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Abstract

We extend the definition of η−weak-pseudo-Hermiticity to the class
of potentials endowed with position-dependent mass. The construction
of non-Hermitian Hamiltonians through some generating function are ob-
tained. Special cases of potentials are thus deduced.
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1 Introduction

The Hamiltonians are called PT −invariant if they are invariant under a
joint transformation of parity P and time-reversal T [1-8]. A conjecture
due to Bender and Boettcher [1] has relaxed PT −symmetry as a necessary
condition for the reality of the spectrum. Here, the Hermiticity assumption
H = H† is replaced by the PT −symmetric one; i.e. [PT ,H] = 0, where P
denotes the parity operator (space reflection) and has as effects : x→ −x,
p → −p and T mimics the time-reversal and has as effects : x → x,
p→ −p, and i→ −i. Note that T changes the sign of i because it preserves
the fundamental commutation relation of the quantum mechanics known
as the Heisenberg algebra, i.e. [x, p] = i~ [1-3].
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According to Mostafazadeh [9-12], the basic mathematical structure
underlying the properties of PT −symmetry is explored and can now be
found to be connected to the concept of a pseudo-Hermiticity. The pseudo-
Hermiticity has been found to be a more general concept then those of
Hermiticity and PT −symmetry. As a consequence of this, the reality of
the bound-state eigenvalues can be associated with it.

In terms of these settings, a Hamiltonian H is called pseudo-Hermitian
if it obeys to [9,11]

H† = ηHη−1, (1)

where η is a Hermitian invertible linear operator and a dagger
(
†
)
stands for

the adjoint of the corresponding operator. A non-Hermitian Hamiltonian
has a real spectrum if and only if it is pseudo-Hermitian with respect to a
linear Hermitian automorphism [10], and may be factored as

η = D†D, (2)

where D : H → H is a linear automorphism (H is the Hilbert space). Note
that choosing η = 1 reduces the assumption (1) to the Hermiticity of the
Hamiltonian.

On the other hand, Bagchi and Quesne [13] have established that the
twin concepts of pseudo-Hermiticity and weak-pseudo-Hermiticity are com-
plementary to one another. In the pseudo-Hermiticity case, η can be writ-
ten as a first-order differential operator and may be anti-Hermitian, while
in the weak-pseudo-Hermitian case, η is a second-order differential operator
and must be necessarily Hermitian.

The quantum mechanical systems with position-dependent mass have
attracted, in recent years, much attention on behalf of physicists [15-20].
The effective mass Schrödinger equation was first introduced by BenDaniel
and Duke in order to explain the behaviors of electrons in semi-conductors
[15]. It also have many applications in the fields of materials science and
condensed matter physics [20,21].

In the present paper, a class of non-Hermitian Hamiltonians, known
in the literature, as well as their accompanying ground-state wavefunc-
tions are generated as a by-product of the generalized η−weak-pseudo-
Hermiticity endowed with position-dependent mass. Here our primary
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concern is to point out that, being different from the realization of Ref.[13]
considering therein A (x) as a pure imaginary function, there is no in-

consistency if a shift on the momentum p of the type p → p − A(x)
U(x)

is

used, where A (x) and U (x) ( 6= 0) are, respectively, complex- and real-
valued functions. It opens a way towards the construction of non-Hermitian
Hamiltonians (not necessarily PT −symmetric). On these settings, Eq.(2)

becomes η → η̃ = D̃†D̃. Such operator, i.e. D̃, may be looked upon as
a gauge-transformed version of D, depending essentially on the function
A (x). Consequently, it is found that the wavefunction is also subjected
to a gauge transformation of the type ψ (x) → ξ (x) = Λ (x)ψ (x) where

Λ (x) = exp
[
i
∫ x
dyA(y)

U(y)

]
.

2 Generalized pseudo-Hermitian Hamiltoni-

ans

The general form of the Hamiltonian introduced by von Roos [16] for the
spatially varying mass M (x) = m0m (x) reads

H =
1

4

[
mα (x) pmβ (x) pmγ (x) +mγ (x) pmβ (x) pmα (x)

]
+ V (x) , (3)

where the constraint α+ β + γ = −1 holds and V (x) = VRe (x) + iVIm (x)
is a complex-valued potential. Here, p

(
= −i d

dx

)
is a momentum with ~ =

m0 = 1, and m (x) is dimensionless real-valued mass function.
Using the restricted Hamiltonian from the α = γ = 0 and β = −1

constraints, the Hamiltonian (3) becomes

H = pU2 (x) p+ V (x) , (4)

with U2 (x) = 1
2m(x)

. The shift on the momentum p in the manner

p→ p−
A (x)

U (x)
, (5)
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where A : R → C is a complex-valued function, allows to bring the Hamil-
tonian of Eq.(4) in the form

H → H′ =

[
p−

A (x)

U (x)

]
U2 (x)

[
p−

A (x)

U (x)

]
+ V (x) . (6)

In Ref.[11], it was showed that for every anti-pseudo-Hermitian Hamil-
tonian H, there is an antilinear operator τ fulfilling the condition

H† = τHτ−1. (7)

Let us extend the proof of Ref.[12] to our Hamiltonian (6). To this
end, τ should be constructed suitably. According to Mostafazadeh [12],
τ = T eiα(x) is the product of linear and antilinear operators, and α :
R → C is a complex-valued function. Therefore, the Hermiticity of τ is
established straightforwardly

τ † = e−iα∗(x) T † = e−iα∗(x) T = T eiα(x) = τ , (8)

where the identities T †= T and T f (x) T = f ∗ (x) are used and f : R → C.
According to Mostafazadeh in Ref.[12], the function α (x) can be gen-
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eralized to α (x) = −2
∫ x
dyA(y)

U(y)
, therefore

τH′τ−1 = T eiα(x)
[
p−

A (x)

U (x)

]
U2 (x)

[
p−

A (x)

U (x)

]
e−iα(x) T

+T eiα(x) V (x) e−iα(x) T

= T

[
p−

A (x)

U (x)
− ∂xα

]
eiα(x) U2 (x) e−iα(x)

[
p−

A (x)

U (x)
− ∂xα

]
T

+V ∗ (x)

= T

[
p−

A (x)

U (x)
− ∂xα

]
U2 (x)

[
p−

A (x)

U (x)
− ∂xα

]
T +V ∗ (x)

= T

[
p+

A (x)

U (x)

]
U2 (x)

[
p+

A (x)

U (x)

]
T +V ∗ (x)

=

[
−p +

A∗ (x)

U (x)

]
U2 (x)

[
−p+

A∗ (x)

U (x)

]
+V ∗ (x)

=

[
p−

A∗ (x)

U (x)

]
U2 (x)

[
p−

A∗ (x)

U (x)

]
+V ∗ (x)

= H′†, (9)

where for every differential function α (x), the following identity holds
e−iα(x) p eiα(x) = p+ ∂xα (x) while the position x commutes with eiα(x) and
remains unaffected under a last transformation; i.e. e−iα(x) x eiα(x) = x.
Here we note that for every function f : R → C, the identity T f (x, p)T =
f ∗ (x,−p) is used.

In the other hand, and according to Ref.[11], it was checked that
PT −symmetry ([PT ,H] = 0) and anti-pseudo-Hermiticity operator τ im-
ply pseudo-Hermiticity of H with the respect of a linear Hermitian auto-
morphism η : H → H according to

η = τPT , (10)

and it turns out that the choice of η is not unique. As was made for τ , let
us generalize η according to

η = exp

[
2i

∫ x

dy
A∗ (y)

U (y)

]
P, (11)
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then the Hermiticity of η is established straightforwardly

η† = P exp

[
−2i

∫ x

dy
A (y)

U (y)

]
= exp

[
−2i

∫ −x

dy
A (y)

U (y)

]
P

= exp

[
2i

∫ −x

d (−y)
A (y)

U (y)

]
P =exp

[
2i

∫ x

dy
A (−y)

U (−y)

]
P

= exp

[
2

∫ x

dy
iReA (−y)− ImA (−y)

U (−y)

]
P

= exp

[
2

∫ x

dy
iReA (y) + ImA (y)

U (y)

]
P

= exp

[
2i

∫ x

dy
ReA (y)− i ImA (y)

U (y)

]
P

= exp

[
2i

∫ x

dy
A∗ (y)

U (y)

]
P

= η, (12)

where we use P† = P and, for every function f : R → C, the following
identity holds Pf (x)P = f (−x). In Eq.(12), the real and imaginary
parts of A (x) are, respectively, even and odd functions; i.e. ReA (−x) =
ReA (x), ImA (−x) = − ImA (x) and U (x) must be an even function, i.e.
U (x) = U (−x).

In summary, the PT −symmetry and anti-pseudo-Hermiticity with re-
spect to τ imply pseudo-Hermiticity with respect to τPT and which co-
incides with the η operator [11]. Therefore, it is obvious that the (weak-)
pseudo-Hermiticity as defined in Eq.(10) adapts very well to the problems
relating with position-dependent effective mass.
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3 The generalized weak-pseudo-Hermiticity

generators

As η is weak-pseudo-Hermitian, then the operatorsD andD† are connected
to the first-order differential operator through [14]

D = U (x) ∂x + φ (x) ,

= iU (x) p+ φ (x) , (13.a)

D† = −∂xU (x) + φ∗ (x) ,

= −ipU (x) + φ∗ (x) , (13.b)

where we have used the abbreviation ∂x = d
dx
. Here φ : R → C is a

complex-valued function. It is obvious that the operator D becomes, under
transformation (5),

D̃ = iU (x)

[
p−

A (x)

U (x)

]
+ φ (x) ,

= iU (x) p− iA (x) + φ (x) . (14)

Therefore, the operator D̃ may be looked upon as a gauge-transformed
version of D, depending on A (x) such that D̃ = D−iA (x). In terms of
these, η̃ becomes

η̃ = D̃†D̃

=
[
D† + iA∗ (x)

]
[D − iA (x)]

= D†D − iD†A (x) + iA∗ (x)D + A∗ (x)A (x) , (15)

and taking into account that φ (x) = f (x)+ig (x) andA (x) = a (x)+ib (x),
(15) can be recast as

η̃ = D†D + 2iU (x) a (x) ∂x + i [U (x)A (x)]′ − iφ∗ (x)A (x)

+iφ (x)A∗ (x) + |A (x)|2 , (16)

where prime denotes derivative with respect to x. At this point, let us now
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evaluate η appearing in Eq.(16) using Eq.(13), we obtain

D†D = [−∂xU (x) + φ (x)] [U (x) ∂x + φ (x)]

= −U2 (x) ∂2x − 2U (x) [U ′ (x) + ig (x)] ∂x + |φ (x)|2

− [U (x)φ (x)]′ , (17)

Combining Eq.(17) with Eq.(16), we obtain a second-order differential
operator of η̃

η̃ = −U2 (x) ∂2x − 2K (x) ∂x + L (x) , (18)

where K (x) and L (x) are defined as

K (x) = U (x)U ′ (x) + iU (x) g (x)− iU (x) a (x) , (19.a)

L (x) = |φ (x)|2 + |A (x)|2 − [U (x)φ (x)]′ + i [U (x)A (x)]′

−iφ∗ (x)A (x) + iφ (x)A∗ (x) . (19.b)

One can easily check that η̃ given in Eq.(18) is, indeed, Hermitian since

it is written in the form η̃ = D̃†D̃. On the other hand, taking into account
p = −i∂x, the Hamiltonian of Eq.(6) may be expressed as

H′ = −U2 (x) ∂2x − 2M1 (x) ∂x +N1 (x) + V (x) , (20)

where, by definition

M1 (x) = U (x)U ′ (x)− iU (x)A (x) , (21.a)

N1 (x) = i [U (x)A (x)]′ + A2 (x) . (21.b)

The adjoint of the Hamiltonian (20) reads as

H′† = −U2 (x) ∂2x − 2M2 (x) ∂x +N2 (x) + V ∗ (x) , (22)

with

M2 (x) = U (x)U ′ (x)− iU (x)A∗ (x) , (23.a)

N2 (x) = i [U (x)A∗ (x)]′ + A∗2 (x) . (23.b)
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It should be noted that D and D† are two intertwining operators, there-
fore, the defining condition (1) may be expressed as ηH = H†η. Thereupon,
a generalization beyond the pair η̃ and H′ is straightforward, given

η̃H′ = H′†η̃. (24)

Letting both sides of (24) act on every function, e.g. on a wavefunction.
Using Eqs.(18), (20), (22) and comparing between their varying differential
coefficients, we can easily recognized from the coefficients corresponding to
the third derivative that A (x) must be real function, i.e. b (x) = 0.

By comparing both coefficients corresponding to the second deriva-
tive, one deduces the expression connecting the potential to its conjugate
through

V (x) = V ∗ (x)− 4iU (x) g′ (x) . (25)

On the other hand, the coefficients corresponding to the first derivative
give the shape of the potential

V ∗′ (x) = 2f (x) f ′ (x)−2g (x) g′ (x)−[U (x) f (x)]′′+2i [U (x) g′ (x)]
′
, (26)

and by integrating Eq.(26) taking into account its conjugate, we get

V (x) ≡ VRe (x) + iVIm (x)

= f 2 (x)− g2 (x)− [U (x) f (x)]′ − 2iU (x) g′ (x) + δ, (27)

with δ is a constant of integration. It is obvious that both imaginary parts
of Eqs.(25) and (27) coincide.

The last remaining coefficients correspond to the null derivative and
give the following pure-imaginary expression

−4U (x) f (x) f ′ (x) g′ (x)− 4U (x) f 2 (x) g′ (x) + 4U2 (x) f ′ (x) g′ (x)

+4U (x)U ′ (x) f ′ (x) g (x) + 4U (x)U ′ (x) f (x) g′ (x) + 2U2 (x) f ′′ (x) g (x)

+3U2 (x)U ′ (x) g′′ (x) + 2U (x)U ′′ (x) f (x) g (x)− U2 (x)U ′′ (x) g′ (x)

−2U (x)U ′ (x)U ′′ (x) g (x) + U3 (x) g′′′ (x)− U2 (x)U ′′′ (x) g (x) = 0.
(28)
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Using Eq.(24) together with the eigenvalues of the Schrödinger equation
for the Hamiltonian and its adjoint, namely H′ |ξi〉 = E ′

i |ξi〉 and
〈
ξj
∣∣H′† =〈

ξj
∣∣ E ′∗

j , where
∣∣ξq

〉
∈ H (q = i, j), and then multiplying them by η̃ on the

left- and right-hand sides, respectively, we can easily obtain due to Eq.(24),
on subtracting, that any two eigenvectors |ξi〉 and

∣∣ξj
〉
satisfy

〈
ξj
∣∣ (H′†η̃ − η̃H′

)
|ξi〉 =

〈
ξj
∣∣ (E ′∗

j η̃ − E ′
iη̃
)
|ξi〉

=
(
E ′∗
j − E ′

i

) 〈
ξj
∣∣ η̃ |ξi〉

=
(
E ′∗
j − E ′

i

) 〈
ξj ‖ ξi

〉
eη

≡ 0, (29)

where
〈
ξj ‖ ξi

〉
eη
≡

〈
ξj
∣∣ η̃ |ξi〉 is the Hermitian indefinite inner product of

the Hilbert space H defined by η̃ [9,11]. According to the proposition 2 in
Ref.[9], a direct implication of Eq.(29) has the following properties

(i) The eigenvectors with non-real eigenvalues have a vanish-
ing η−norm, i.e. E ′

i /∈ R implies that ‖|ξi〉‖
2
eη = 〈ξi ‖ ξi〉eη = 0.

(ii) Any two eigenvectors are η−orthogonal unless their
eigenvalues are complex conjugates, i.e. E ′

i 6= E ′∗
j implies that〈

ξi ‖ ξj
〉

eη
= 0.

The inner product 〈· ‖ ·〉
eη is generally positive-definite, i.e. 〈· ‖ ·〉

eη > 0.
Thus, the Hilbert space equipped with this inner product may be identified
as the physical Hilbert space Hphys [1-3]. Therefore, according to Eq.(29),
it is obvious that E ′= E ′∗. Hence, the eigenvalue E ′ is real, i.e. E ′

Im = 0.
In terms of these, η−orthogonality suggests that the eigenvector (wave-
function), here ξ (x), is related to H′ through the identity η̃ξ (x) = 0 [14],
i.e.

D̃ξ (x) = 0, (30)

and keeping in mind Eq.(14), and after integration, we obtain the ground-
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state wavefunction (not necessarily normalizable)

ξ (x) = Λ (x)ψ (x)

= exp

[
i

∫ x

dy
A (y)

U (y)

]
ψ (x)

∝ exp

[
−

∫ x

dy
f (y)

U (y)
− i

∫ x

dy
g (y)− a (y)

U (y)

]
, (31)

where ψ (x) is the ground-state wavefunction when the restriction A (x) = 0

holds. Then ξ (x), as for D̃, is also subjected to a gauge transformation in
the manner of ψ (x) → ξ (x) = Λ (x)ψ (x).

In these settings, letting D̃ acts on both sides of (31), we obtain

D̃ξ (x) ≡ [U (x) ∂x − iA (x) + φ (x)] Λ (x)ψ (x)

= U (x) Λ′ (x)ψ (x) + U (x) Λ (x)ψ′ (x)− iA (x) Λ (x)ψ (x)

+φ (x) Λ (x)ψ (x)

= Λ (x) [U (x) ∂x + φ (x)]ψ (x)

=⇒ Dψ (x) = 0, (32)

where Λ′ (x) = iA(x)
U(x)

Λ (x). That means that the wavefunctions thus ob-

tained can be deduced either by D̃ξ (x) = 0 or by Dψ (x) = 0.
In the remainder of the article, we write E instead of E ′. Now, using

the Schrödinger equation H′ξ (x) = Eξ (x), with H′ given in Eq.(20), ξ (x)
in Eq.(31) and E = ERe + iEIm, we end up by relating f (x) to g (x) and
U (x) through

f (x) =
U ′ (x) g (x)− U (x) g′ (x)

2g (x)
, (33)

where for the sake of simplicity we considere δ ≡ ERe. Hence, it becomes
clear that g (x) is our generating function leading to identify the function
f (x), and then the potential V (x).

This in turn leads to the following question. Is (33) the equation con-
necting f (x) to the generating function g (x)? The answer to this question
amounts to check for the satisfaction of Eq.(28). It is then straightforward,
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after a long calculation, to be convinced that f (x), as defined in (33), is a
farfetched function (solution).

In order to deal with position-dependent mass, we introduce the aux-
iliary function defined by the mapping µ (x) ≡

∫ x dy

U(y)
, where µ (x) is a

dimensionless mass integral which will appear frequently in subsequent
developments. The function f (x) can be written as

f (x) = −
g′ (x)

2µ′ (x) g (x)
−

µ′′ (x)

2µ′2 (x)
. (34)

and the potential V (x) acquires the form

Veff (x)− ERe = −g2 (x)−
g′2 (x)

4g2 (x)µ′2 (x)
+

g′′ (x)

2g (x)µ′2 (x)
−

g′ (x)µ′′ (x)

2g (x)µ′3 (x)

−2i
g′ (x)

µ′ (x)
, (35)

where Veff (x) is called the effective potential and is related to V (x) by

V (x) = Veff (x)− Vµ (x) , (36)

with

Vµ (x) =
µ′′′ (x)

µ′3 (x)
−

5

4

µ′′2 (x)

µ′4 (x)
. (37)

4 Effective potentials and corresponding wave-

functions

The strategy to determine both effective potentials and ground-state wave-
functions is as follows. As g (x) is a generating function, all expressions
depend on it. We may choose various generating functions g (x) and ob-
tain all others expressions such as f (x), Veff (x) and η̃. