λn > 0, n ∈ N satisfying limn λ

n/n =
λ > 0, and a sequence of strictly positive i.i.d. random variables {Ǔ (l), l ∈ N}, with mean
EǓ(1) = 1 and variance Č2 = Var(Ǔ (1)) ∈ [0,∞). With

∑0
1 = 0, the number of arrivals up to

time t for the nth system is given by An(t) = sup{l ≥ 0 :
∑l

i=1 Ǔ(i)/λn ≤ t}. The arrival rates
are further assumed to satisfy the second order relation

lim
n
n−

1

2 (λn − nλ) = λ̂, (5)

for some λ̂ ∈ R. The ‘heavy traffic’ condition on the first order parameters is assumed, namely

λ = µ, (6)

indicating that the system is critically loaded. For each k = 1, . . . , n, we let Bn
k be a stochastic

process taking values in {0, 1}, representing the status of server k: when Bn
k (t) = 1 [resp., 0]

we say that server k is busy [resp., idle]. Let Ink (t) = 1 − Bn
k (t) for k = 1, . . . , n, and t ≥ 0.

For k = 1, . . . , n, let Rnk [resp., Dn
k ] be a Z+-valued process with nondecreasing right-continuous

sample paths, representing the number of routings of customers to server k within [0, t] [resp., the
number of jobs completed by server k by time t]. Thus

Bn
k (t) = Bn

k,0 +Rnk (t)−Dn
k (t), k = 1, . . . , n, t ≥ 0. (7)

To describe the processes Dn
k , let {Sk, k ∈ N} be i.i.d. standard Poisson processes, each having

right-continuous sample paths. The processes Dn
k are assumed to satisfy

Dn
k (t) = Sk(T

n
k (t)), k = 1, . . . , n, (8)

where

T nk (t) = µnk

∫ t

0
Bn
k (s)ds, k = 1, . . . , n. (9)

Let Xn, Qn and In be defined as

Xn(t) = Xn
0 +An(t)−

n∑

k=1

Dn
k (t), Qn(t) = Qn0 +An(t)−

n∑

k=1

Rnk(t), In(t) =
n∑

k=1

Ink (t). (10)

These processes represent the number of customers in the system, the number of customers in the
buffer and, respectively, the number of servers that are idle.
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The routing policy, that will be described below, does not have access to the service rates µnk ,
but it has access to samples from the service time of r of the servers, selected at random, and
no information at all on service rates of the others. More precisely, let r = rn ∈ N, r ≤ n be
given, and let Σ = Σn be a random variable uniformly distributed over the set of all subsets of
{1, . . . , n} that have cardinality r. We denote Σc = {1, . . . , n} \Σ. For each k ∈ Σ, let σk = σnk
be an independent copy drawn from the service time distribution of server k. That is, σk is an
exponential random variable with parameter µnk and, conditioned on Σ, {σk}k∈Σ are independent.
We choose

rn = [nβr ], (11)

where βr ∈ (12 , 1]. Denote µ̂k = 1/σk, k ∈ Σ.
The four stochastic primitives introduced, as listed below, are assumed to be mutually inde-

pendent, for each n:

(
Xn

0 , {B
n
k,0}k=1,...,n

)
, {Sk}k∈N, An,

(
Σn, {σnk }k∈Σn

)
. (12)

Routing is based on an ordering of the servers according to whether they are in Σ and, within
Σ, according to the value of µ̂k. A permutation Rank = Rankn of {1, . . . , n} is defined as follows.
On the probability-one event that the µ̂k are all distinct, the set Σ is mapped by Rank onto
{1, . . . , r} (and Σc onto {r + 1, . . . , n}). For k, l ∈ Σ, Rank(k) < Rank(l) if and only if µ̂k < µ̂l.
For k, l ∈ Σc, Rank(k) < Rank(l) if and only if k < l.

The routing policy favors servers ranked higher (namely those that have high value under the
map Rank). That is, when a customer arrives to the system to find more than one idle server, the
customer is routed to the server with highest rank among those servers. Since it is assumed that
the routing policy is work conserving (non-idling), when the queue is nonempty and a server has
just finished serving, a customer (from the head of the line) is routed to this server, and when a
customer arrives to the system to find exactly one server that is idle, it is instantaneously routed
to that server. As a result,

Qn(t) = (Xn(t)− n)+, In(t) = (Xn(t)− n)− (13)

holds for all t. Also, service is non-interruptible, in the sense that a customer completes service
at the server it is first assigned.

