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Abstract

This paper deals with topos-theoretic truth-value valuations of
quantum propositions. Concretely, a mathematical framework of a
specific type of modal approach is extended to the topos theory, and
further, structures of the obtained truth-value valuations are investi-
gated. What is taken up is the modal approach based on a determinate
lattice D(e,R), which is a sublattice of the lattice L of all quantum
propositions and is determined by a quantum state e and a preferred
determinate observable R. Topos-theoretic extension is made in the
functor category Sets

CR of which base category CR is determined by
R. Each true atom, which determines truth values, true or false, of all
propositions in D(e,R), generates also a multi-valued valuation func-
tion of which domain and range are L and a Heyting algebra given by
the subobject classifier in Sets

CR , respectively. All true propositions
in D(e,R) are assigned the top element of the Heyting algebra by the
valuation function. False propositions including the null proposition
are, however, assigned values larger than the bottom element. This
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defect can be removed by use of a subobject semi-classifier. Further-
more, in order to treat all possible determinate observables in a unified
framework, another valuations are constructed in the functor category
Sets

C . Here, the base category C includes all CR’s as subcategories.
Although Sets

C has a structure apparently different from Sets
CR , a

subobject semi-classifier of SetsC gives valuations completely equiva-
lent to those in Sets

CR ’s.
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1 Introduction

Although quantum mechanics has achieved marvelous success, its founda-
tions or interpretations are still debatable. The standard instrumentalism
with emphasis on measurements by an observer external to a quantum sys-
tem as an object is inappropriate at least for quantum cosmologies which deal
with the universe as a quantum system. From this viewpoint, a realism for-
mulation or interpretation where ‘observables’ are treated as ‘beables’ which
possess values is desirable, because such a formulation or interpretation does
not need external observers.

As is well-known, however, a simple realist’s view that at each state any
physical quantity has a value, or equivalently, any quantum proposition stat-
ing that an observable has a value in a Borel subset of R has a determinate
truth-value, true or false, is prohibited by Kochen-Specker’s theorem [1]. In
the so-called modal interpretations which accept realism of physical quanti-
ties, therefore, only a part of quantum propositions are given truth-values
to avoid Kochen-Specker contradiction. (For detailed descriptions of modal
interpretations, see, e.g., [2, 3, 4] and references therein).

On the other hand, Isham and his collaborators [5, 6, 7, 8, 9, 10] explored
‘neo-realism’ formulation based on toposes which are categories satisfying
particular properties. In particular, in a series of papers [6, 7, 8, 9], they gave
a topos-theoretic representation of the Kochen-Specker’s theorem and found
out an alternative way to assign a truth value to any quantum proposition
without the contradiction. Each topos has Heyting-algebra structures built-
in, which are explicitly reflected by a particular object called a subobject
classifier (e.g., [11, 12]). Utilizing this structure, they constructed truth-
value functions defined on all quantum propositions. The valuations are,
therefore, not 2-valued but multi-valued allowing partly true propositions
between the false and the true.

Application of the topos theory is further developed in a series of pa-
pers [13, 14, 15, 16] by Döring and Isham. The representation power of
categorical logics (e.g., [17, 18]) enables them to use the topos theory as
a new basic language alternative to the set theory for mathematical theo-
ries of physics. Döring and Isham’s project might actually liberate quantum
mechanics from the observer-object dichotomy, an origin of notorious para-
doxes of quantum mechanics, and provide proper foundations of quantum
cosmology and quantum gravity.

Our primary interest is in relation between the modal interpretations and
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the neo-realism. If the topos theory can be proper framework of quantum
mechanics, it can be expected that appropriately formulated modal interpre-
tations are actually not interpretations but parts or defectives of the topos-
theoretic quantum mechanics. Motivated by the interest, we address two
subjects in the present paper. One is a topos-theoretic extension of a spe-
cific type of modal formulation. We take up a modal formulism by Bub [19]
and, by use of mathematical ingredients therein, we construct two kinds of
topos-theoretic valuation functions. The other is investigation of structures
of the topos-theoretic valuations; in particular, we make a detailed analysis
of structural relations between the two valuation functions.

This paper is organized as follows. In the next section we briefly review
Bub’s construction of 2-valued valuation functions defined on a sublattice of
quantum propositions, D(e, R), which is uniquely determined by a quantum
state e and a determinate observable R. In Section 3, a topos-theoretic ex-
tension of Bub’s construction is given. We define a base category CR which
is determined by R. Truth-value valuations are constructed in the functor
category SetsCR . They are given by characteristic morphisms corresponding
to ‘true’ subobjects of the object L representing the lattice of all quantum
propositions. The true subobjects are defined by the analogous way that
the true propositions in the Bub’s modal interpretation are determined. Any
quantum proposition takes its truth-value on the subobject classifier which is
a Heyting algebra. It is, however, shown that the valuation functions do not
satisfy the null-proposition condition proposed by Isham and Butterfield [6].
We therefore introduce a notion of subobject semi-classifiers to make the val-
uation functions fulfill the null-proposition condition. In Section 4, we work
on a base category C which includes all CR as subcategories. Truth-value val-
uations are constructed in the functor category SetsC. Section 5 is devoted
to clarify the relation between valuation structures in SetsCR and SetsC. We
prove that the subobject classifier of SetsC has a subobject of which compo-
nents are Heyting algebras isomorphic to the subobject classifiers of SetsCR ’s.
This subobject is a subobject semi-classifier on which the valuation functions
take truth-values. Thus, it is shown that the functor categories SetsC and
SetsCR ’s give actually equivalent truth-value valuations of quantum proposi-
tions. Our results are summarized in Section 6 with comments.
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2 Two-Valued Valuations on Determinate Sub-

lattice

Bub [19] introduced a maximal determinate sublattice of quantum propo-
sitions on which two-valued valuation can be defined without generating
Kochen-Specker contradiction, starting from a preferred determinate observ-
able which is supposed to have one of its eigenvalues even if the quantum
system is not in the corresponding eigenstate. He developed a modal in-
terpretation based on the formulism ([3] and references therein). Below we
describe its construction for the later convenience of reference.

We deal with cases where physical systems are described in the n-dimensional
Hilbert Space H. The set of all rays in H corresponding to quantum states
is denoted by S, and the set of all observables by O. We choose arbitrarily
a preferred determinate observable R ∈ O. The corresponding self-adjoint
operator on H is denoted by R̂.

Let us define the set of all eigenspaces r1, · · · , rm (m ≤ n) of R̂ by ES(R).
For any ray e ∈ S, a projection of e on the eigenspace r is denoted by er:

er := (e ∨ r⊥) ∧ r. (2.1)

If er is not the zero-space {0}, it is a ray. The set of such non-zero er’s is
denoted by A(e):

A(e) := {er : er 6= {0}, r ∈ ES(R)} = {er1 , · · · , erk}, (2.2)

where k ≤ m.
The lattice of all quantum propositions, i.e., the lattice of all subspaces

of H, is denoted by L. The determinate maximal sublattice D(e, R) of L is
constructed by means of A(e); that is, D(e, R) is a lattice LA(e) generated by

k orthogonal rays eri and all the rays in the subspace (
∨

A(e))⊥ orthogonal
to the k-dimensional subspace spanned by the elements of A(e). Therefore,
it is characterized as the commutant in L of {er1 , · · · , erk}, that is,

D(e, R) = {P ∈ L : er ≤ P or er ≤ P⊥, er ∈ A(e)}. (2.3)

If the physical system is in e and the observable R has an eigenvalue
corresponding to the eigenspace r, the associated atom er ∈ A(e) should be
regarded as true, and hence, other atoms of D(e, R) except for er should be
false. Therefore, all observables of which eigenspaces are spanned by rays in
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D(e, R) are determinate; if er is a true atom, any such observable possesses
its eigenvalue corresponding to the eigenspace including er. In addition, the
‘true’ or ‘false’ assignment to the atoms defines a truth-value valuation on
D(e, R) via order relations. That is, for each er ∈ A(e) chosen as a true atom,
the two-valued lattice-homomorphism, V er : D(e, R) → {0, 1}, is defined by,

V er(P ) :=

{

1 (P ≥ er)

0 (otherwise)
. (2.4)

Topos-theoretic extension of this construction is our subject.

3 Topos-Theoretic Valuations Equipped with

a Preferred Determinate Observable

3.1 Base Category CR and Functor Category SetsCR

In this section, we construct valuation functions defined on the lattice L of
all quantum propositions for a given preferred determinate observable R and
each true atom er.

At the beginning, we describe our rough idea.
Let us consider a quantum proposition P ∈ L. If P ≥ er, we regard P

as true, whether it belongs to D(e, R) or not. On the other hand, even if
P 6≥ er, we do not think of P as false provided π̂r(P ) is not the zero space
{0}; it is regarded as partly true. Here, π̂r is the projection operator to the
eigenspace r ∈ ES(R). Since we are provided the determinate observable R,
degree of truth of such P should be quantified by means of ingredients related
to R. So, we utilize the set Com(R) which is a commutant of the self-adjoint
operator R̂ corresponding to the observable R. That is, we transform P and
er by each F̂ ∈ Com(R), and define a set V(P ) by

V(P ) := {F̂ ∈ Com(R) : F̂ (P ) ≥ F̂ (er)}. (3.1)

We would like to regard V(P ) as a truth value of the proposition P . In fact,
V has desirable properties as a truth-value valuation. For example, for any
P1, P2 ∈ L, we have

P1 ≤ P2 =⇒ V(P1) ⊆ V(P2). (3.2)
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Further, we have
P ≥ er =⇒ V(P ) = Com(R), (3.3)

and
P 6≥ er, π̂r(P ) 6= {0} =⇒ V({0}) ⊂ V(P ) ⊂ Com(R). (3.4)

These properties suggest that V gives a multi-valued truth-value valuation
of which target is a logical space preordered by the inclusion relation of sets.

In order to realize the above-mentioned idea in a canonical way, we utilize
topos structure of the functor category SetsCR. Here, objects of the base
category CR are rays; that is,

Obj(CR) := S. (3.5)

The collection of morphisms, Mor(CR), is given by the disjoint union of all
hom-sets, HomCR(e, e

′), which are defined by,

HomCR(e, e
′) := {F̂ ∈ Com(R) : e′ = F̂ e}, (3.6)

for each e, e′ ∈ Obj(CR). The identity morphisms are defined by e
1e−→ e := Î

for any e. The composition of morphisms e
F̂
−→ e′ and e′

F̂ ′

−→ e′′ is defined by
F̂ ′ ◦ F̂ := F̂ ′F̂ ∈ HomCR(e, e

′′). It is clear that this definition of composition
satisfies the associativity axiom of categories.

As is seen in the last section, the key ingredient to construct the 2-valued
valuation functions V er is the subset A(e) of D(e, R). Motivated by this,
we construct topos-theoretic counterparts of A(e) and the lattice L in the
functor category SetsCR . To do so, we note that any r ∈ ES(R) is invariant
under the action of any F̂ ∈ Com(R); i.e., F̂ (r) ⊆ r. From this property, we
can show that

F̂ (er) = (F̂ e)r, (3.7)

for any er ∈ A(e). Here, we allow both sides of equation (3.7) to be the
zero-space {0}.

Equation (3.7) implies that we can extend the function A : Obj(CR) →
Obj(Sets) to a functor from CR to Sets by augmenting each A(e) with the
zero-space {0} as follows:

e 7−→ A(e) := A(e) ∪ {{0}}, (3.8)

e
F̂
−→ e′ 7−→

A(e)
A(F̂ )
−−−−→ A(e′)

∈ ∈

er 7−→ F̂ (er)

. (3.9)
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As a counterpart of L, we define a functor L : CR → Sets which gives L

for each e and an order homomorphism for each e
F̂
−→ e′:

e 7−→ L(e) := L, (3.10)

e
F̂
−→ e′ 7−→

L(e)
L(F̂ )
−−−−→ L(e′)

∈ ∈

P 7−→ F̂P

. (3.11)

Note that L includes A as a subobject; that is, A(e) ⊆ L(e) and for any
F̂ ∈ HomCR(e, e

′), A(F̂ ) = L(F̂ )|A(e).
As a topos, the functor category SetsCR has a particular functor, the

subobject classifier Ω. It is defined by

e 7−→ Ω(e) := {S : S is a sieve on e}, (3.12)

e
F̂
−→ e′ 7−→

Ω(e)
Ω(F̂ )
−−−−→ Ω(e′)

∈ ∈

S 7−→
{

F̂ ′ ∈ Mor(CR) : F̂
′ ◦ F̂ ∈ S

}

. (3.13)

Here, a sieve on e is a set S of such morphisms of which domains are e
that if F̂ ∈ S, F̂ ′ ∈ Mor(CR) and F̂ ′ ◦ F̂ exists, then F̂ ′ ◦ F̂ ∈ S. For
each e ∈ Obj(CR), Ω(e) possesses a Heyting-algebra structure defined by the
inclusion relation among sieves, with the top element,

⊤e :=
⋃

e′∈S

HomCR(e, e
′), (3.14)

and the bottom element,
⊥e := ∅. (3.15)

It is easy to see that the set function Ω(F̂ ) : Ω(e) → Ω(e′) given by (3.13)
maps any sieve in Ω(e) to a sieve in Ω(e′). Therefore, Ω is well-defined as a
functor from CR to Sets.

The subobject classifier Ω is a generalization of 2 := {0, 1} ∈ Obj(Sets);
as any subset of a set is determined by a characteristic function from the
set to 2, any subobject of an object in SetsCR is determined by a char-
acteristic morphism (i.e., a natural transformation) from the object to Ω.
That is, for any subobject S of the object L, (i.e., for any monomorphism
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m ∈ Hom
Sets

CR (S,L)), there exists one and only one natural transforma-
tion χm ∈ Hom

Sets
CR (L,Ω) making the following diagram a pullback in the

functor category SetsCR:

S
!

−−−→ 1

m





y





y

τ

L −−−→
χm

Ω

. (3.16)

Conversely, any χ ∈ Hom
Sets

CR (L,Ω) determines, up to isomorphism, monomor-
phisms m with cod(m) = L making the diagram (3.16) a pullback. (We
hereafter deal with m as the inclusion morphism ιSL from S into L; namely,
a natural transformation which yields a set-theoretic inclusion function ιSLe :
S(e) →֒ L(e) for each e. Correspondingly, χm is written as χSL.) In the
above diagram, the functor 1 is a final object of SetsCR, which assigns each

e ∈ Obj(CR) and each e
F̂
−→ e′ ∈ Mor(CR) the one-point set 1(e) := {∗} and

the identity 1(e
F̂
−→ e′) := id{∗}, respectively. The morphism τ , which is often

called a true, is a global element of Ω taking the top element of Ω(e) for each
e; τe(∗) := ⊤e. Here, in general, a global element of K ∈ Obj(SetsCR) is

defined as a natural transformation µ : 1
�

−→ K; that is, for each e, it chooses
one element µe(∗) ∈ K(e) in such a way that the naturality diagram,

1(e)
µe

−−−→ K(e)

1(F̂ )





y





y
K(F̂ )

1(e′)
µe′−−−→ K(e′)

, (3.17)

commutes for any F̂ ∈ Hom(e, e′). Finally, the morphism χSL : L
�

−→ Ω is a
natural transformation defined by

χSL

e (P ) := {F̂ ∈ Mor(CR) : dom(F̂ ) = e, L(F̂ )(P ) ∈ S(cod(F̂ ))} ∈ Ω(e),
(3.18)

for any P ∈ L(e) = L.
For each object e, the diagram (3.16) in the topos SetsCR reduces to a
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pullback diagram in Sets:

S(e)
!

−−−→ 1(e)

ιSL
e





y





y

τe

L(e) −−−→
χSL
e

Ω(e)

. (3.19)

The sieve χSL

e (P ) ∈ Ω(e) indicates nearness of the proposition P at the stage
e to the subobject S. In fact, if P ∈ S(e), then L(F̂ )(P ) ∈ S(cod(F̂ )) for
all F̂ of which domain is e. Therefore, χSL

e (P ) equals the top element ⊤e of
Ω(e). On the other hand, if P /∈ S(e′) for any e′ satisfying HomCR(e, e

′) 6= ∅,
then χSL

e (P ) = ∅, the bottom element ⊥e of Ω(e). If P /∈ S(e) but there
exists some F̂ ∈ Mor(CR) such that dom(F̂ ) = e and L(F̂ )(P ) ∈ S(cod(F̂ )),
then χSL

e (P ) is a sieve on e between ⊥e and ⊤e. Furthermore, for P , Q ∈
L(e), if L(F̂ )(P ) ∈ S(cod(F̂ )) implies L(F̂ )(Q) ∈ S(cod(F̂ )) for any F̂ ,
which intuitively means that Q is closer to the subobject S than P , then
χSL

e (P ) ≤ χSL

e (Q). In the sense that, the closer the proposition in is to S,
the larger the assigned sieve becomes, χSL

e acts as an indicator of nearness
of any proposition in L(e) to S at the stage e.

3.2 Prerequisites for True Subobjects and Valuation

Functions

If a subobject S of L consists of true propositions, its characteristic mor-
phism χSL

e indicates how close a proposition P ∈ L(e) = L is to the true
propositions at the stage e. It defines, therefore, a generalized truth-value
valuation functions.

In order for S to represent truth, or equivalently, for χSL

e to be a truth-
value valuation function, each set S(e) of propositions should be a filter in
L(e). That is, for each e ∈ Obj(CR), implication relations

P ∈ S(e), Q ∈ L(e), P ≤ Q =⇒ Q ∈ S(e) (3.20)

and
P, Q ∈ S(e) =⇒ P ∧Q ∈ S(e) (3.21)

should be satisfied. They are abstraction from the characteristic that collec-
tions of all true propositions should satisfy. (For detailed properties of filters,
see, e..g., Davey and Priestly [20].)
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Implication relation (3.20), which means that S(e) is an up-set, implies
that if a proposition P is true and P always implies Q, then Q must be true.
If S(e) is an up-set for each e ∈ Obj(CR), then, for any e ∈ Obj(CR) and
any P , Q ∈ L(e) = L, the characteristic map χSL

e satisfies the monotonicity
condition proposed by Isham and Butterfield [6],

P ≤ Q =⇒ χSL

e (P ) ≤ χSL

e (Q), (3.22)

which any valuation function must satisfy.
The second condition (3.21), which means that S(e) is closed under the

meet (∧) operation, implies that, if propositions P and Q are true, so is their
conjunction. From this condition, we can derive the exclusivity condition
proposed by Isham and Butterfield [6]. Note that, from the relation (3.21),
we have

P ∧Q /∈ S(e), P ∈ S(e) =⇒ Q /∈ S(e). (3.23)

Therefore, the exclusivity condition is proved as

χSL

e (P ∧Q) < ⊤e, χ
SL

e (P ) = ⊤e =⇒ P ∧Q /∈ S(e), P ∈ S(e)

=⇒ Q /∈ S(e)

=⇒ χSL

e (Q) < ⊤e. (3.24)

With regard to conditions that generalized valuation functions should
satisfy, Isham and Butterfield [6] proposed the unit-proposition condition, the
null-proposition condition, and the functional composition condition besides
the above-mentioned ones. Among them, the first two conditions concern
our formulism. We check them after obtaining our valuation functions. At
the moment, we propose only (3.20) and (3.21).

3.3 Construction of True Subobjects and Valuation

Functions

As described in Section 2, true propositions in the latticeD(e, R) are given by
a true atom er ∈ A(e). In the current case, analogously, the true subobject

of L is determined by a global element σ : 1
�

−→ A which specifies true atoms
for all e ∈ Obj(CR) simultaneously.

For any r ∈ ES(R), we define a map σr : S → S ∪ {{0}} by σr(e) = er.
Note that, for each e ∈ S, σr

e := σr(e) can be regarded as a map σr
e : {∗} →

A(e) defined by
σr
e(∗) := er, (3.25)
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where er is allowed to be the zero-space {0}.

Proposition 3.1 For each r ∈ ES(R), the map σr is a global element of the

functor A : CR → Sets; namely, it is a natural transformation σr : 1
�

−→ A

Proof. From equation (3.25), it follows that

σr
e′(∗) = e′r = (F̂ e)r = F̂ (er) = F̂ (σr

e(∗)) = A(F̂ )(σr
e(∗)), (3.26)

for any e, e′ ∈ Obj(CR) and F̂ ∈ HomCR(e, e
′). Thus, σr satisfies the commu-

tative diagram (3.17) which defines a global element.
For any r ∈ ES(R), we define a subobject Tr : C → Sets of L by means

of the global element σr : 1
�

−→ A as follows:

e 7−→ Tr(e) := {P ∈ L(e) : P ≥ σr
e(∗)}, (3.27)

e
F̂
−→ e′ 7−→

Tr(e)
Tr(F̂ )
−−−−−→ Tr(e′)

∈ ∈
P 7−→ F̂P

. (3.28)

Here, the function Tr(F̂ ) : Tr(e) → Tr(e′) is well-defined, because

P ∈ Tr(e) ⇐⇒ P ≥ σr
e(∗)

=⇒ F̂P ≥ F̂ (σr
e(∗)) = σr

e′(∗)

⇐⇒ F̂P ∈ Tr(e′). (3.29)

Furthermore, it is easy to see that Tr is a filter. Thus, it can be a true
subobject of L.

