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Abstract

In this talk we present the latest results from our ongoing project on geometro-

thermodynamics (also known as information geometry of thermodynamics or Ruppeiner ge-

ometry) of dilaton BHs in 4D in both Einstein and string frames and a dyonic dilaton BH and

at the end we report very briefly results from this approach to the 2D dilaton BHs.

The thermodynamic geometry, also known as Ruppeiner geometry (Ruppeiner [1979,1995]), of

various BH families has been studied over the past few years (see, e.g. Åman et al. [2003]- [2007],

Arcioni et al. [2005], Sarkar et al. [2006], Shen et al. [2006], Mirza et al. [2007], Ruppeiner [2007]

and Quevedo [2007]). Our results so far have been physically suggestive, particularly in the Myers-

Perry Kerr BH case where the curvature singularities signal thermodynamic instability of the

BH. The geometrical patterns are given by the curvature of the Ruppeiner metric4 defined as the

Hessian of the entropy on the phase space of the thermodynamic system

gRij = −∂i∂jS(M,Na), (1)

where M denotes mass (internal energy) and Na are other parameters such as charge and spin.

The minus sign arises because entropy is a concave function. Interpretations of the geometries

associated with the metric are discussed in Ruppeiner [1995] and references therein. Even though

most interesting Ruppeiner metrics that we encounter have curvature singularities which might be

interpretable, there are some known flat Ruppeiner metrics that shed light on the understanding

of thermodynamic geometries as a whole i.e. the structure of the entropy function (or mass) that

gives a flat Ruppeiner geometry. In Åman et al. [2006] we proved a flatness theorem which states

that Riemann curvature tensor constructed out of the negative of the Hessian of the entropy of

the form

S = Mkf(Q/M) (2)
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4This metric is conformal to the so-called Weinhold (Weinhold [1975]) metric via gWij = TgRij where T is thermo-

dynamic temperature of the system of interest.
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will vanish, where f is an arbitrary analytic function and k 6= 1. The latter condition is necessary

in order for the metric to be nondegenerate. This theorem has proven useful in our work on the

dilaton BHs as it allows us to see the local geometry already by glancing at the entropy function.

In this short article we will focus on the ongoing work on the application of the geometrical

approach to the thermodynamics of the dilaton BHs. The 4D dilaton BH5 action can be obtained

from the low energy limit of the string theory6 by dropping certain terms except for the metric

gµν , a dilaton φ and a Maxwell field Fµν . The action thus obtained is

Sst =

∫

d4x
√
−ge−2aφ

(

R+ 4(∇φ)2 − F 2
)

. (3)

By making a conformal transformation gstring
µν = e2aφgEinstein

µν we obtain the dilaton gravity action in

Einstein frame

SE =

∫

d4x
√
−g

(

R − 2(∇φ)2 − e−2aφF 2
)

. (4)

In the absence of the Maxwell field the action reduces to the standard Einstein theory with a

massless scalar field as the matter. The BH solution of the two actions is given by the standard

spherically symmetric metric

ds2 = −Ndt2 +
1

N
dr2 + P 2(r)dΩ2

2 (5)

where dΩ2
2 is the usual 2-sphere metric and

N =
(

1− r+
r

)(

1− r
−

r

)

(1+a)2

1+a
2

, P = r
(

1− r
−

r

)ǫ(a)

. (6)

The function ǫ(a) is different for both frames, i.e.

ǫ(a)Einstein =
a2

1 + a2
, ǫ(a)string =

a(1 + a)

1 + a2
. (7)

The horizon is located at r = r+ with the singularity of the solution at r = r
−

for a 6= 0. The

entropy for both BHs are given by

S = M
2

 

1 +

r

1− (1− a2)
Q2

M2

!2

0

B

B

B

B

B

@

1−
(1 + a

2)Q2

M2

 

1 +

r

1− (1− a2)
Q2

M2

!2

1

C

C

C

C

C

A

ǫ(a)

. (8)

The dyonic dilaton BH is slightly more complicated in that there is another U(1) gauge7 field

coupled to the action which takes the form

S =

∫

d4x
√
−g

(

R − 2(∇φ)2 − e−2aφ(F 2 +G2)
)

. (9)

We only consider such BHs in Einstein frame. The entropy of the dyonic dilaton BH will have two

charges hence not compatible with the flatness theorem.

The Ruppeiner metric for the 4D dilaton BH in both frames is flat for any values of a as can be

seen using our flatness theorem. In order to illustrate the state space of the flat Ruppeiner metric

5There are many references on this BH but we refer to Garfinkle et al. [1991], Frolov et al. [1998] and Casadio

et al. [1999] for the dilaton BH in string frame.
6In fact a = 1 for the dilaton gravity reduced from string theory but for our work we use arbitrary a which

determines the gravitational coupling strength.
7We denote the magnetic charge by P in contrast to the electric charge Q.
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Figure 1: The state space of the dilaton BH in Einstein frame with a coupling constant a 6= 0 is a

wedge on the null cone. For the dilaton BH in string frame the wedge fills the null cone for a = 0

and 1.

for both BHs we employ Eq. (11) which is a diagonal metric derived from the entropy in Eq. (8)

given by

ds2R =
−1

2S
dS2 + g(u)du2 (10)

where u = Q/M and g(u) = 1
2
f ′2

f2 − f ′′

f
. The function f = f(u) and its derivatives are basically

the parentheses in Eq. (8) and for an arbitrary a it is very complicated. However a power-series

expansion of g(u) allows us to determine its range thereby giving us information on the opening

of the wedge when we transform the metric (10) into a flat Minskowski via Rindler coordinates

(ds2 = −dτ2 + τ2dσ2). In our previous works, the wedge fills in the null cone for the Myers-Kerr

BH when D > 58. In this work we find that the dilaton BH in the Einstein frame the wedge fills

the null cone for any value of a 6= 0 whereas the wedge in string frame fills the null cone of any

value of a 6= 0 and 1 . The Ruppeiner metric and its conformal metric for the dyonic dilaton BH is

nonflat with curvature singularity in the extremal limit. This was done using the CLASSI program

(Åman [2002]). In the limit of Q2 = P 2 the geometry becomes flat as expected.

We also studied the Ruppeiner geometry of the 2D dilaton BH solutions which contain the

Reissner-Nordström-like BH solution and BTZ (for a comprehensive review, see Grumiller [2002,

2006]). Results up to date are enlightening and consistent with results in higher dimensions and our

flatness theorem, as summarized in Åman et al. [2007]. However they await further interpretations.

We conclude this article by noting that the geometro-thermodynamics of BHs provides an

alternative route to obtain insight into thermodynamics through Riemannian geometry. Certain

features of the geometry yield results that are consistent with those in the literature whereas some

other features can potentially give rise to a deeper understanding of BH thermodynamics and

perhaps the underlying statistical mechanics of BHs. Despite the fact that only few results so far

are physically suggestive, the geometrical patterns we have observed may play an important role

in the future, when quantum gravity is better understood.

Acknowledgments

N.P. is supported by Doktorandtjänst of Stockholm University and is grateful the Johan Söderbergs
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[2006] Åman, J. E. , Bengtsson, I. & Pidokrajt, N., Gen. Rel. Grav., 38, 1305.
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