This completes the description of the process

Πn
0 := ({Bn

k }, {R
n
k}, {D

n
k },X

n, Qn, In).

It can be seen that this description uniquely determines Πn
0 . We sometimes refer to this process

as policy Πn
0 . Later we use some of the symbols above (such as Xn) to denote quantities that

have the same meaning (such as the number of customers in the nth system) under a different
routing policy Πn. To avoid confusion, we therefore make specific reference to policy Πn

0 when
necessary.

Finally, we make a simplifying assumption about the initial occupation of servers, namely that
only servers that are ranked low may initially be idle:

Bn
k,0 = 1{Rank(k)>In

0
}, (14)
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where
In0 = (Xn

0 − n)− (15)

is the initial number of idle servers.
Let X̂n be a centered, normalized version of the process Xn, defined by

X̂n = n−
1

2 (Xn − n). (16)

Our main result is the following.

Theorem 2.1 Under policy Πn
0 , the processes X̂n converge weakly to the unique solution ξ of

ξ(t) = ξ0 + σw(t) + βt+ µ∗

∫ t

0
ξ(s)−ds, t ≥ 0, (17)

where σ2 = µ(Č2 + 1), β = λ̂− µ̂, and w is a standard Brownian motion, independent of ξ0.

The result above is to be compared with Proposition 4.2 of [1] and Theorem 2.2 of [3] (for
the case of a finite number of server pools and, respectively, random environment). In these
references, equation (17) arises in the limit under a policy defined similarly to Π0, but where the
servers are ordered according to the actual values of µk, k = 1, . . . , n. In [1] it is further shown
that this policy asymptotically achieves the best performance in a large class of routing policies.
Because our setting is different than [1], we will state and prove an analogous result, so as to
exhibit that Π0 is asymptotically optimal.

Toward this end, let us first comment on an alternative representation of the departure process.
By (8), this process is given as

∑n
k=1D

n
k (t) =

∑n
k=1 Sk(T

n
k (t)), where Sk are independent standard

Poisson processes. In fact, the departure process can also be represented as

n∑

k=1

Dn
k (t) = Sn

( n∑

k=1

T nk (t)
)
, (18)

where, for every n, Sn is a standard Poisson process, independent of the remaining primitive data,
that is, of the first, third and fourth items of (12). This statement (along with a variation of it,
stated in Section 3) is due to a standard superposition argument for Poisson processes, for which
the reader is referred to Proposition 3.1 of [3].

We now define a class of policies by keeping the description of this section but abandoning
the specifics of the routing mechanism. More precisely, we write Πn ∈ Pn for any process

Πn = ({Bn
k }, {R

n
k}, {D

n
k },X

n, Qn, In)

satisfying all relations stated throughout this section, from its beginning to the statement of
Theorem 2.1, save the two paragraphs following display (12), and satisfying, in addition, work
conservation (13) and the representation (18), for some standard Poisson processes Sn, indepen-
dent of the remaining primitive data. Note, in particular, that the routing mechanism may have
access to {µk}. See Remark 3.2 about the role played by the work conservation condition (13).
We refer to any element of Pn as a policy.
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Theorem 2.2 For n ∈ N and any policy Πn ∈ Pn, let X̂n be the normalized version (16) of the
corresponding process Xn. Then there exist processes Ξn that converge weakly, as n→ ∞, to the
solution ξ to (17) and

X̂n(t) ≥ Ξn(t), t ≥ 0, P -a.s., n ∈ N.

Since by Theorem 2.1, ξ is obtained at the limit under Πn
0 , the result above demonstrates that

Πn
0 asymptotically optimal.

3 Proofs

We begin with the following.

Lemma 3.1 Let 0 < φ < ψ <∞, β > 1
2 , c1 > 0 and c2 > 0 be given constants. For n ∈ N denote

ℓ1 = ℓ1n = [c1n
β], ℓ2 = ℓ2n = [c2n

β], and let φn1 , . . . , φ
n
ℓ and ψn1 , . . . , ψ

n
ℓ be positive real numbers

with
sup
n,i

φni ≤ φ < ψ ≤ inf
n,i
ψni .

