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Abstract

We present a thermodynamical description of the interaction between holographic dark energy

and dark matter. If holographic dark energy and dark matter evolve separately, each of them

remains in thermodynamic equilibrium. A small interaction between them may be viewed as a

stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From

this correction we obtain a physical expression for the interaction which is consistent with phe-

nomenological descriptions and passes reasonably well the observational tests.
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A variety of cosmological observations strongly suggest that our Universe is currently

undergoing a phase of accelerated expansion [1, 2, 3], likely driven by some exotic component

called dark energy (DE) whose main feature is to possess a high negative pressure -see

however [4]. Nevertheless, despite the mounting observational evidence, the nature and

origin of dark energy remains elusive and it has become a source of vivid debate -see [5] and

references therein.

Most discussions on DE rely on the assumption that it evolves independently of other

matter fields. One might argue that given the unknown nature of both DE and dark matter

(DM), an entirely independent behavior of DE and DM is very special whereby it is not

unnatural to suppose that they interact. Studies on the interaction (coupling) between DE

and DM have been carried out in [6]-[11] and, in particular, it has been shown that the

coupling can alleviate the coincidence problem [6, 11]. Furthermore, it was argued that the

appropriate interaction between DE and DM can influence the perturbation dynamics and

lowest multi-poles of the cosmic microwave background (CMB) spectrum and account for

the observed CMB low l suppression [9, 12]. The strength of the coupling could be as large

as the fine structure constant [9, 13]. Recently it was shown that such an interaction could

be inferred from the expansion history of the Universe, as manifested in the supernova data

together with CMB and large-scale structure [14].

In contrast to minimally coupled DE models, the coupling between DE and DM not only

influences the Universe expansion history but also modifies the structure formation scenario

through the coupling to cold DM density fluctuations [7, 15]. Indeed, the growth of DM

perturbations can be enhanced due to the coupling [9, 10], which can be used to explain

the age (∼ 2.1 Gyr) of the old quasar APM0879+5255 observed at redshift z = 3.91 [9].

Further, lately it was suggested that the dynamical equilibrium of collapsed structures would

be affected by the coupling of dark energy to dark matter in a way that could be detected

in the galaxy cluster Abell A586 [16]. Through the internal dynamics of galaxy clusters and

using reliable x-ray, weak lensing and optical data from 33 galaxy clusters, a much tighter

limit on the strength of the coupling between DE and DM has been established [17]. Indeed,

it was shown that the coupling is small but positive which indicates that DE may decay

into DM. Nevertheless, albeit the interaction hypothesis is gaining ground the observational

limits on the strength of the coupling remain weak [18].

The interaction between DE and DM could be a major issue to be confronted in studying
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the physics of DE. However, so long as the nature of these two components remain unknown

it will not be possible to derive the precise form of the interaction from first principles.

Therefore, one has to assume a specific coupling from the outset [10, 11] or determine it

from phenomenological requirements [6]. Nevertheless, attempts to provide a Lagrangian

description of the interaction have been put forward. These comprise proposals that include

the dependence of the matter field on the scalar field [19] or express the cosmological constant

as a function of the trace of the energy-momentum tensor [20]; at any rate, the exact form

of the dependence stays unspecified.

The main purpose of this Letter is to try to understand such a coupling from thermody-

namical considerations. The thermodynamics of black hole physics [21] and de Sitter space

[22] are well established. Recently, extensive analysis found that the current data favors DE

models with EoS very close to wD = −1. This suggests that the present evolution of the uni-

verse is practically quasi-de Sitter. Therefore, one may assume that some thermodynamical

approach will also apply to eternally accelerating quasi-de Sitter universes [23].