Suppose a physical system is in a state e, and that er ( 6= {0}) is a true
atom of D(e, R). Then, we define the corresponding truth-value Vr

e (P ) ∈
Ω(e) of any P ∈ L(e) = L at the stage e by

Vr
e (P ) := χTrL

e (P )

=
⋃

e′∈S

{F̂ ∈ HomCR(e, e
′) : L(F̂ )(P ) ∈ Tr(F̂ )(e)}

=
⋃

e′∈S

{F̂ ∈ HomCR(e, e
′) : F̂ (P ) ≥ e′r}. (3.30)

In the following, we describe some properties that Vr
e satisfies.
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Proposition 3.2 If P ∈ D(e, R) and V er(P ) = 1, then,

Vr
e (P ) =

⋃

e′∈S

HomCR(e, e
′) = ⊤e ∈ Ω(e). (3.31)

Proof. We have the following implication relations:

V er(P ) = 1 =⇒ P ≥ er

=⇒ ∀e′ ∈ Obj(CR), ∀F̂ ∈ HomCR(e, e
′), F̂P ≥ F̂ (er) = e′r

⇐⇒ Vr
e (P ) =

⋃

e′∈Obj(CR)

HomCR(e, e
′) = ⊤e. (3.32)

The converse of Proposition 32 is not true, since there can exist proposi-
tions P such that Vr

e (P ) = ⊤e and P 6∈ D(e, R). On the other hand, Vr
e does

not take the bottom ⊥e = ∅ of Ω(e); its minimum value is

⊥er :=
⋃

e′∈S

{F̂ ∈ HomCR(e, e
′) : F̂ (er) = {0}} ∈ Ω(e). (3.33)

Proposition 3.3 For all P ∈ L(e),

Vr
e (P ) ≥ ⊥er . (3.34)

Proof.

e
F̂
−→ e′ ∈ ⊥er ⇐⇒ F̂ (er) = {0}

=⇒ ∀P ∈ L(e), F̂ (P ) ≥ F̂ (er)

⇐⇒ ∀P ∈ L(e), F̂ ∈ Vr
e (P ). (3.35)

Note that, if P belonging to D(e, R) satisfies P ⊆ e⊥r and π̂r(P ) 6= {0},
then V er(P ) = 0 and Vr

e (P ) > ⊥er ; the valuation function Vr
e gives a finer

truth-value assignment to false propositions of D(e, R), depending on their
nearness to Tr(e).

Let us check the unit-proposition condition and the null-proposition con-
dition. The former is represented in terms of our notation as

Vr
e (I) = ⊤e, (3.36)
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where I is a unit proposition which corresponds to the entire Hilbert space
H. It is clear from the definition (3.30) that Vr

e satisfies this condition. On
the other hand, it is not compliant to the latter condition. That is, we have

Vr
e ({0}) = ⊥er > ⊥e. (3.37)

The essential reason of the noncompliance to the null-proposition condition
is the fact that any ray becomes to {0} (or equivalently, any state vector
vanishes) by action of some linear operators. This fact is in common with
the normalization issue occurring in the topos-based interpretation of state-
vector reduction given by Isham [10]. To avoid the normalization issue, Isham
proposed mathematical framework using restricted sets of nonvanishing state
vectors. In order to complete the null-proposition condition, his approach
might be promising also in our case. In the next subsection, however, we
would like to propose another answer.

3.4 Valuation Using Subobject Semi-Classifier δrΩ

As is seen in the last subsection, the null-proposition is not assigned the
bottom ⊥e by the valuation function Vr

e . So, we construct alternative targets
of valuation functions in order that the null-proposition condition is satisfied.

For each r ∈ ES(R) and e ∈ S, we define a set of sieves on e, δrΩ(e), by

δrΩ(e) := {S ∈ Ω(e) : ⊥er ⊆ S}. (3.38)

Regarding this, we have the following proposition:

Proposition 3.4 For each r ∈ ES(R) and e ∈ S, the set δrΩ(e) of sieves is
sublattice of Ω(e). It is, further, a Heyting algebra.

Proof. It is easy to see that δrΩ(e) is a sublattice of Ω(e), i.e., it is closed
under the join (∨) and the meet (∧) operations.

Also, it is apparent that δrΩ(e) has ⊤e as the top and ⊥er as the bottom.
We show closure under the pseudocomplement operation (⇒) defined in

the Heyting algebra Ω(e). Suppose that S1, S2 ∈ δrΩ(e). Then, S1 ⇒ S2,
which is defined by the maximum sieve S such that S1∧S ≤ S2, is explicitly
given by

S1 ⇒ S2 =
{

F̂ ∈ Mor(CR) : ∀F̂
′ ∈ Mor(CR) (F̂

′ ◦ F̂ ∈ S1 =⇒ F̂ ′ ◦ F̂ ∈ S2)
}

∈ Ω(e). (3.39)
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On the other hand, for any F̂ ′ ∈ Mor(CR), if F̂ ∈ ⊥er and F̂ ′ ◦ F̂ is definable,
then F̂ ′◦F̂ (er) = {0}, hence, F̂ ′◦F̂ ∈ ⊥er . Therefore, ⊥er ⊆ S1 ⇒ S2, hence,
S1 ⇒ S2 ∈ δrΩ(e). Since S1 ⇒ S2 is the maximum S such that S1 ∧ S ≤ S2

in Ω(e), so is it also in δrΩ(e). Therefore, S1 ⇒ S2 is the pseudocomplement
in δrΩ(e).

Note that, although δΩ(e) itself is a Heyting algebra, it is not a Heyt-
ing subalgebra of Ω(e). In fact, as was shown, they have different bottom
elements.

Proposition 3.5 For any S ∈ δrΩ(e) and F̂ ∈ Mor(CR) such that dom(F̂ ) =e,
Ω(F̂ )(S) ∈ δrΩ(e

′).

Proof. Suppose that F̂ ′ ∈ HomCR(e
′, e′′). Then, it follows that

F̂ ′ ∈ ⊥e′r =⇒ F̂ ′F̂ (er) = F̂ ′(e′r) = {0}

⇐⇒ F̂ ′ ◦ F̂ ∈ ⊥er

=⇒ F̂ ′ ◦ F̂ ∈ S

⇐⇒ F̂ ′ ∈ Ω(F̂ )(S). (3.40)

Thus, ⊥e′r ⊆ Ω(F̂ )(S), i.e., Ω(F̂ )(S) ∈ δrΩ(e
′).

Summarizing Propositions 34 and 35, we obtain the following theorem:

Theorem 3.6 For any r ∈ ES(R), the subobject classifier Ω includes a sub-
object δrΩ defined by

e 7−→ δrΩ(e) := δrΩ(e), (3.41)

and

e
F̂
−→ e′ 7−→

δrΩ(e)
δrΩ(F̂ )
−−−−−→ δrΩ(e′)

∈ ∈

S 7−→ Ω(F̂ )(S)

. (3.42)

For each e, δrΩ(e) is a sublattice of Ω(e) and, further, a Heyting algebra
with the top ⊤e and the bottom ⊥er .

In the following, it is shown that δΩ is a subobject semi-classifier defined
in Appendix A. First, note that we can define a natural transformation δrτ :

15



1
�

−→ δrΩ by δrτe(∗) := ⊤e ∈ δrΩ(e). It is easy to see that the diagram

1 1

δrτ





y





y

τ

δrΩ −−−→
ιδrΩΩ

Ω

(3.43)

is a pullback.
Next, suppose that M ∈ SetsCR and N is a subobject of M, such that,

for any e ∈ Obj(CR) and x ∈ M(e), ⊥er ⊆ χNM

e (x), or equivalently, for any
e ∈ Obj(CR),

χNM

e (M(e)) ⊆ δrΩ(e). (3.44)

Then, we have a natural transformation δrχ
NM : M

�

−→ δrΩ which is defined
by δrχ

NM

e (x) := χNM

e (x) for each e ∈ Obj(CR) and x ∈ M(e). Note that
δrχ

NM is related to χNM as

χNM = ιδΩΩ ◦ δrχ
NM. (3.45)

Let δrSub(M) be a collection of subobjects N of M satisfying (3.44). As
a result of the above consideration, δrΩ is a subobject semi-classifier of
δrSub(M). Thus, we obtain the following theorems which are translations of
Propositions A3 and A4.

Theorem 3.7 Suppose that M ∈ Obj(SetsCR) and N ∈ δrSub(M). Then
the diagram

N
!

−−−→ 1

ιNM





y





y

δrτ

M −−−−→
δrχNM

δrΩ

(3.46)

is a pullback.

Theorem 3.8 (i) Suppose that M ∈ Obj(SetsCR) and N ∈ δrSub(M). If

there exists a morphism M
ζ
−→ δrΩ which makes the diagram

N
!

−−−→ 1

ιNM





y





y

δrτ

M −−−→
ζ

δrΩ

(3.47)
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a pullback, then ζ = δrχ
NM.

(ii) Conversely, for each morphismM
ζ
−→ δrΩ, there exists N ∈ δrSub(M)

satisfying ζ = δrχ
NM, up to isomorphism, hence, making the corresponding

diagram (3.41) a pullback.

These theorems imply that we can regard δrΩ and δrχ
NM : M

�

−→ δrΩ
as a subobject classifier and a characteristic morphism, respectively, when
we consider only a class of subobjects included in δrSub(M). In particular,
since Tr ∈ δrSub(L), δrVe : L(e) → δrΩ(e) which is defined by

δrVe := δrχ
TrL

e (3.48)

can be used as a valuation function alternative to Vr
e . For any e ∈ S and

r ∈ ES(R), δrVe satisfies the null-proposition condition. In fact, δrVe({0}) =
⊥er , which is the bottom of δrΩ(e).

Although, for any P ∈ L, δrVe(P ) = Vr
e (P ) as a sieve on e, they are differ-

ent as truth-values because the targets δrΩ(e) and Ω(e) are different Heyting
algebras. We can, however, simply think of δrVe as V

r
e with a narrowed target

δrΩ(e).

3.5 Alternative Construction of Vr
e

In the previous subsections, the valuation functions Vr
e are given by the

characteristic morphisms χTrL corresponding to the true subobjects Tr of
L. We can, however, construct Vr

e without using entire structure of Tr. In
fact, only the sets Tr(e′) such that HomCR(e, e

′) 6= ∅ are needed to define Vr
e .

This suggests an alternative construction of Vr
e by use of a restricted part of

the base category.
For any state e ∈ S, we define a subcategory Ce↓

R of CR; its objects are
given by

Obj(Ce↓
R ) := {e′ : HomCR(e, e

′) 6= ∅}, (3.49)

and morphisms Mor(Ce↓
R ) are defined for any e′ and e′′ ∈ Obj(Ce↓

R ) by

HomCe↓
R
(e′, e′′) := HomCR(e

′, e′′). (3.50)

The subcategory Ce↓
R is, therefore, wide in CR.

A restriction of a functor K : CR → Sets to the subcategory Ce↓
R (i.e.,

K|Ce↓
R
) is denoted by Ke↓. It is a functor from Ce↓

R to Sets. Note that, in

17



particular, the functors 1e↓ and Ωe↓ are the final object and the subobject

classifier in the topos of the functor category SetsC
e↓
R , respectively.

For any er ∈ A(e) chosen as a true atom of D(e, R), we can define a

global element of Ae↓, σ
er : 1e↓

�

−→ Ae↓ by σer
e (∗) := er with the naturality

condition (3.17). This is nothing but a restriction of the global element σr

of A to the subcategory Ce↓
R .

For each er ∈ A(e), we define a functor Ter : Ce↓
R → Sets by means of

σer :
e′ 7−→ Ter(e′) := {P ∈ L(e′) : P ≥ σer

e′ (∗)}, (3.51)

e′
F̂ ′

−→ e′′ 7−→
Ter(e′)

Ter(F̂ ′)
−−−−−−→ Ter(e′′)

∈ ∈

P 7−→ F̂ ′P

. (3.52)

The functor Ter is nothing but Tr
e↓.

Since Ter(e′) is a filter for any e′ ∈ O(Ce↓
R ), Ter is a true subobject of

Le↓ in the topos SetsC
e↓
R . Thus, the corresponding characteristic morphism

χTerLe↓ : Le↓
�

−→ Ωe↓ gives a truth-value for a proposition P ∈ L = Le↓(e) at
the stage e by

χ
T

erLe↓
e (P ) =

⋃

e′∈S

{F̂ ∈ HomCe↓
R
(e, e′) : Le,↓(F̂ )(P ) ∈ Ter(F̂ )(e)}

=
⋃

e′∈S

{F̂ ∈ HomCe↓
R
(e, e′) : F̂ (P ) ∈ Ter(e′)}

=
⋃

e′∈S

{F̂ ∈ HomCe↓
R
(e, e′) : F̂ (P ) ≥ σer

e′ (∗) = e′r}

∈ Ωe↓(e). (3.53)

Equations (3.30) and (3.53) show that χ
TerLe↓
e (P ) is equal to Vr

e (P ) as sets
of morphisms. Moreover, by the trivial correspondence, Ω(e) ∼= Ωe↓(e) as

Heyting algebras. Therefore, χ
T

erLe↓
e gives completely the same valuation as

Vr
e .
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4 Valuations in Extended Functor Category

4.1 Construction of Extended Base Category C

The purpose of Section 4 is to construct valuation functions in a topos which
includes all determinate observables. In order to do so, in this subsection we
construct a base category which includes all observables. First, we note that,
if ES(R) = ES(R′) and Com(R) = Com(R′), base categories CR and CR′ give
the same valuations for each state e. We therefore deal with equivalent classes
of observables consisting of those with the same eigenspaces and commutant.
To do so, we define an order relation on the collection O of the observables
by their functional relationship. That is, for R, R′ ∈ O,

R ≤ R′ ⇐⇒ ∃f ∈ R
R s.t. R = f(R′), (4.1)

and the equivalence relation is defined by

R ∼ R′ ⇐⇒ R ≤ R′, R′ ≤ R. (4.2)

The induced quotient space is denoted by O/∼. It has natural order relation
induced by that of O; that is, for any ρ, ρ′ ∈ O/∼ such that ρ = [R] and
ρ′ = [R′],

ρ ≤ ρ′ ⇐⇒ R ≤ R′. (4.3)

The quotient space O/∼, thus, possesses a category structure with the pre-
order relations as morphisms. Furthermore, for any ρ = [R] ∈ O/∼, the set
of eigenspaces ES(ρ), the commutants Com(ρ), and the base category Cρ are
given by

ES(ρ) := ES(R), Com(ρ) := Com(R), Cρ := CR, (4.4)

because the right-hand sides do not depend on which R is chosen as a repre-
sentative of ρ.

We introduce category structures to the cartesian product S × O/∼.
First, we construct a category B from the cartesian product S × O/∼

in such a way that each Cρ (ρ ∈ O/∼) is naturally embedded. That is,
the objects of B are given by the elements of S × O/∼ and for any (e, ρ),
(e′, ρ′) ∈ S × O/∼ morphisms are given by

HomB((e, ρ), (e
′, ρ′)) := HomCρ(e, e

′)× HomO/∼(ρ, ρ
′). (4.5)
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The composition of morphisms is defined as follows; that is, for (e
F̂
−→ e′, ρ ≤

ρ′) ∈ HomB((e, ρ), (e
′, ρ′)) and (e′

F̂
−→ e′′, ρ′ ≤ ρ′′) ∈ HomB((e

′, ρ′), (e′′, ρ′′)),

(e′
F̂
−→ e′′, ρ′ ≤ ρ′′) ◦ (e

F̂
−→ e′, ρ ≤ ρ′) := (e

F̂ ′F̂
−−→ e′′, ρ ≤ ρ′′)

∈ HomB((e, ρ), (e
′′, ρ′′)). (4.6)

Consistency of this composition rule is ensured by definition (4.5) and the
fact that

ρ ≤ ρ′ =⇒ Com(ρ′) ⊆ Com(ρ). (4.7)

In fact, F̂ ′ ∈ HomCρ(e
′, e′′) implies that F̂ ′ ∈ Com(ρ′) ⊆ Com(ρ), hence, for

any R ∈ ρ, F̂ ′F̂ R̂ = F̂ ′R̂F̂ = R̂F̂ ′F̂ ; that is, F̂ ′F̂ ∈ HomCρ(e, e
′′).

For the sake of brevity, we hereafter abbreviate the notation for mor-
phisms according to the following rule;

F̂ ∈ HomB((e, ρ), (e
′, ρ′)) ⇐⇒ F̂ ∈ HomCρ(e, e

′) and ρ ≤ ρ′. (4.8)

Also, we sometimes use another notation, say, F̂ρρ′ for (e, ρ)
F̂
−→ (e′, ρ′), in

order to specify which objects of O/∼ occur as its domain and codomain.
The category B contains all of the categories Cρ ≃ S × {ρ} (ρ ∈ O/∼)

as subcategories. It is, however, not appropriate for a base category. In the
following, we see the reason.

The key ingredient in Section 3 is the functor A : CR → Sets. Since
any R ∈ ρ has the same set of eigenspaces, ES(ρ), the sets A(e) of true
atoms are also the same for each e. Therefore, we can define a function
Ā : Obj(B) → Obj(Sets) by

Ā(e, ρ) := {er1, · · · , erk , {0}}. (4.9)

If we follow the line given in Section 3, the function Ā should be extendable

to a functor A : B → Sets which maps (e, ρ)
F̂
−→ (e′, ρ) to a map A(F̂ ) :

Ā(e, ρ) → Ā(e′, ρ′) defined by A(F̂ )(er) := F̂ (er). If ρ 6= ρ′, however, in
general F̂ (er) 6∈ A(e′, ρ′), hence, Ā cannot define the functor A : B → Sets.
In fact, since ρ ≤ ρ′, any eigenspace r ∈ ES(ρ) is uniquely decomposed by
means of adequately chosen eigenspaces, r′1, · · · , r

′
j, of ρ

′, as r = r′1⊕· · ·⊕r′j .

If F̂ ∈ Com(ρ), F̂ (r) is a subspace of r but need not equal any one of
r′1, · · · , r

′
j . Therefore F̂ (er) ∈ A(e′, ρ′) cannot be concluded.

20



In order to maintain the idea in Section 3 to the maximum extent possible,
we define a subcategory C of B in such a way that it contains all Cρ (ρ ∈ O/∼)
as subcategories and that Ā(e, ρ) can be extended to a functor A : C → Sets.
We can make good this by adopting F̂ ∈ HomB((e, ρ), (e

′, ρ′)) as a morphism
of C only if F̂ (er) ∈ Ā(e′, ρ′). That is, the objects of C are given by

Obj(C) := Obj(B) = S ×O/∼, (4.10)

and the morphisms are defined by

HomC((e, ρ), (e
′, ρ′)) := {F̂ ∈ HomB((e, ρ), (e

′, ρ′)) : F̂ (Ā(e, ρ)) ⊆ Ā(e′, ρ′)}.
(4.11)

Here, note that, since F̂ (Ā(e, ρ)) = Ā(e′, ρ), the condition in the definition
(4.11) is equivalent to Ā(e′, ρ) ⊆ Ā(e′, ρ′). In fact, because of proposition
B.1, it is further reduced to Ā(e′, ρ) = Ā(e′, ρ′).

Since F̂ ′F̂ (Ā(e, ρ)) ⊆ F̂ ′(Ā(e′, ρ′)) ⊆ Ā(e′′, ρ′′) for any F̂ ∈ HomC((e, ρ), (e
′, ρ′))

and F̂ ′ ∈ HomC((e
′, ρ′), (e′′, ρ′′)), definition (4.11) of Mor(C) is consistent with

the composition rule (4.6).
Note that, for any ρ ∈ O/∼, Cρ is a subcategory of C as well as of B because

C is a wide subcategory and HomCρ(e, e
′) = HomC((e, ρ), (e

′, ρ)). Further, any
object in Cρ is connected to Cρ′ with ρ ≤ ρ′ via some morphisms. In fact, for
any (e, ρ) ∈ Obj(C) and ρ′ ≥ ρ, there exists e′ s.t. HomC((e, ρ), (e

′, ρ′)) 6= ∅.
The simplest example is e′ = π̂r′e where π̂r′ ∈ HomC((e, ρ), (e

′, ρ′)) is the
projector on r′ ∈ ES(ρ′).

4.2 Construction of Valuation Functions

The definition of the category C allows the map Ā to be a functor A : C →
Sets: that is,

(e, ρ) 7−→ A(e, ρ) := Ā(e, ρ) , (4.12)

(e, ρ)
F̂
−→ (e′, ρ′) 7−→

A(e, ρ)
A(F̂ )
−−−−→ A(e′, ρ′)

∈ ∈

er 7−→ F̂ (er)

. (4.13)

Following Section 3, we explicitly give definitions of other functors to be
needed. The functor L : C → Sets, which has A as a subobject, is defined
by

(e, ρ) 7−→ L(e, ρ) := L , (4.14)
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(e, ρ)
F̂
−→ (e′, ρ′) 7−→

L(e, ρ)
L(F̂ )
−−−−→ L(e′, ρ′)

∈ ∈

P 7−→ F̂P

. (4.15)

The subobject classifier Ω of the topos SetsC is given by

(e, ρ) 7−→ Ω(e, ρ) := {S : S is a sieve on (e, ρ)} , (4.16)

(e, ρ)
F̂
−→ (e′, ρ′) 7−→

Ω(e, ρ)
Ω(F̂ )
−−−−→ Ω(e′, ρ′)

∈ ∈

S 7−→
{

F̂ ′ ∈ Mor(C) : F̂ ′ ◦ F̂ ∈ S
}

.

(4.17)
Also, the terminal object 1 of SetsC is defined by 1(e, ρ) := {∗} and 1(F̂ ) :=
id{∗}.

Since A has no global elements, we cannot go along the line in Section
3.2. To alter the way of construction, as in Section 3.5, we define the full
subcategory C(e,ρ)↓ of C for any (e, ρ) ∈ Obj(C) by

Obj(C(e,ρ)↓) := {(e′, ρ′) ∈ Obj(O) : HomC((e, ρ), (e
′, ρ′)) 6= ∅} (4.18)

and
HomC(e,ρ)↓((e′, ρ′), (e′′, ρ′′)) = HomC((e

′, ρ′), (e′′, ρ′′)). (4.19)

For any (e, ρ) ∈ Obj(O), the restriction A(e,ρ)↓ of A to C(e,ρ)↓ has a global

element σer,ρ : 1(e,ρ)↓
�

−→ A(e,ρ)↓ corresponding to each er ∈ A(e, ρ). This is
uniquely determined by σer,ρ

(e,ρ)(∗) := er ∈ A(e, ρ), via the naturality condition

applied to any (e′, ρ′) ∈ O(C(e,ρ)↓) and F̂ ∈ HomC((e, ρ), (e
′, ρ′)), as

σer,ρ
(e′,ρ′)(∗) = A(e,ρ)↓(F̂ )(σer ,ρ

(e,ρ)(∗)) = F̂ (er) = e′r ∈ A(e,ρ)↓(e
′, ρ′) = A(e′, ρ′).

(4.20)
It is easy to see that σer ,ρ is a natural transformation.

For any (e, ρ) ∈ Obj(C) and r ∈ ES(ρ), we define a functor Ter ,ρ :
C(e,ρ)↓ → Sets

(e′, ρ′) 7−→ Ter,ρ(e′, ρ′) := {P ∈ L(e,ρ)↓(e
′, ρ′) : P ≥ σer,ρ

(e′,ρ′)(∗)} , (4.21)

(e′, ρ′)
F̂ ′

−→ (e′′, ρ′′) 7−→
Ter,ρ(e′, ρ′)

Ter ,ρ(F̂ ′)
−−−−−−−→ Ter,ρ(e′′, ρ′′)

∈ ∈

P 7−→ F̂ ′P

. (4.22)
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Since Ter,ρ is a filter, its characteristic morphism χTer,ρ L(e,ρ)↓ : 1(e,ρ)↓
�

−→
Ω(e,ρ)↓ gives a truth-value valuation; that is, for the truth atom er at the
stage (e, ρ) and for any quantum proposition P ∈ L(e,ρ)↓(e, ρ) = L(e, ρ) = L,
we define the truth-value Ver,ρ(P ) ∈ Ω(e,ρ)↓(e, ρ) = Ω(e, ρ) by

V
er,ρ(P ) := χ

T
er,ρL(e,ρ)↓

(e,ρ) (P )

= {F̂ ∈ Mor(C(e,ρ)↓) : dom(F̂ ) = (e, ρ), L(e,ρ)↓(F̂ )(P ) ∈ Ter ,ρ(cod(F̂ ))}

=
⋃

(e′,ρ′)∈Obj(C(e,ρ)↓)

{F̂ ∈ HomC(e,ρ)↓((e, ρ), (e′, ρ′)) : F̂ (P ) ≥ σer,ρ
(e′,ρ′)(∗)}

=
⋃

(e′,ρ′)∈Obj(C(e,ρ)↓)

{F̂ ∈ HomC(e,ρ)↓((e, ρ), (e′, ρ′)) : F̂ (P ) ≥ e′r}. (4.23)

If there exists a filter subobject T ∈ Obj(SetsC) of L which satisfies TC(e,ρ)↓ =
Ter,ρ, then it gives the same truth-value for each P ∈ L at the stage (e, ρ) ∈
Obj(C).

5 Relation between Valuation Structures Based

on SetsCρ and SetsC

In the previous sections, we constructed two types of valuation functions
based on the toposes of presheaves, one of which treated the case with fixed
determinate observable and the other formulated a framework in which all
determinate observables are included. They give, however, different results
for the same situation; for a state e ∈ S and a determinate observable R ∈
ρ, the assigned truth-values to a quantum proposition P ∈ L, Vr

e (P ) and
Ver,ρ(P ), are different sieves on different Heyting algebras, Ω(e) and Ω(e, ρ),
respectively. In fact, C includes morphisms between different ρ’s, Vr

e (P ) 6=
Ver,ρ(P ) as sets of morphisms. Also, Ω(e, ρ) includes sieves much more than
Ω(e). Therefore, neither structural relation between the Heyting algebras
nor logical relation between the truth-values is clear. On the other hand,
definitions (3.30) and (3.53) of truth-value assignments show that Vr

e (P ) =
Ver,ρ(P ) as the sets of linear operators of which domains and codomains are
forgotten. This suggests that there exists a Heyting algebra on which Vr

e (P )
and Ver,ρ(P ) take the same value. In this section, we show that this is the
case.
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5.1 Structural Relation between Subobject Classifiers

in SetsCρ and SetsC

We investigate relation between the subobject classifiers Ωρ of Sets
Cρ and Ω

of SetsC. To do so, we define two important ingredients, ♯ and ♭. For any
(e, ρ) ∈ Obj(C), they give maps, ♯(e,ρ) : Ωρ(e) → Ω(e, ρ) and ♭(e,ρ) : Ω(e, ρ) →
Ωρ, respectively. Their detailed definitions are described below. Hereafter,
the subscripts (e, ρ) are omitted for the sake of brevity.

To define the map ♯ : Ωρ(e) → Ω(e, ρ), we introduce η : Ωρ(e) →
Sub(Mor(C)), which lifts any sieve Se ∈ Ωρ(e) to a set η(Se) of morphisms
in the category C by

η(Se) :=
{

Ĝρρ ∈ Mor(C) : Ĝ ∈ Se

}

=
⋃

e′′∈S

{

(e, ρ)
Ĝρρ
−−→ (e′′, ρ) ∈ Mor(C) : e

Ĝ
−→ e′′ ∈ Se

}

. (5.1)

(As for the meaning of Ĝρρ, see Section 4.1.) Although Se ∈ Ωρ(e), η(Se) /∈
Ω(e, ρ). We define ♯(Se) ∈ Ω(e, ρ) as a minimum sieve on (e, ρ) including
η(Se); that is, for a family of sets, U := {S(e,ρ) ∈ Ω(e, ρ) : η(Se) ⊆ S(e,ρ)},
♯(Se) is defined by ♯(Se) :=

⋂

U because any intersection of sieves on (e, ρ)
is also a sieve. Also, it can be represented explicitly as

♯(Se) =
{

F̂ ∈ Mor(C) : ∃Ĝ ∈ Se, ∃Ĥ ∈ Mor(C), s.t. F̂ = Ĥ ◦ Ĝρρ

}

. (5.2)

In fact, it is easy to see that the right hand side of equation (5.2) is itself a
sieve and is included by any sieve including η(Se).

For any sieve S(e,ρ) ∈ Ω(e, ρ), we define a sieve ♭(S(e,ρ)) ∈ Ωρ(e) by

♭(S(e,ρ)) :=
{

F̂ ∈ Mor(CR) : F̂ρρ ∈ S(e,ρ)

}

. (5.3)

Proposition 5.1 The map ♭ : Ω(e, ρ) → Ωρ(e) is a lattice homomorphism
preserving the top and the bottom.

Proof. A lattice homomorphism is defined as a join- and meet-preserving
map. To prove the join-preservation, ♭(S1∨S2) = ♭(S1)∨ ♭(S2), suppose that
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S1, S2 ∈ Ω(e, ρ). Then we have the following equivalence relation:

F̂ ∈ ♭(S1 ∨ S2) ⇐⇒ F̂ρρ ∈ S1 ∨ S2

⇐⇒ F̂ρρ ∈ S1 or F̂ρρ ∈ S2

⇐⇒ F̂ ∈ ♭(S1) or F̂ ∈ ♭(S2)

⇐⇒ F̂ ∈ ♭(S1) ∨ ♭(S2). (5.4)

We can prove the meet-preservation, ♭(S1 ∧ S2) = ♭(S1)∧ ♭(S2), by replacing
the symbol ∨ and the word ‘or’ by ∧ and ‘and’, respectively, in (5.4).

The top- and bottom-preservation, ♭(⊤(e,ρ)) = ⊤e, and ♭(⊥(e,ρ)) = ⊥e, are
clear from the definition (5.3).

Proposition 5.2 The map ♯ : Ωρ(e) → Ω(e, ρ) is a lattice homomorphism
preserving the top and the bottom.

Proof. Preservation of ⊤ and ⊥ is clear. To see the ∨-preservation, let S1,
S2 ∈ Ωρ(e), then we have

F̂ ∈ ♯(S1 ∨ S2) ⇐⇒ ∃Ĝ ∈ S1 ∨ S2, ∃Ĥ ∈ Mor(C), s.t. F̂ = Ĥ ◦ Ĝρρ

⇐⇒ ∃Ĝ ∈ Mor(CR), ∃Ĥ ∈ Mor(C),

s.t. Ĝ ∈ S1 or Ĝ ∈ S2, F̂ = Ĥ ◦ Ĝρρ

⇐⇒ F̂ ∈ ♯(S1) ∨ ♯(S2). (5.5)

Similarly, we can verify the ∧-preservation.
In general, lattice homomorphisms automatically satisfy the order-preservation

(e.g., [20]). Therefore, ♭ : Ω(e, ρ) → Ωρ(e) and ♯ : Ωρ(e) → Ω(e, ρ) are order
homomorphisms. (Of course, this can be directly verified from the definitions
(5.2) and (5.3).) They are not, however, Heyting-algebra homomorphisms,
because they do not preserve the pseudocomplements (⇒). In fact, what we
can safely say about their effects on the pseudocomplements is the following
order relation:

f(S1 ⇒ S2) ≤ (f(S1) ⇒ f(S2)), (5.6)

where f = ♯ or ♭. Inequality (5.6) results from the fact that the maps are
lattice homomorphisms. In fact, if S, S1, S2 ∈ Ω(e, ρ), then

S ∧ S1 ≤ S2 =⇒ f(S ∧ S1) ≤ f(S2)

⇐⇒ f(S) ∧ f(S1) ≤ f(S2)

=⇒ f(S) ≤ (f(S1) ⇒ f(S2)). (5.7)
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In particular, letting S be S1 ⇒ S2, we have an inequality which is always
true, (S1 ⇒ S2)∧ S1 ≤ S2, as the leftmost inequality, hence, inequality (5.6)
holds.

Proposition 5.3 The composition of lattice homomorphisms, ♭◦♯ : Ωρ(e) →
Ωρ(e) satisfy the equality,

♭ ◦ ♯ = 1Ωρ(e). (5.8)

Thus, the maps ♯ is injective and ♭ surjective. On the other hand, ♮ :=
♯ ◦ ♭ : Ω(e, ρ) → Ω(e, ρ) is a lattice homomorphism preserving the top and
the bottom, and satisfies the inequality,

♮ := ♯ ◦ ♭ ≤ 1Ω(e,ρ). (5.9)

Proof. For any Se ∈ Ωρ(e)

F̂ ∈ ♭ ◦ ♯(Se) ⇐⇒ F̂ρρ ∈ ♯(Se)

⇐⇒ ∃Ĝ ∈ Se, ∃Ĥ ∈ Mor(C), s.t. F̂ρρ = Ĥ ◦ Ĝρρ .(5.10)

This implies that, in CR, F̂ = Ĥ◦Ĝ. Thus, since Ĝ ∈ Se, F̂ ∈ Se. Conversely,
F̂ ∈ Se implies that F̂ρρ ∈ ♯(Se), hence, F̂ ∈ b(♯(Se)). Thus, equality (5.8) is
verified.

Since ♭ and ♯ are lattice homomorphisms preserving the top and the bot-
tom, so is ♮. To show inequality (5.9), suppose that F̂ ∈ ♯ ◦ ♭(S(e,ρ)). Then

there exist Ĝ ∈ ♭(S(e,ρ)) and Ĥ ∈ Mor(C) such that F̂ = Ĥ ◦ Ĝρρ. But then,

because of the definition of ♭, Ĝρρ ∈ S(e,ρ). Thus, F̂ ∈ S(e,ρ) because S(e,ρ) is
a sieve.

With regard to the lattice-homomorphism ♮ : Ω(e, ρ) → Ω(e, ρ), we in-
troduce the following definition:

Definition 5.4 A sieve S ∈ Ω(e, ρ) is said to be natural if it is a fixpoint of
♮, i.e., ♮(S) = S.

Proposition 5.5 A sieve S ∈ Ω(e, ρ) is natural if and only if S ∈ ♮(Ω(e, ρ)).
That is, ♮(Ω(e, ρ)) is a set of fixpoints of ♮.

Proof. If S is natural, S = ♮(S), hence S ∈ ♮(Ω(e, ρ)). Conversely, if
S ∈ ♮(Ω(e, ρ)), there exists S ′ ∈ Ω(e, ρ) s.t. S = ♮(S ′). Then, ♮(S) =
♮ ◦ ♮(S ′) = ♯ ◦ ♭ ◦ ♯ ◦ ♭(S ′) = ♯ ◦ ♭(S ′) = ♮(S ′) = S. Thus, S is natural.
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Propositions 53 and 55 imply that the restriction ♭′ of the map ♭ to
♮(Ω(e, ρ)), ♭′ : ♮(Ω(e, ρ)) → Ωρ(e), and ♯ : Ωρ(e) → ♮(Ω(e, ρ)) are mu-
tually inverse; they are lattice-isomorphisms between ♮(Ω(e, ρ)) and Ωρ(e).
Moreover, ♮(Ω(e, ρ)) is a Heyting-algebra isomorphic to Ωρ(e), because for
any S1, S2 ∈ ♮(Ω(e, ρ)), their pseudocomplement S1 ⇒♮ S2 ∈ ♮(Ω(e, ρ)) can
be defined by

S1 ⇒♮ S2 := ♯(♭(S1) ⇒ ♭(S2)). (5.11)

The map ♭′ : ♮(Ω(e, ρ)) → Ωρ(e) is, therefore, a Heyting-algebra isomor-
phism.

We, thus, obtain the following theorem:

Theorem 5.6 For any (e, ρ) ∈ Obj(C), the Heyting algebra Ω(e, ρ) includes
a sublattice ♮(Ω(e, ρ)) = ♯(Ωρ(e)) equipped with the top ⊤(e,ρ) and the bottom
⊥(e,ρ). It is also a Heyting algebra isomorphic to Ωρ(e).

This theorem does not mean that ♮(Ω(e, ρ)) is a Heyting subalgebra of
Ω(e, ρ). In general, we cannot assert that S1 ⇒♮ S2 should equal S1 ⇒ S2

defined on Ω(e, ρ). In fact, we can only say that

S1 ⇒♮ S2 = ♯(♭(S1) ⇒ ♭(S2))

≤ ♯(♭(S1)) ⇒ ♯(♭(S2))

= S1 ⇒ S2. (5.12)

Not only that, even if S1 and S2 belong to ♮(Ω(e, ρ)), S1 ⇒ S2 need not
belong to ♮(Ω(e, ρ)) for (e, ρ) ∈ Obj(C).

As is seen below, further, the sets ♮(Ω(e, ρ)) make up a functor.

Proposition 5.7 If S ∈ Ω(e, ρ) is natural, then so is Ω(F̂ )(S) ∈ Ω(e′, ρ′)
for any F̂ ∈ HomC((e, ρ), (e

′, ρ′)).

Proof. Since we have inequality (5.9), in order to prove that Ω(F̂ )(S) is
natural, it suffices to show that Ω(F̂ )(S) ≤ ♮(Ω(F̂ )(S)) for any natural
S ∈ Ω(e, ρ).

To do so, suppose that (e′, ρ′)
F̂ ′

−→ (e′′, ρ′′) ∈ Ω(F̂ )(S). Then we have

(e, ρ)
F̂
−→ (e′, ρ′)

F̂ ′

−→ (e′′, ρ′′) ∈ S. Since S is natural, i.e., S = ♯(♭(S)), there

exist arrows, e
Ĝ
−→ e′′′ ∈ ♭(S) and Ĥρρ′′ ∈ HomC((e

′′′, ρ), (e′′, ρ′′)), such that
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the following diagram commutes:

(e, ρ)
F̂ρρ′

−−−→ (e′, ρ′)

Ĝρρ





y





y

F̂ ′
ρ′ρ′′

(e′′′, ρ) −−−→
Ĥρρ′′

(e′′, ρ′′)

. (5.13)

For the operator Ĥ corresponding to Ĥρρ′′, we have Ĥ ∈ HomC((e
′′′, ρ), (e′′, ρ)),

hence, Ĥ ∈ HomC((e
′′′, ρ), (e′′, ρ′)) because of (4.11) and proposition B.2.

Thus, we obtain the following commutative diagram:

(e′′′, ρ) (e′′′, ρ) (e′′′, ρ)

Ĥρρ





y





y

Ĥρρ′





y

Ĥρρ′′

(e′′, ρ) −−−→
Îρρ′

(e′′, ρ′) −−−→
Îρ′ρ′′

(e′′, ρ′′)

. (5.14)

On the other hand, we have F̂ ′ ∈ HomC((e
′, ρ′), (e′′, ρ′)) for F̂ ′ = F̂ ′

ρ′ρ′′ .

Also, it holds that F̂ ′F̂ = ĤĜ as linear transformations of H because of
commutative diagram (5.13). Thus, the following diagram commutes:

(e, ρ)
F̂ρρ′

−−−→ (e′, ρ′)

Ĝρρ





y





y

F̂ ′
ρ′ρ′

(e′′′, ρ) −−−→
Ĥρρ′

(e′′, ρ′)

. (5.15)

Since Ĝ ∈ ♭(S), we have Ĝρρ ∈ S. Therefore the commutative diagram

(5.15) means that F̂ ′
ρ′ρ′ ◦ F̂ρρ′ ∈ S, which implies F̂ ′

ρ′ρ′ ∈ Ω(F̂ )(S), hence,

e′
F̂ ′

−→ e′′ ∈ ♭(Ω(F̂ )(S)).
Finally, note that the diagram

(e′, ρ′)
F̂ ′
ρ′ρ′′

−−−→ (e′′, ρ′′)

F̂ ′
ρ′ρ′





y

∥

∥

∥

(e′′, ρ′) −−−→
Îρ′ρ′′

(e′′, ρ′′)

(5.16)
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commutes. This diagram implies that (e′, ρ′)
F̂ ′

−→ (e′′, ρ′′) ∈ ♮(Ω(F̂ )(S)) be-
cause F̂ ′ ∈ ♭(Ω(F̂ )(S)) as is shown above.

Theorem 56 and Proposition 57 entail the following theorem:

Theorem 5.8 The sets ♮(Ω(e, ρ)) ((e, ρ) ∈ Obj(C)), each of which is a set
of natural sieves on (e, ρ), can be extended to a functor from C to Sets, which
is hereafter denoted by ♮Ω:

(e, ρ) 7−→ ♮Ω(e, ρ) := ♮(Ω(e, ρ)) = {S ∈ Ω(e, ρ) : ♮(S) = S}, (5.17)

(e, ρ)
F̂
−→ (e′, ρ′) 7−→

♮Ω(e, ρ)
♮Ω(F̂ )
−−−−−→ ♮Ω(e′, ρ′)

∈ ∈

S 7−→ Ω(F̂ )(S)

. (5.18)

Note that the functor ♮Ω is a subobject of the subobject classifier Ω. Fur-
thermore, as is seen in the next subsection, the functor ♮Ω behaves as a
subobject classifier for a particular collection of subobjects of each functors;
that is, ♮Ω is a subobject semi-classifier of the subobjects.

5.2 Logical Relation between Valuations in SetsCρ and

SetsC

The definition of the functor Ter,ρ, (4.21) and (4.22), entails that, for any

proposition P ∈ L(e,ρ)↓(e
′, ρ′) and any (e′, ρ′)

F̂ ′

−→ (e′′, ρ′′) ∈ Mor(C(e,ρ)↓), if

L(e,ρ)↓(F̂
′
ρ′ρ′′)(P ) ∈ Ter ,ρ(e′′, ρ′′), then L(e,ρ)↓(F̂

′
ρ′ρ′)(P ) ∈ Ter,ρ(e′′, ρ′). In fact,

definition (4.21) gives the following equivalence relation:

L(e,ρ)↓(F̂
′
ρ′ρ′′)(P ) ∈ Ter ,ρ(e′′, ρ′′) ⇐⇒ F̂ ′(P ) ≥ σer,ρ

(e′′,ρ′′)(∗)

⇐⇒ F̂ ′(P ) ≥ F̂ ′F̂ (er)

⇐⇒ F̂ ′(P ) ≥ σer,ρ
(e′′,ρ′)(∗)

⇐⇒ L(e,ρ)↓(F̂
′
ρ′ρ′)(P ) ∈ Ter,ρ(e′′, ρ′),

(5.19)

where the operator F̂ occurring in the second line is an arbitrary morphism
contained by HomC(e,ρ)↓((e, ρ), (e′, ρ′)). We generalize the above-mentioned
property as follows:
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Definition 5.9 Let M be an object of Obj(SetsC). A subobject N of M is
said to be projective for x ∈ M(e, ρ) if, for any F̂ ∈ HomC((e, ρ), (e

′, ρ′)),

M(F̂ρρ′)(x) ∈ N(e′, ρ′) =⇒ M(F̂ρρ)(x) ∈ N(e′, ρ). (5.20)

If the implication relation (5.20) holds for all x ∈ M(e, ρ), N is said to be
projective for M(e, ρ). Also, if it does for all (e, ρ) ∈ Obj(C), N is said to be
projective for M.

Note that we do not propose the converse of (5.20) because the left-hand side
immediately results from the right-hand side.

Proposition 5.10 The subobject N of M is projective for x ∈ M(e, ρ) if
and only if χNM

(e,ρ)(x) ∈ Ω(e, ρ) is natural.

Proof. (=⇒) Suppose that N is projective for x ∈ M(e, ρ). Then, we have
the implication relation,

(e, ρ)
F̂
−→ (e′, ρ′) ∈ χNM

(e,ρ)(x) ⇐⇒ M(F̂ρρ′)(x) ∈ N(e′, ρ′)

=⇒ M(F̂ρρ)(x) ∈ N(e′, ρ)

⇐⇒ (e, ρ)
F̂
−→ (e′, ρ) ∈ χNM

(e,ρ)(x)

⇐⇒ e
F̂
−→ e′ ∈ ♭(χNM

(e,ρ)(x))

=⇒ (e, ρ)
F̂
−→ (e′, ρ′) ∈ ♮(χNM

(e,ρ)(x)),(5.21)

which means that χNM

(e,ρ)(x) ≤ ♮(χNM

(e,ρ)(x)), hence, χ
NM

e,ρ (x) is natural. [In the

relation (5.21), the last line comes from F̂ρρ′ = Îρρ′ ◦ F̂ρρ.]
(⇐=) Suppose that χNM

(e,ρ)(x) is natural, i.e., χ
NM

(e,ρ)(x) = ♮(χNM

(e,ρ)(x)). Then,

M(F̂ρρ′)(x) ∈ N(e′, ρ′) ⇐⇒ F̂ρρ′ ∈ χNM

(e,ρ)(x)

=⇒ F̂ρρ ∈ χNM

(e,ρ)(x)

⇐⇒ M(F̂ρρ)(x) ∈ N(e′, ρ), (5.22)

where, the second line comes from the assumption χNM

(e,ρ)(x) = ♮(χNM

(e,ρ)(x)) and
Proposition C1 in Appendix C.

Corollary 5.11 If N →֒ M is projective for M(e, ρ), then the equation for
Sets-morphisms,

χNM

(e,ρ) = ι♮ΩΩ

(e,ρ) ◦ ♮ ◦ χ
NM

(e,ρ), (5.23)
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follows.

Theorem 5.12 If N →֒ M is projective for M, the functions ♮ ◦ χNM

(e,ρ) :

M(e, ρ) → ♮Ω(e, ρ) ((e, ρ) ∈ Obj(C)) defines a natural transformation, which

is hereafter denoted by ♮χNM : M
�

−→ ♮Ω. Further, the following equation for
the natural transformations holds:

χNM = ι♮ΩΩ ◦ ♮χNM. (5.24)

Proof. From Theorems 58, for any natural S ∈ Ω(e, ρ) and (e, ρ)
F̂
−→ (e′, ρ′) ∈

Mor(C), it follows that

♮(Ω(F̂ )(S)) = Ω(F̂ )(S) = Ω(F̂ )(♮(S)). (5.25)

Therefore, the diagram

M(e, ρ)
χNM

(e,ρ)
−−−→ Ω(e, ρ)

♮(e,ρ)
−−−→ ♮Ω(e, ρ)





y
Ω(F̂ )





y
♮Ω(F̂ )

Ω(e′, ρ′) −−−→
♮(e′,ρ′)

♮Ω(e′, ρ′)

(5.26)

commutes for any (e, ρ)
F̂
−→ (e′, ρ′) because, for any x ∈ M(e, ρ), χNM

(e,ρ)(x) is
natural from Proposition 510.

The commutativity of diagram (5.26) and the naturality of χNM : M
�

−→ Ω

further ensure that the outer square of the diagram

M(e, ρ)
χNM

(e,ρ)
−−−→ Ω(e, ρ)

♮(e,ρ)
−−−→ ♮Ω(e, ρ)

M(F̂ )





y





y
Ω(F̂ )





y
♮Ω(F̂ )

M(e′, ρ′) −−−−→
χNM

(e′,ρ′)

Ω(e′, ρ′) −−−→
♮(e′,ρ′)

♮Ω(e′, ρ′)

(5.27)

commutes. This shows naturality of ♮χNM. Equation (5.24) is a straightfor-
ward result from equation (5.23) which holds object-wise.

To present main theorems, we introduce a morphism true into ♮Ω, i.e., a

natural transformation ♮τ : 1
�

−→ ♮Ω, which is defined by ♮τ(e,ρ)(∗) = ⊤(e,ρ) ∈
♮Ω(e, ρ) for each (e, ρ) ∈ Obj(C). Note that ♮τ can be also defined as a
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pullback of the true, τ : 1
�

−→ Ω, along the inclusion morphism ι♮ΩΩ : ♮Ω
�

−→
Ω; that is, the diagram

1 1

♮τ





y





y

τ

♮Ω −−−→
ι♮ΩΩ

Ω

(5.28)

is a pullback. Thus, we can apply Propositions A1 and A2:

Theorem 5.13 If N is a projective subobject for M ∈ Obj(SetsC), the dia-
gram

N
!

−−−→ 1

ιNM





y





y

♮τ

M −−−→
♮χNM

♮Ω

(5.29)

is a pullback.

More precisely, we can show that one-to-one correspondence between
classes of isomorphic projective subobjects of M and natural transforma-
tions from M to ♮Ω.

Theorem 5.14 (i) Suppose that N →֒ M is projective for M. If there exists

a SetsC-morphism ζ : M
�

−→ ♮Ω which makes the diagram

N
!

−−−→ 1

ιNM





y





y

♮τ

M −−−→
ζ

♮Ω

(5.30)

a pullback, then ζ = ♮χNM.

(ii) Conversely, for each SetsC-morphism ζ : M
�

−→ ♮Ω, there exist pro-
jective subobjects N of M, being determined up to isomorphism, such that
ζ = ♮χNM, and hence, the corresponding diagram (5.30) becomes a pullback.

Next, we describe how the projective subobjects in SetsC relate to SetsCρ .
Note that, for each object M of SetsC and each ρ ∈ Obj(C), we can

define an object M|ρ of SetsCρ by M|ρ(e) := M(e, ρ) and M(e
F̂
−→ e′) :=

M((e, ρ)
F̂
−→ (e′, ρ)). We have the following proposition:
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Proposition 5.15 Suppose thatM is an object of SetsC and N is a subobject
of M. Then, for each (e, ρ), the diagram

M(e, ρ)
χNM

(e,ρ)
−−−→ Ω(e, ρ)

i(e,ρ)





y





y
♭

M|ρ(e) −−−−−→
χ
N|ρ M|ρ
e

Ωρ(e)

(5.31)

commutes, where i(e,ρ) : M(e, ρ)
∼
−→ M|ρ(e) is the trivial map x 7→ x. Fur-

ther, if N is projective for M, the diagram (5.31) is partitioned into two
commutative squares:

M(e, ρ)
♮χNM

(e,ρ)
−−−→ ♮Ω(e, ρ)

ι♮ΩΩ

(e,ρ)
−−−→ Ω(e, ρ)

i(e,ρ)





y





y
♭′





y
♭

M|ρ(e) −−−−−→
χ
N|ρ M|ρ
e

Ωρ(e) Ωρ(e)

. (5.32)

Proof. For each x ∈ M(e, ρ), we have

e
F̂
−→ e′ ∈ χN|ρM|ρ

e ◦ i(e,ρ)(x) ⇐⇒ e
F̂
−→ e′ ∈ χN|ρM|ρ

e (x)

⇐⇒ M|ρ

(

e
F̂
−→ e′

)

(x) ∈ N|ρ(e
′)

⇐⇒ M

(

(e, ρ)
F̂
−→ (e′, ρ)

)

(x) ∈ N(e′, ρ)

⇐⇒ (e, ρ)
F̂
−→ (e′, ρ) ∈ χNM

(e,ρ)(x)

⇐⇒ e
F̂
−→ e′ ∈ ♭(χNM

(e,ρ)(x)), (5.33)

which implies the commutativity of the diagram (5.31). In particular, if N is
a projective subobject, χNM

(e,ρ)(x) is a natural sieve, i.e., χNM

(e,ρ)(x) = ♮χNM

(e,ρ)(x).

This implies the commutativity of the left half of the diagram (5.32).
Since the map ♭ : Ω(e, ρ) → Ωρ(e) is order-preserving but in general not

injective, it does not faithfully preserve the order structure of χNM

(e,ρ)(M(e, ρ));

the image ♭(χNM

(e,ρ)(M(e, ρ))), which equals χ
N|ρ M|ρ
e (M|ρ(e)), loses some in-

formation about the structure of χNM

(e,ρ)(M(e, ρ)). On the other hand, ♭′ :
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♮Ω(e, ρ) → Ωρ(e) is a Heyting-algebra isomorphism. Therefore, the com-
mutativity of the squares in (5.32) implies that, if N is projective for M,

the images ♮χNM

(e,ρ)(M(e, ρ)) (∼= χNM

(e,ρ)(M(e, ρ))) and χ
N|ρ M|ρ
e (M|ρ(e)) pos-

sess the same order structure in the same Heyting algebra. In this sense,
the maps ♮χNM

(e,ρ) (or χNM

(e,ρ) equipped with the alternative target ♮Ω(e, ρ))

and χ
N|ρ M|ρ
e give logically the same assignments to any x ∈ M(e, ρ) and

x = i(e,ρ)(x) ∈ M|ρ(e), respectively.
Our construction and argumentation given in the present section is valid

also for SetsC
(e,ρ)↓

as well as for SetsC . In particular, for L(e,ρ)↓ and its true
subobject Ter ,ρ, we have the objects in SetsCρ , L(e,ρ)↓|ρ = L and Ter ,ρ|ρ = Tr

e.
Furthermore, Ter ,ρ is projective for L(e,ρ)↓, as is pointed out at the top of this
subsection. We thus have the following commutative diagram as a special
case of (5.32):

L(e,ρ)↓(e, ρ)
♮Ver,ρ

−−−→ ♮Ω(e,ρ)↓(e, ρ)
ι
♮Ω(e,ρ)↓ Ω(e,ρ)↓
(e,ρ)

−−−−−−−−−→ Ω(e,ρ)↓(e, ρ)

i(e,ρ)





y





y
♭′





y
♭

L(e) −−−→
Vr
e

Ωρ(e) Ωρ(e)

. (5.34)

Here, note that Vr
e := χ

Tr
e L

e , ♮Ver ,ρ := ♮χ
T

er,ρL(e,ρ)↓

(e,ρ) , andVer,ρ := χ
T

er,ρL(e,ρ)↓

(e,ρ) =

ι♮Ω(e,ρ)↓ Ω(e,ρ)↓ ◦ ♮Ver,ρ. As did in the last paragraph, we conclude that the
valuation functions ♮Ver,ρ (or V

er ,ρ equipped with the alternative target
♮Ω(e,ρ)↓(e, ρ) = ♮Ω(e, ρ)) and Ver,ρ assign logically equivalent truth-values
to any quantum proposition P ∈ L(e,ρ)↓(e, ρ) = L(e, ρ) = L and the same
P ∈ L(e) = L, respectively.

6 Conclusion

We have constructed topos-theoretic truth-value valuations of quantum propo-
sitions in the functor categories SetsCR and SetsC. They are extension of
Bub’s modal formulism; as each true atom er determines a true subset of the
determinate sublattice D(e, R) and the corresponding 2-valued valuation V er

defined on D(e, R), er determines a true subobject and defines Vr
e in SetsCR

and Ver ,ρ in SetsC.
Truth values given by Vr

e are sieves of which elements, morphisms of the
base category CR, are linear operators commutative with the determinate
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observable R. Each quantum proposition P assigned a sieve Vr
e (P ) on e

consisting of morphisms F̂ such that F̂ (P ) ≥ F̂ (er).
In that morphisms are linear operators, our theory is similar to an exam-

ple which Isham [10] constructed in M-Sets topos. In fact, if we modify the
base category CR by adding the zero-space as an object and follow the pro-
cedure given in Section 3 to obtain alternative valuations, then they can be
reconstructed by another method based on M-Sets generated by Com(R).

Because of the existence of operators vanishing er, V
r
e does not satisfy the

null-proposition condition. We have shown that this defect is removed if we
adopt the subobject semi-classifier δrΩ instead of Ω as the target of Vr

e . The
subobject semi-classifier δrΩ is a subobject of Ω. Each δrΩ(e) is a Heyting
algebra and a sublattice of Ω(e). Furthermore, it includes the image of L(e)
by Vr

e . The truth value ⊥er of the zero proposition is a bottom of δrΩ(e).
Also, the notion of subobject semi-classifier has been invoked to reconcile

the valuations in SetsCρ ’s and SetsC. It has been shown that projective
subobjects of an object of SetsC have a subobject semi-classifier ♮Ω. Each
component ♮Ω(e, ρ), which consists of natural sieves, is a Heyting algebra
isomorphic to Ωρ(e) and is a sublattice of Ω(e, ρ). This can be immediately
applied to SetsC(e,ρ)↓ because the true subobject Ter,ρ is projective for L(e,ρ)↓.
As a result, Ver ,ρ equipped with the subobject semi-classifier as a target gives
equivalent truth values as Vr

e for any quantum proposition.
In general, Heyting-algebra structure of subobject classifiers can be re-

dundant as a target of truth-value valuations of quantum propositions L.
Therefore it is desirable to reduce the target Heyting algebra to smaller
ones, provided the logical structure of the image of L by the valuations is
faithfully preserved. The subobject semi-classifiers given in sections 3.4 and
5.2 are just the cases. In particular, the smallest (hence irreducible) one, if
exists, would be regarded as a proper target space of valuation functions.

Finally we note that we have not addressed any application to concrete
problems; in the present paper, we have been concentrated on formulation.
Bub [3], however, applies his formulism to various issues concerning the foun-
dations or interpretations of quantum mechanics. It would be necessary and
significant to examine whether our topos theoretic formulism is applicable to
the issues as well.
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A Subobject Semi-Classifier

Let T be a topos with a subobject classifier Ω and a terminal object 1.

Suppose that Ω has a subobject ∆Ω, and let ∆Ω
ι∆ΩΩ

−−−→ Ω ∈ Mor(T ) be
an inclusion morphism, i.e., a monomorphism. Further suppose that there

exists a morphism 1
∆τ
−→ ∆Ω ∈ Mor(T ) which makes the following diagram

a pullback:
1 1

∆τ





y





y

τ

∆Ω −−−→
ι∆ΩΩ

Ω

. (A.1)

If ∆Ω acts as if a subobject classifier of particular class of subobjects, we call
it a subobject semi-classifier. Precisely, we give the following definition:

Definition A.1 Let M be an object of T and ∆Sub(M) (⊆ Sub(M)) be
a collection of its subobjects. If, for any N ∈ ∆Sub(M), there exists a

morphism M
∆χNM

−−−−→ ∆Ω ∈ Mor(T ) such that

χNM = ι∆ΩΩ ◦∆χNM , (A.2)

then ∆Ω is called a subobject semi-classifier of ∆Sub(M).

We can extend this definition to a collection of Sub(M).

Definition A.2 Let ∆Obj(T ) (⊆ Obj(T )) be a collection of objects such
that, for any M ∈ ∆Obj(T ), ∆Ω is a subobject semi-classifier of ∆Sub(M).
Then ∆Ω is called a subobject semi-classifier of the collection ∆Sub :=
{∆Sub(M) : M ∈ ∆Obj(T )}.

The subobject semi-classifier ∆Ω is a via point where the characteristic
morphism χNM is factored through. As is seen in the following propositions,
however, it acts together with ∆τ as a subobject classifier of ∆Sub(M). The
naming is thus justified.

Proposition A.3 Suppose that M ∈ Obj(T ) and N ∈ ∆Sub(M), then the
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diagram

N
!

−−−→ 1

ιNM





y





y
∆τ

M −−−−→
∆χNM

∆Ω

(A.3)

is a pullback.

Proof. Consider the following diagram:

N
!

−−−→ 1 1

ιNM





y





y
∆τ





y

τ

M −−−−→
∆χNM

∆Ω −−−→
ι∆ΩΩ

Ω

. (A.4)

As is previously noted for diagram (A.1), the right-half square is a pullback,
and so is the outer square because of equation (A.2). Therefore, also, the
left-half square must be a pullback.

Proposition A.4 (i) Suppose that M ∈ Obj(T ) and N ∈ ∆Sub(M). If

there exists a morphism M
ζ
−→ ∆Ω which makes the diagram,

N
!

−−−→ 1

ιNM





y





y
∆τ

M −−−→
ζ

∆Ω

, (A.5)

a pullback, then ζ = ∆χNM .

(ii) Conversely, for each morphism M
ζ
−→ ∆Ω, there exist, up to isomor-

phism, subobjects N ∈ ∆Sub(M) satisfying ζ = ∆χNM , hence, making the
corresponding diagram (A.5) a pullback.

Proof. To prove the statements (i) and (ii), we use the following diagram:

N
!

−−−→ 1 1

ιNM





y





y
∆τ





y

τ

M −−−→
ζ

∆Ω −−−→
ι∆ΩΩ

Ω

. (A.6)
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(i) As previously noted, the right-half of the diagram (A.6) is a pullback.
Therefore, if the diagram (A.5), i.e., the left-half of the diagram (A.6), is
a pullback, then, so is the outer square of (A.6). But then, because of the
uniqueness property of characteristic morphisms in toposes, χNM = ι∆ΩΩ ◦ζ .
Thus, because of equation (A.2), we have ι∆ΩΩ ◦ ζ = ι∆ΩΩ ◦ ∆χNM . Since
ι∆ΩΩ is monic, ζ = ∆χNM follows.

(ii) Since any topos has all finite limits, we can take a morphism N
f
−→ M

up to isomorphism as a pullback of 1
∆τ
−→ ∆Ω along the morphism M

ζ
−→ ∆Ω.

Here, since ζ is monic, so is N
f
−→ M . Therefore, N

f
−→ M can be regarded as

an inclusion morphism, ιNM . Under these conditions, consider the diagram
(A.6). Also in this case, the outer square is a pullback, hence, χNM = ι∆ΩΩ◦ζ .

B Propositions on the Functor A in SetsC

Proposition B.1 Suppose that ρ ≤ ρ′. Then, A(e, ρ) ⊆ A(e, ρ′) implies
A(e, ρ) = A(e, ρ′)

Proof. The Hilbert space can be decomposed as H =
⊕

i∈I ri. Here, {ri :
i ∈ I} = ES(ρ), and, for any i ∈ I, ri =

⊕

j∈Ji
r′ij, where {r′ij : i ∈ I, j ∈

Ji} = ES(ρ′).
If er′ij 6= {0}, then eri cannot be {0} because r′ij ⊆ ri. But then there

exists j′ ∈ Ji s.t. eri = er′
ij′

because eri ∈ A(e, ρ′). If r′ij 6= r′ij′, eri cannot be

er′
ij′
. Thus, r′ij = r′ij′, hence, er′ij = eri . This implies that er′ij ∈ A(e, ρ).

If er′ij = {0}, then er′ij ∈ A(e, ρ).

Thus, A(e, ρ′) ⊆ A(e, ρ) is proved.

Proposition B.2 Suppose that A(e, ρ) ⊆ A(e, ρ′) and ρ ≤ ρ′. Then for any
ρ′′ satisfying ρ ≤ ρ′′ ≤ ρ′, it follows that A(e, ρ) ⊆ A(e, ρ′′) ⊆ A(e, ρ′).

Proof. The Hilbert space can be decomposed as H =
⊕

i∈I ri. Here, {ri :
i ∈ I} = ES(ρ), and, for any i ∈ I, ri =

⊕

j∈Ji
r′′ij, where {r′′ij : i ∈ I, j ∈

Ji} = ES(ρ′′), and furthermore, r′′ij =
⊕

k∈Kij
r′ijk, where {r′ijk : i ∈ I, j ∈

Ji, k ∈ Kij} = ES(ρ′). That is, ri =
⊕

j∈Ji

⊕

k∈Kij
r′ijk.

Take any i ∈ I and fix it.
If eri 6= {0}, then ∃ ! j′ ∈ Ji, ∃ ! k

′ ∈ Kij′ s.t. eri = er′
ij′k′

and er′
ijk

= {0}

for any r′ijk except for r′ij′k′ because eri ∈ A(e, ρ′). But then, for r′′ij′ =
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⊕

k∈Kij′
r′ij′k, er′′ij′ = er′

ij′k′
= eri, and for other r′′ij (j ∈ Ji), er′′

ij′
= {0}. This

implies that eri ∈ A(e, ρ′′) and, for any j ∈ Ji, er′′ij ∈ A(e, ρ′).

If eri = {0}, er′′ij = {0} for ∀j ∈ Ji and er′
ijk

= {0} for ∀j ∈ Ji and ∀k ∈

Kij. Thus also in this case, it is shown that ei ∈ A(e, ρ′′) and er′′ij ∈ A(e, ρ′).

Note that the inclusion relation ⊆’s can in fact be replaced by =’s because
of Proposition B1.

C Complement to Proof of Proposition 5.10

In the proof of Proposition 510, we use the following proposition:

Proposition C.1 Suppose that S ∈ Ω(e, ρ) is natural. Then, for any F̂ ∈
Com(ρ),

(e, ρ)
F̂ρρ′

−−→ (e′, ρ′) ∈ S =⇒ (e, ρ)
F̂ρρ
−−→ (e′, ρ) ∈ S. (C.1)

Proof. Since S is natural, i.e., S = ♮S, F̂ρρ′ ∈ S implies that there exist

arrows, e
Ĝ
−→ e′′ ∈ ♭(S) and (e′′, ρ)

Ĥρρ′

−−→ (e′, ρ′) ∈ Mor(C), such that

F̂ρρ′ = Ĥρρ′ ◦ Ĝρρ. (C.2)

On the other hand, we have

Ĥρρ′ = Îρρ′ ◦ Ĥρρ. (C.3)

Equations (C.2) and (C.3) imply that the outer square of the following
diagram commutes:

(e, ρ)
Ĝρρ

−−−→ (e′′, ρ)
Ĥρρ

−−−→ (e′, ρ)

F̂ρρ′





y





y

Ĥρρ′





y

Îρρ′

(e′, ρ′) (e′, ρ′) (e′, ρ′)

. (C.4)

Since as operators on H, F̂ = ÎĤĜ = ĤĜ, we have that

F̂ρρ = Ĥρρ ◦ Ĝρρ. (C.5)

Furthermore, since e
Ĝ
−→ e′′ ∈ ♭(S), we have

(e, ρ)
Ĝρρ
−−→ (e′′, ρ) ∈ S. (C.6)

Equations (C.5) and (C.6) imply that F̂ρρ ∈ S because S is a sieve.
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