For n ∈ N and i ∈ {1, . . . , ℓ} let Φni [resp., Ψni ] be an exponential random variable with parameter
φni [resp., ψni ]. For each n assume that {Φni } are mutually independent and that so are {Ψni }.
Then there exist γ > 0 and κ > 0 such that, with θn = γ log n, one has

lim
n→∞

P




ℓ1n∑

i=1

1{Φn

i
≥θn} ≤ n

1

2
+κ


 = 0, (19)

lim
n→∞

P




ℓ2n∑

i=1

1{Ψn

i
≥θn} ≥ n

1

2
−κ


 = 0. (20)

Proof. By stochastic monotonicity of the exponential random variable with respect to its param-
eter, it clearly suffices to prove the claim for the case φni = φ, ψni = ψ, all n and i. To prove the
claim under this assumption, let κ and γ be strictly positive constants satisfying

φγ < β −
1

2
− κ < β −

1

2
+ κ < ψγ. (21)

Write Φi [resp. Ψi] for Φ
n
i [resp., Ψni ]. Then for any α > 0 and {θn},

P




ℓ1n∑

i=1

1{Φi≥θn} ≤ n
1

2
+κ


 ≤ eαn

1
2
+κ

E exp


−α

ℓ1n∑

i=1

1{Φi≥θn}




= eαn
1
2
+κ (

P (x1 < θn) + e−αP (x1 ≥ θn)
)ℓ1n

= eαn
1
2
+κ

(
1− e−φθn + e−αe−φθn

)ℓ1n

= eαn
1
2
+κ

exp
{
ℓ1n log

(
1 + e−φθn(e−α − 1)

)}

≤ exp
{
αn

1

2
+κ − ℓ1n

(
e−φθn(1− e−α)

})
.
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For the last expression to converge to zero, we need Kn := αn
1

2
+κ − ℓ1n

(
e−φθn(1− e−α)

)
→ −∞.

Fix ν > 0 and set θn = γ log n, α = αn = ν log n. Then

Kn ≤ ν log n · n
1

2
+κ − (c1n

β − 1)
(
n−φγ(1− n−ν)

)
.

Since by (21) 1
2 + κ < β − φγ, we have Kn → −∞, as desired, and thus (19) holds.

Fix η > 0. Since (1 + x)k ≤ ekx for x > −1, we have

P




ℓ2n∑

i=1

1{Ψi≥θn} ≥ n
1

2
−κ


 ≤ e−ηn

1
2
−κ

E exp


η

ℓ2n∑

i=1

1{Ψi≥θn}




= e−ηn
1
2
−κ

(
1− e−ψθn + e−ηe−ψθn

)ℓ2n

≤ e−ηn
1
2
−κ

exp
{
ℓ2n

(
e−ψθn(e−η − 1)

)}

= exp
{
−ηn

1

2
−κ + c2n

βn−ψγ(e−η − 1)
}
,

where on the last line above we substituted θn = γ log n. The expression on the last line converges
to zero because 1

2 − κ > β − ψγ by (21), and (20) follows.

Remark 3.1 (a) The convergence in (19), (20) is at a geometric rate, as the proof shows. Thus,
by the Borel-Cantelli lemma, both events occur for only a finite number of n, with probability
one.
(b) As can be seen in the proof, κ and γ depend only on β, φ and ψ (cf. (21)), and not on {ci}.

Fix ε > 0 and let α ∈ (µ∗, µ∗ + ε) be a continuity point of x 7→ m([0, x]). In what follows, the
symbols n and ε are omitted from the notation of all random variables and stochastic processes,
and from the parameters µnk . Let M0 = [µ, µ∗ − ε), M1 = [µ∗− ε, α) and M2 = [α, µ̄] (where [a, b)
and [a, b] are interpreted as the empty set if a > b), and set

Ki = {k ∈ {1, . . . , n} : µk ∈Mi}, i = 0, 1, 2.

Denote
I(i)(t) =

∑

k∈Ki

Ik(t), T (i)(t) =
∑

k∈Ki

Tk(t), i = 0, 1, 2. (22)

Let also Î(i) = n−
1

2 I(i). By (8) and (10),

X̂(t) = X̂0 + n−
1

2A(t)− n−
1

2

n∑

k=1

Sk(Tk(t)). (23)

By a superposition argument for Poisson processes (cf. Proposition 3.1 of [3]),

X̂(t) = X̂0 + n−
1

2A(t)− n−
1

2

2∑

i=0

S(i)(T (i)(t)), (24)

8



where S(i), i = 0, 1, 2 are standard Poisson processes, mutually independent, and independent of
the first, third and fourth items of (12). In particular,

D(i)(t) :=
∑

k∈Ki

Dk(t) = S(i)(T (i)(t)), i = 0, 1, 2. (25)

A calculation based on (6) and (24) shows (see a detailed derivation at the end of this section)

X̂(t) = X̂0 +W (t) + bt+ F (t), (26)

where we recall that all quantities depend on n and ε, and where

W (t) = Â(t)−

2∑

i=0

W (i)(t), (27)

Â(t) = n−
1

2 (A(t) − λnt), (28)

W (i)(t) = n−
1

2 (S(i)(T (i)(t))− T (i)(t)), i = 0, 1, 2, (29)

b = n−
1

2 (λn − nλ)− n−
1

2

n∑

k=1

(µk − µ), (30)

F (t) = n−
1

2

∫ t

0

n∑

k=1

µkIk(s)ds. (31)

Lemma 3.2 Under Πn
0 , given t̄ > 0 and ε > 0,

|Î(2)|∗,t̄ → 0 in probability, as n→ ∞. (32)

Proof. Step 1: We will show here that there is a (deterministic) sequence an increasing to infinity,

so that ann
1

2 ≤ rn, and such that, out of the ann
1

2 servers ranked lowest, the number of those
that are in K2 is o(n

1

2 ), in the following sense:

#{k ∈ K2 : Rank(k) ≤ ann
1

2}

n
1

2

⇒ 0. (33)

We will apply Lemma 3.1. To this end let φ ∈ (µ∗, α) be a continuity point of x 7→ m([µ, x]).

Let ψ = α. Let K̃ = {k ∈ {1, . . . , n} : µk ≤ φ}. Since m([µ∗, φ]) > 0, it follows from (1) that,
for some constant c > 0 and with probability increasing to 1, the cardinality of K̃ is at least cn.
Since the subset Σ is uniformly distributed and the number of samples satisfies (11), it follows
that, on some events Ωn satisfying P (Ωn) → 1,

#K̃ ∩Σ ≥ c1n
βr , #K2 ∩Σ ≤ #Σ = nβr ,

for a constant c1 > 0. Recall µ̂k = 1/σk, the reciprocal to the sampled service time. We apply
Lemma 3.1 with Φi being the samples σk with index set K̃ ∩ Σ, and Ψi those with index set
K2 ∩Σ. We obtain, that on an event Ωn

1 ⊂ Ωn, which also satisfies limn→∞ P (Ωn
1 ) = 1,

#{k ∈ K̃ ∩Σ : µ̂k ≤ 1/θn} > n
1

2
+κ, (34)

#{k ∈ K2 ∩Σ : µ̂k ≤ 1/θn} < n
1

2
−κ, (35)

9



where, without loss of generality, 1
2 < 1

2 + κ < βr. Now, (34) and the way the map Rank is

defined, imply that all servers k with Rank(k) ≤ n
1

2
+κ have µ̂k ≤ 1/θn and are in Σ. As a result,

#{k ∈ K2 : Rank(k) ≤ n
1

2
+κ} = #{k ∈ K2 ∩Σ : Rank(k) ≤ n

1

2
+κ}

≤ #{k ∈ K2 ∩Σ : µ̂k ≤ 1/θn}

≤ n
1

2
−κ,

by (35). This proves (33) with an = nκ.
Step 2: Denote

K ′ = {k ∈ {1, . . . , n} : Rank(k) > ann
1

2 },

and I ′ =
∑

k∈K ′ Ik, T
′ =

∑
k∈K ′ Tk, D

′ =
∑

k∈K ′ Dk. An argument as the one following equation

(23) shows that S′(T ′(t)) = D′(t), t ≥ 0, where S′ is a standard Poisson process. Set Ŝ′(t) =

n−
1

2 (S′(nt)− nt) and Î ′ = n−
1

2 I ′. We shall show that

|Î ′|∗,t̄ → 0 in probability, as n→ ∞. (36)

Note first that the probability of the event η1 := {I ′(0) = 0} converges to one as n → ∞.

Indeed, by (14), Bk,0 = 1 for all k with Rank(k) > I0. By (4) and (15), I0 < ann
1

2 with probability
converging to 1 as n→ ∞. Thus, with probability converging to 1, all servers k ∈ K ′ are initially
busy, namely P (η1) → 1 as n→ ∞. Let

Ŝ(t) = n−
1

2 (S(nt)− nt), t ≥ 0, (37)

where S is a standard Poisson process. It is well known (cf. Lemmas 2 and 4(i) of [4]) that both Â

(of (28)) and Ŝ converge weakly to a zero mean Brownian motion with diffusion coefficient λ
1

2 Č,
and respectively, 1.

Given γ > 0, consider the event η := {|I ′|∗,t̄ > 2γn
1

2}. On the event η ∩ η1 one can find

0 ≤ s < t ≤ t̄ such that I ′(y) > 0 for all y ∈ [s, t], and I ′(t) − I ′(s) > γn
1

2 . Since the servers in
K ′ are all ranked higher than those in the complement set, the routing policy assigns all arrivals
within [s, t] to K ′ servers. Hence by (7), (8) and using Bk = 1− Ik, we have

γn
1

2 < I ′(t)− I ′(s) = D′(t)−D′(s)−A(t) +A(s),

and therefore

γ < Ŝ′(n−1T ′(t))− Ŝ′(n−1T ′(s))− Â(t) + Â(s)

+
∑

k∈K ′

µk

∫ t

s
B̂k(y)dy − λn

1

2 (t− s)− n−
1

2 (λn − λ)(t− s).

We have by (9) and (22) that n−1T (2)(t) ≤ µ̄t̄ =: τ . Also, by (5), the last term above is bounded
by c(t− s) for some constant c independent of n and ε. Let

w̄τ (x, z) = sup
|s−t|≤z;s,t∈[0,τ ]

|x(s)− x(t)|, z > 0,

10



denotes the modulus of continuity for x : [0, τ ] → R. Define C(n, ε) = n−1
∑

k∈K ′ µk − λ. Then
on the event η ∩ η1, with δ = t− s, we have

γ < w̄τ (Ŝ
′, 2µ̄δ) + w̄t̄(Â, δ) + n

1

2C(n, ε)δ + cδ. (38)

By (1), (2), (6) and the definition of K ′,

n
1

2C(n, ε) ≤ c1 − n−
1

2

∑

k:Rank(k)≤n
1
2 an

µk ≤ c1 − µan ≤ −c2an,

for constants c1, c2 > 0 and sufficiently large n. Hence

P (|Î ′|∗,t̄ > 2γ) = P (η) ≤ p1(n, ε, γ) + p2(n, ε, γ) + P (ηc1),

where

p1(n, ε, γ) = P (there exists δ ∈ (0, a
− 1

2
n ) such that (38) holds),

p2(n, ε, γ) = P (there exists δ ∈ [a
− 1

2
n , t̄] such that (38) holds).

Note that

p1(n, ε, γ) ≤ P (w̄τ (Ŝ
′, 2µ̄a

− 1

2
n ) + w̄t̄(Â, a

− 1

2
n ) ≥ γ/2),

p2(n, ε, γ) ≤ P (w̄τ (Ŝ
′, 2µ̄t̄) + w̄t̄(Â, t̄) ≥ −ct̄+ c2a

1

2
n ).

Since Ŝ′ and Â converge to processes with continuous sample paths, both expressions converge to
zero as n→ ∞. Since limn P (η

c
1) = 0 and γ > 0 is arbitrary, (36) follows.

Step 3: Since K2 ⊂ K ′ ∪ ((K ′)c ∩K2), we have

Î(2)(t) =
I(2)(t)

n
1

2

≤
I ′(t)

n
1

2

+
[#(K ′ ∪ ((K ′)c ∩K2))]

n
1

2

t̄, t ∈ [0, t̄].