We shall assume that in the absence of a mutual interaction both DE and DM remain in

their respective thermodynamic equilibrium states, and that a small coupling between DE

and DM may be viewed as small stable fluctuations around equilibrium. (We say “small”

because a large, or even moderate, coupling would substantially deviate the model from the

ΛCDM concordance model and would be incompatible with observation [7]). Some years

ago, Das et al. [24] showed that logarithmic corrections to the equilibrium thermodynamic

entropy arise in all thermodynamic systems when stable fluctuations around equilibrium

are taken into account and that, in particular, it leads to logarithmic corrections to the

Bekenstein-Hawking formula for black hole entropy. This idea was later applied to obtain

an evolution law for the cosmological constant [25]. We shall present a thermodynamic

description of the interaction between DE and DM by building a relation between the loga-

rithmic entropy correction and the interaction. Thus this derivation possesses a solid physical

foundation. Next, we will argue that our thermodynamical interpretation of the interaction

is consistent with phenomenological approaches and meet observational constraints.

We shall focus on the DE model inspired by the holographic idea that the energy within

our horizon cannot exceed the mass of a black hole of the same size [26, 27, 28]. The

extension of the holographic principle to a general cosmological setting was first addressed

by Fischler and Susskind [29] and subsequently got modified by many authors [30]-[34]. The
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idea of holography is viewed as a real conceptual change in our thinking about gravity [35].

There have been a lot of attempts on applying holography in the study of cosmology. It is

interesting to note that holography implies a possible value of the cosmological constant in

a large class of universes [36]. In an inhomogeneous cosmology holography was also realized

as a useful tool to select physically acceptable models [33]. The idea of holography has

further been applied to the study of inflation and gives possible upper limits to the number

of e-folds [37]. Recently, holography has again been proved as an effective way to investigate

dark energy [27, 38]. Thus holography seems a useful tool to investigate cosmology.

Following Li [27], we assume that the holographic dark energy density is given by

ρD = 3c2/L2, where c2 is a constant of order unity and L is an appropriate length scale

which we identify with the radius of the future event horizon,

RE = a

∫ ∞

a

dx

H x2
. (1)

Here, H ≡ ȧ/a is the Hubble function and a the scale factor of the Robertson-Walker metric.

The total energy density is ρ = ρm + ρD, where ρm is the matter energy density and

ρD = 3 c2/(8πR2
E) is the holographic DE energy density -we neglect radiation and non-dark

matter. If holographic DE and DM do not interact, their energy densities satisfy separate

conservation laws

ρ̇m + 3Hρm = 0, (2)

ρ̇D + 3H(1 + w0
D)ρD = 0, (3)

where w0
D is the EoS of the holographic DE when it evolves independently of DM. Introducing

the dimensionless density parameter for DE, ΩD = 8πρD/(3H
2), the event horizon radius

can be written as [27] RE = c/(
√
ΩDH). Taking the derivative with respect to ln a of last

expression and resorting to Eq. (1) we get

H ′

H
=

√
ΩD

c
− 1− Ω′

D

2ΩD
. (4)

Using Friedmann’s equation, ΩD + Ωm = 1 and (2)-(4), valid for spatially-flat ho-

mogeneous isotropic cosmologies, we obtain for the EoS of the holographic dark energy

component the expression, w0
D = −1

3
− 2

√
ΩD

3c
. Likewise, it follows that the holographic DE

4



evolution is governed by [8, 27]

Ω′
D = Ω2

D(1− ΩD)

[

1

ΩD
+

2

c
√
ΩD

]

. (5)

Equipped with these relationships, we can determine how much the event horizon changes

in one Hubble time,

tH
ṘE

RE
= 1−

√
ΩD

c
, (6)

where tH ≡ H−1. Provided that c = O(1) -as should be expected, see [27]- the event

horizon will not change significantly over one Hubble scale whereby the thermodynamical

description near equilibrium seems a reasonable approach. It also follows from Eq. (6) that

w0
D > −1(< −1) if ṘE > 0(< 0), respectively.

The equilibrium entropy of the holographic DE component is related to its energy and

pressure by Gibbs’ equation [39]

TdSD = dED + PD dV. (7)

Considering V = 4πR3
E/3, ED = ρD V = c2RE/2 and using the event horizon temperature

T = 1/(2πRE), we get

dSD0 = πc2 (1 + 3w0
D)R

0
E dR0

E = −2πc
√

Ω0
DR

0
EdR

0
E , (8)

for the holographic DE entropy when it is not coupled to DM. (A zero superscript or subscript

indicates absence of interaction).

However, when holographic DE and DM interact with each other, they cannot remain

in their respective equilibrium states. The effect of the interaction may be assimilated

to small stable fluctuations around thermal equilibrium. It was shown that due to

the fluctuation, there is a leading logarithmic correction, S1 = −1

2
ln(CT 2) -with C

the heat capacity-, to the thermodynamic entropy around equilibrium in all thermody-

namical systems [24]. In our case, the heat capacity of the DE can be calculated as

C = T (∂SD0/∂T ) = −πc2(1 + 3w0
D)(R

0
E)

2, which is positive since for holographic DE one

has 1 + 3w0
D < 0. Accordingly, the fluctuation is indeed stable and the entropy correction
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reads

SD1 = −1

2
ln

[

− c2

4π
(1 + 3w0

D)

]

= −1

2
ln

[

c

2π

√

Ω0
D

]

. (9)

As mentioned above, we assume that this entropy correction is linked to the DE-DM

coupling. Thus, the total entropy of holographic DE enclosed by the event horizon is SD =

SD0 + SD1 and from Gibbs’ equation we get

1 + 3wD =
1

c2πRE

dS

dRE
=

1

c2πRE

dSD1

dRE
− 2

√

Ω0
D

c

R0
E

RE

dR0
E

dRE
, (10)

where wD denotes the EoS of holographic DE when it is coupled to DM. If the interaction

were turned off, the DE would return to its equilibrium state and we would have that

wD → w0
D and RE → R0

E .

When an interaction between holographic DE and DM exists, their energy densities no

longer satisfy independent conservation laws. They obey instead

ρ̇m + 3Hρm = Q , (11)

ρ̇D + 3H(1 + wD)ρD = −Q , (12)

Q denotes the interaction term which is expected to be derived from the entropy

correction[44].

We first rewrite last two equations as

Ω′
m +

2H ′

H
Ωm + 3Ωm =

8πQ

3H3
, (13)

Ω′
D +

2H ′

H
ΩD + 3(1 + wD)ΩD = −8πQ

3H3
, (14)

and insert (4) into (14) to get

1 + 3wD = −2
√
ΩD

c
− 8πQ

3H3ΩD

. (15)

Then, comparing last expression with Eq. (10), we obtain

8πQ

9H3
=

ΩD

3

[

−2
√
ΩD

c
+

2
√

Ω0
D

c

R0
E

RE

dR0
E

dRE

]

− 1

πc2RE

ΩD

3

dS1

dRE
(16)
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for the interaction term, Q.

¿From (9) the evolution of SD1 appearing in the last equation can be written as

dS1

dRE

= − H

(c/
√
ΩD)− 1

(Ω0
D)

′

4Ω0
D

, (17)

where we have made use of RE = c/(H
√
ΩD).

We, thus, have built a relation between the DE-DM coupling and the correction, SD1, to

the equilibrium entropy.

To see how the above expression for Q (equations (16) and (17)) fares when contrasted

with observation let us compare it with the interaction term [6]

Q = 3b2H (ρm + ρD) , (18)

where b2 is a coupling constant, introduced on phenomenological grounds to alleviate the

coincidence problem [40]. However, before doing that let us provide a rationale for (18).

The right hand side of (11) and (12), i.e., Q and −Q, must be functions of the energy

densities multiplied by a quantity with units of inverse of time. For the latter the obvious

choice is the Hubble factor H , so we have that Q = Q(Hρm , HρD). By power law expanding

Q and retaining just the first term we get Q ≃ λmHρm+λD HρD. To facilitate comparison

of the resulting model with observation it is expedient to eliminate one the two λ parameters.

Thus we set λm = λD = 3b2 and arrive to Eq. (18). The simpler choice, λm = 0 would

not yield a constant dark matter to dark energy ratio at late times. Clearly, the term 3b2

measures to what extent the decay rate of DE into DM differs from the expansion rate

of the Universe and also gauges the intensity of the coupling. The lower b2, the closer

the evolution of the Universe to a non-interacting model is. It should be emphasized that

this phenomenological description has proven viable when contrasted with observations, i.e.,

SNIa, CMB, large scale structure, H(z), and age constraints [8, 9, 14, 18], and recently in

galaxy clusters [16, 17].

So, to carry out the said comparison we set b2 = 8πQ
9H3 . Accordingly, b2 is no longer a

constant but a variable parameter that evolves according to

7



0.4 0.8 1.2 1.6

a�a0

0.2

0.4

0.6

0.8

1

H1aL

0.5 0.6 0.7 0.8

a�a0

0.4

0.5

0.6

0.7

H1bL

Figure 1: Evolutions of ΩD and Ωm with and without interaction. Lines showing values increasing

with a is ΩD, and the decreasing lines are for Ωm. The solid, dotted, and dashed lines correspond

to our scenario, the holographic model without interaction, and the phenomenological interacting

model with b2 = 0.06, respectively.

b2 =
8πQ

9H3
=

2Ω
3/2
D

3c

[

−1 +
H2

√
ΩD

(H0)2
√

Ω0
D

√

Ω0
D/c− 1√

ΩD/c− 1

]

+
1

12πc2
H2

c/
√
ΩD(c/

√
ΩD − 1)

ΩD

Ω0
D

(Ω0
D)

′ .

(19)

Using Friedmann’s equation as well as (4), equation (14) can be recast as

Ω′
D

ΩD
+ (ΩD − 1) +

2
√
ΩD

c
(ΩD − 1) = − 8Q

3H3
= −3b2. (20)

With the help of Eqs. (19), (20) and (4), we are in position to discuss the dependence of

the evolution of holographic DE in terms of the coupling to DM. In the numerical calcula-

tions, we set c = 1. From Fig.1 we learn that because of the interaction between holographic

DE and DM, ΩD increases faster, and from Figs.2a and 2b that ρD and ρm follow each other

and that the instant at which ρD = ρm occurs earlier than in the non-interacting case.

The latter feature is more clearly appreciated in Fig. 2c where the dependence of the ratio

r ≡ ρm/ρD with the scale factor is depicted. The said ratio decreases monotonously with

expansion and it varies very slowly at the present era. Compared with the noninteracting

case, we find that currently r decreases slower when there is interaction. This means, on

the one hand, that the coincidence problem gets substantially alleviated and, on the other
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Figure 2: Evolutions of ρD and ρm with and without interaction. Before the crossing point, lines on

the left are for ρD, other bunch of lines are for ρm. The solid, dotted, and dashed lines correspond

to our scenario, the holographic model without interaction, and the phenomenological interacting

model with b2 = 0.06, respectively.
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Figure 3: Dependence of the deceleration parameter, q = −ä/(aH2), on the interaction. The solid,

dotted, and dashed lines correspond to our scenario, the holographic model without interaction,

and the phenomenological interacting model with b2 = 0.06, respectively.

hand, that in the recent history of the Universe DE is decaying into DM. This is consistent

with phenomenological interacting models [6], [9]. The different evolution of the DM due to

its interaction with the DE gives rise to a different expansion history of the Universe and a

different evolution of the matter density perturbations which alters the standard structure

formation scenario as the latter assumes ρm ∝ a−3. In [7, 9] the matter density perturbations
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Figure 4: The corresponding coupling b2 in our scenario by comparing it with the simple phe-

nomenological model.

in interacting models were investigated and in [9] the impact of the interaction on the DM

perturbations was used to explain why it is possible, as recently observed [41], for the old

quasar APM0879+5255 to exist already at the early stages of the Universe (at z = 3.91). As

a comparison, in Figs. 1 and 2 we have also included the phenomenological interaction case

with constant coupling, b2 (dashed line). It is seen that the results obtained for the evolu-

tion of holographic DE and DM using the phenomenological model and using the interaction

derived from the thermodynamical consideration are consistent with each other.

Clearly, the interaction must affect the acceleration history of the Universe. Figure 3

depicts the dependence of the deceleration parameter, q = −ä/(aH2), on the coupling. It

is seen that the interaction shifts the beginning of the acceleration to earlier times; a result

previously obtained by several authors [8], [6], [10], [42].

Now we test this scenario for the interaction between holographic DE and DM by us-

ing some observational results. For the comparison with the phenomenological interacting

model, in our scenario the coupling between holographic DE and DM can be expressed as

a counterpart of b as in the phenomenological interaction form. Now the coupling is not

longer a constant but a time-dependent parameter. Its evolution is depicted in Fig. 4. Dur-

ing an ample period, the effective coupling, b, remains small and positive, indicating that

holographic DE could be decaying into DM. In fact, b2 lies within the region of the golden

supernova data fitting result b2 = 0.00+0.11
−0.00 [8] and the observed CMB low l data constraint
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[9]. In Ref. [9] it was investigated whether this model satisfies the current Universe age

constraints and allows a considerably older universe at high redshift to be compatible with

the existence of some old objects such as the old quasar APM0879+5255 at redshift z = 3.91

[41]. Its age, at that redshift, was estimated as tg = 2.1Gyr. Using the present WMAP data

on the Hubble parameter, H0 = 73.4+2.8
−3.8 [3], the dimensionless age of the quasar Tg = H0 tg

is seen to lie in the interval 0.148 ≤ Tg ≤ 0.162. In our scenario, it is easy to realize that

the age of the Universe at z = 3.91 was Tz =
∫∞
3.91

(1+ z)−1H−1dz = 0.152. This is to say, at

that redshift the Universe was old enough to accommodate the existence of this old quasar.

These results show that our interacting DE scenario is compatible with observations.

In summary, from thermodynamical considerations we derived an expression for the in-

teraction between holographic DE and DM. We assumed that in the absence of a DE-DM

coupling these two components remain in separate thermal equilibrium and that the presence

of a small coupling between them can be described as stable fluctuations around equilibrium.

Then, resorting to the logarithmic correction to the equilibrium entropy [24] we arrived to

an expression for the interaction term, namely, Eq. (16) together with (17). By comparing

it with phenomenological proposals, Eq.(18), we concluded that this scenario is compatible

with the golden SN Ia data, small l CMB data and age constraints at different redshifts. The

study here is limited to the particular case of the holographic model. Our argument may

well not apply to the Chaplygin gas model and its generalizations [43], since the admixture

and interaction of the DE and DM in these models does not imply any sort of entropy.

However, it would be interesting to generalize our work to models where DE and DM are

not intrinsically mixed.
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FIS 2006-12296-C02-01, and the “Direcció General de Recerca de Catalunya” under Grant

11



2005 SGR 000 87.

[1] A.G. Riess, et al., Astron. J. 116 (1998) 1009; S. Perlmutter, et al., Astrophys. J. 517 (1999)

565; S.P. de Bernardis, et al., Nature (London) 404 (2000) 955; Perlmutter, et al., Astrophys.

J. 598 (2003) 102; M.V. John, Astrophys. J. 614 (2004) 1; S. Boughn, R. Chrittenden, Nature

(London) 427 (2004) 45; S. Cole et al., Mon. Not. R. Astron. Soc. 362 (2005) 505; P. Astier

et al., J. Astron. Astrophys. 447 (2006) 31; V. Springel, C.S. Frenk, S.M.D. White, Nature

(London) 440 (2006) 1137; W.M. Wood-Vasey et al., astro-ph/0701041.

[2] D. N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175.

[3] D. N. Spergel et. al., Astrophys. J. Suppl. 170 (2007) 377.

[4] S. Sarkar, arXiv:0710.5307.

[5] T. Padmanabhan, Phys. Rept. 380 (2003) 235; P.J.E. Peebles, B. Ratra, Rev. Mod. Phys.

75 (2003) 559; V. Sahni, astro-ph/0403324; L. Perivolaropoulos, astro-ph/0601014; E.J.

Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753.

[6] W. Zimdahl, D. Pavón, L.P. Chimento, Phys. Lett. B 521 (2001) 133; L.P. Chimento, A.S.

Jakubi, D. Pavón, W. Zimdahl, Phys. Rev. D 67 (2003) 083513; S. del Campo, R. Herrera, D.

Pavón, Phys. Rev. D 70 (2004) 043540; D. Pavón, W. Zimdahl, Phys. Lett. B 628 (2005) 206.

[7] G. Olivares, F. Atrio-Barandela, D. Pavón, Phys. Rev. D71 (2005) 063523; ibid. Phys.Rev.

D74 (2006) 043521.

[8] B. Wang, Y. Gong, E. Abdalla, Phys. Lett. B 624 (2005) 141; B. Wang, Ch.-Y. Lin, Elcio

Abdalla, Phys. Lett. B 637 (2006) 357.

[9] B. Wang, J. Zang, Ch.-Y. Lin, E. Abdalla, S. Micheletti, Nucl. Phys. B 778 (2007) 69.

[10] S. Das, P.S. Corasaniti, J. Khoury, Phys. Rev. D 73 (2006) 083509.

[11] L. Amendola, Phys. Rev. D 62 (2000) 042511; L. Amendola, D. Tocchini-Valentini, Phys. Rev.

D 64 (2001) 043509; L. Amendola, S. Tsujikawa, M. Sami, Phys. Lett. B 632 (2006) 155; L.

Amendola, C. Quercellini, Phys. Rev. D68 (2003) 023514; G. W. Anderson, S. M. Carroll,

astro-ph/9711288.

[12] W. Zimdahl, Int. J. Mod. Phys. D14 2319 (2005).

[13] E. Abdalla, B. Wang, Phys. Lett. B 651 (2007) 89.

[14] C. Feng, B. Wang, Y. Gong, R.-K. Su, JCAP 09(2007)005.

12



[15] R. Bean, Phys. Rev. D 64 (2001) 123516,

[16] O. Bertolami, F. Gil Pedro, M. Le Delliou, arXiv:0705.3118 [astro-ph]; ibid. Phys. Lett. B654

(2007) 165, astro-ph/0703462.

[17] E. Abdalla, L. R. Abramo, L. Sodre, B. Wang, astro-ph/0710.1198.

[18] Z. K. Guo, N. Ohta, S. Tsujikawa, Phys. Rev. D76 (2007).

[19] F. Piazza, S. Tsujikawa, JCAP 07(2004)004.

[20] N.J. Poplawski, gr-qc/0608031.

[21] S.W. Hawking, Phys. Rev. D 13 (1976) 191.

[22] G. W. Gibbons, S. W. Hawking, Phys. Rev. D 15 (1977) 2738.

[23] R. Bousso, Phys. Rev. D71 (2005) 064024.

[24] S. Das, P. Majumdar, R.K. Bhaduri, Class. Quantum Grav. 19 (2002) 2355.

[25] C. Barbachoux , J. Gariel, G. Le Denmat, astro-ph/0603299.

[26] A. Cohen, D. Kaplan, A. Nelson, Phys. Rev. Lett. 82 (1999) 4971.

[27] M. Li, Phys. Lett. B 603 (2004) 1.

[28] Q.G. Huang and Y.G. Gong, JCAP 08(2004)006; Y.G. Gong, B. Wang and Y. Z. Zhang,

Phys. Rev. D72 (2005) 043510; X. Zhang, Int. J. Mod. Phys. D 14 (2005) 1597; J.Y. Shen,

B. Wang, E. Abdalla and R.-K. Su, Phys. Lett. B 609 (2005) 200; Z. Y. Huang, B. Wang, E.

Abdalla and R.-K. Su, JCAP 05 (2006) 013; E. Elizalde, S. Nojiri, S.D. Odintsov, P. Wang,

Phys. Rev. D 71(2005) 103504; B. Wang, Y. Gong, R.-K. Su, Phys. Lett. B 605 (2005) 9; B.

Wang, E. Abdalla, R.-K. Su, Phys. Lett. B 611 (2005) 21.

[29] W. Fischler and L. Susskind, hep-th/9806039.

[30] N. Kaloper and A. Linder, Phys. Rev. D 60 (1999) 103509; R. Easther and D. A. Lowe, Phys.

Rev. Lett. 82 (1999) 4967; R. Brustein, Phys. Rev. Lett. 84 (2000) 2072; R. Brustein, G.

Veneziano, Phys. Rev. Lett. 84 (2000) 5695; R. Bousso, JHEP 7 (1999) 4, ibid 6 (1999) 28,

Class. Quan. Grav. 17 (2000) 997; B. Wang, E. Abdalla, Phys. Lett. B 466 (1999) 122, B 471

(2000) 346; B. Wang, E. Abdalla and R. K. Su, Phys. Lett. B 503, 394 (2001).

[31] G. Veneziano, Phys. Lett. B 454 (1999) 22; G. Veneziano, hep-th/9907012; E. Verlinde, hep-

th/0008140.

[32] R. Tavakol, G. Ellis, Phys. Lett. B 469 (1999) 37.

[33] B. Wang, E. Abdalla and T. Osada, Phys. Rev. Lett. 85 (2000) 5507.

[34] I. Savonijie and E. Verlinde, Phys. Lett. B 507 (2001) 305; Bin Wang, Elcio Abdalla and

13



Ru-Keng Su, Mod. Phys. Lett. A 17 (2002) 23; S. Nojiri and S. D. Odintsov, Int. J. Mod.

Phys. A 16 (2001) 3237; D. Kutasov, F. Larsen, JHEP 0101 (2001) 001, hep-th/0009244; F.

Lin, Phys. Lett. B 507 (2001) 270; R. Brustein, S. Foffa and G. Veneziano, Nucl. Phys. B 601

(2001) 380; D. Klemm, A. C. Petkou and G.Siopsis, hep-th/0101076; R. G. Cai, Phys. Rev. D

63 (2001) 124018 hep-th/0102113; D. Birmingham and S. Mokhtari, Phys. Lett. B 508 (2001)

365 hep-th/0103108.

[35] E. Witten, Science 285, 512 (1999).

[36] P. Horava and D. Minic, Phys. Rev. Lett. 85, 1610 (2000).

[37] T. Banks and W. Fischler astro-ph/0307459; B. Wang and E. Abdalla, Phys.Rev. D69 (2004)

104014.

[38] B. Wang, E. Abdalla and R. K. Su, Phys. Lett. B611 (2005) 21.

[39] G. Izquierdo, D. Pavón, Phys. Lett. B 633 (2006) 420; G. Izquierdo, D. Pavón, Phys. Lett. B

639 (2006) 1.

[40] P.J. Steinhardt, in Critical Problems in Physics, edited by V.L. Fitch and D.R. Marlow

(Princeton University Press, Princeton, NJ, 1997).

[41] A. Friaca, J. S. Alcaniz, J. A. S. Lima, Mon. Not. Roy. Astron. Soc. 362 (2005) 1295; G.

Hasinger, N. Schartel, S. Komossa, Astrophys. J. 573 (2002) L77; S. Komossa, G. Hasinger,

in XEUS “Studying the evolution of the universe”.

[42] L. Amendola, M. Gasperini, F. Piazza, Phys. Rev. D 74 (2006) 127302.

[43] A. Yu. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001); N. Bilic, G.

B. Tupper and R. D. Viollier, Phys. Lett. B 535, 17 (2002); M. C. Bento, O. Bertolami and

A. A. Sen, Phys. Rev. D 66, 043507 (2002).

[44] In writing Eq. (11) we have implicitly assumed that the DM continues to be pressureless

in spite of the presence of the interaction. Obviously this is not strictly true, but since the

interaction is to be small the induced pressure will be much lower than ρm thereby we neglect

it.

14


	Acknowledgments
	References