By Step 1 (display (33)), the last term on the above display converges to zero in probability. Thus
by Step 2 (display (36)), statement (32) follows. This completes the proof of the lemma.

Proof of Theorem 2.1. Based on Lemmas 3.1 and 3.2, the proof is similar to that of Theorem 2.2
of [3] (only slightly simpler). We include it for completeness and because the proof of Theorem
2.2 is based on it. By (26) and (31), one has

X̂(t) = X̂0 +W (t) + bt+ µ∗

∫ t

0
X̂(s)−ds + e(t), (39)

(where all the above quantities depend on n) and, with Îk = n−
1

2 Ik,

e(t) =

n∑

k=1

(µk − µ∗)

∫ t

0
Îk(s)ds. (40)

Fix t̄ > 0. By (2), (5) and (30), b→ β = λ̂− µ̂. We show that the random variables {|W (i)|∗,t̄, i =
0, 1, 2, n ∈ N} are tight. By (22) and (9), for i = 0, 1, 2,

n−1T (i)(t) = n−1
∑

k∈Ki

µkt− n−1
∑

k∈Ki

µk

∫ t

0
Ik(s)ds. (41)
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Hence 0 ≤ n−1T (i)(t) ≤ µ̄t̄ for t ≤ t̄ and all n. Thus by (29), |W (i)|∗,t̄ ≤ |Ŝ(i)|∗,µ̄t̄, where

Ŝ(i)(t) = n−
1

2 (S(i)(nt)−nt). Recall from the proof of Lemma 3.2 that Ŝ(i) converge to a Brownian
motion. Hence |W (i)|∗,t̄ are tight.

Next, note that |e(t)| ≤ µ̄
∫ t
0 |X̂(s)|ds. Thus the boundedness of b, the tightness of the random

variables X̂0, |W
(i)|∗,t̄ and |Â|∗,t̄, n ∈ N (as follows from the convergence of Â), and an applica-

tion of Gronwall’s lemma on (39), by which |X̂|∗,t̄ ≤ (|X̂0| + |W |∗,t̄ + |b|t̄) exp(2µ̄t̄), imply that

{|X̂ |∗,t̄, n ∈ N} are tight. Since by (13), Î = X̂−, we have that {|Î |∗,t̄, n ∈ N} are tight.
The supremum over t ≤ t̄ of the absolute value of the last term in (41) converges to zero in

probability, since µk are assumed to be bounded and |Î|∗,t̄ are tight. Also, since α is a continuity
point of x 7→ m([0, x]), we have that

n−1
∑

k∈Ki

µk →

∫

Mi

xdm =: ρi, i = 0, 1, 2.

Note that ρ0 = 0. As a result, n−1(T (0), T (1), T (2)) → ρ̃ in probability, uniformly on [0, t̄],
where ρ̃(t) = (0, ρ1t, ρ2t). Recall that (Â, Ŝ

(0), Ŝ(1), Ŝ(2)) are mutually independent, and that Ŝ(i)

[resp., Â] converges to a standard Brownian motion [a zero mean Brownian motion with diffusion

coefficient λ
1

2 Č] (see comment following (37)). Thus (27), (29) and the lemma on random change
of time [7, p. 151] show that W converges weakly to σw, in the uniform topology on [0, t̄], where
w is a standard Brownian motion and σ2 = λČ2 + ρ1 + ρ2 = λČ2 + µ = µ(Č2 + 1).

By the Skorohod representation theorem, we can assume without loss of generality that the
random variables X̂0 and ξ0 and the processes W and w are realized in such a way that, P -a.s.,

(X̂0,W ) → (ξ0, σw) as n→ ∞. (42)

Let ξ be the unique strong solution to equation (17). Then by (17), (39), the inequality |x−−y−| ≤
|x− y|, and Gronwall’s inequality,

|X̂ − ξ|∗,t̄ ≤ (|X̂0 − ξ0|+ |b− β|+ |W − σw|∗,t̄ + |e|∗,t̄) exp(µ∗t̄). (43)

Now, by (40), for n sufficiently large,

|e|∗,t̄ ≤ εt̄ |Î |∗,t̄ + µ̄t̄ |Î(2)|∗,t̄ + (µ∗ − µ)t̄ |Î(0)|∗,t̄. (44)

By (3), the last term above converges weakly to 0. Combining (32), (42), (43) and (44),

lim sup
n

P (|X̂ − ξ|∗,t̄ > ε
1

2 ) ≤ lim sup
n

P (cε|Î |∗,t̄ > ε
1

2 ),

where c ∈ (0,∞) is a constant independent of n and ε. Note that the law of |Î |∗,t̄ does not depend

on ε. Hence by tightness of {|Î |∗,t̄, n ∈ N} the r.h.s. in the above display converges to zero as

ε→ 0. Thus |X̂ − ξ|∗,t̄ → 0 in probability. Since t̄ is arbitrary, we have X̂ ⇒ ξ.

Proof of Theorem 2.2. By (3) there exists a sequence δn > 0 tending to zero such that ζn :=

#{k : µnk < µ∗ − δn}n
− 1

2 → 0. Note that (39), (40) still hold. Define Ξ1 as the solution to

Ξ1(t) = X̂0 +W (t) + bt+ µ∗

∫ t

0
Ξ1(s)

−ds. (45)
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Then by (39), ∆ := X̂ − Ξ1 is differentiable, and, using the inequality a− − b− ≤ −(a − b)+ for
a, b ∈ R, we have ∆(0) = 0, and

d

dt
∆(t) ≥ −µ∗∆(t)+ +

d

dt
e(t).

Since Îk ≤ n−
1

2 for each k, we have by (40)

d

dt
e(t) ≥ −vn, vn := δn|Î |∗,t̄ + µ∗ζn,

and ∆(0) = 0. By comparison with the ordinary differential equation du/dt = −µ∗u
+−vn, u(0) =

0, we obtain that ∆(t) ≥ −vnt, t ≤ t̄. Hence X(t) ≥ Ξ(t), where we define Ξ(t) = Ξ1(t) − vnt,
t ≤ t̄.

It thus remains to show that Ξ ⇒ ξ. For this let us review the proof of Theorem 2.1. Rather
than three processes D(i) (25) and correspondingly W (i), i = 0, 1, 2, (29), we now have a single
process D =

∑
kDk given in terms of a single standard Poisson process Sn (cf. (18)). The

adaptation of relation (29) to a single process W is obvious. The arguments in the proof of
Theorem 2.1 that lead to the tightness of |Î|∗,t̄ and the convergence of W to σw hold with obvious
modifications. As in that proof, we deduce that (42) can be assumed without loss of generality.
Equations (17), (45) and Gronwall’s inequality thus yield

|Ξ1 − ξ|∗,t̄ ≤ (|X̂0 − ξ0|+ |b− β|+ |W − σw|∗,t̄) exp(µ∗t̄).

Hence (42) and the convergence of b to β imply that Ξ1 converges in probability to ξ uniformly
over [0, t̄]. The random variables vn converge to zero by tightness of |Î|∗,t̄. Since t̄ is arbitrary, we
thus obtain that Ξ ⇒ ξ. This completes the proof of the theorem.

Remark 3.2 Note that the non-idling property is used in the proof of Theorem 2.1 (on which
the above proof is based) for deducing tightness of |Î |∗,t̄ from that of |X̂ |∗,t̄. As can be easily seen,

|Î|∗,t̄ are not in general tight if the restriction to non-idling policies is removed.

Derivation of equation (26). Recall that n is omitted from some of the notation. By (24), (28)–
(29),

X̂(t) = X̂0 + Â(t)−
2∑

i=0

W (i)(t) + n−1/2
[
λnt−

2∑

i=0

T (i)(t)
]

= X̂0 +W (t) + n−
1

2

[
λnt−

n∑

k=1

µk

∫ t

0
Bk(s)ds

]
,

where (27), (9) and (22) are used in the second equality. Since Bk = 1− Ik,

X̂(t) = X̂0 +W (t) + n−
1

2

[
λn −

n∑

k=1

µk

]
t+ n−

1

2

∑

k

µk

∫ t

0
Ik(s)ds.

By (6), µ = λ, hence by (30) the penultimate term above is equal to bt. This shows (26).
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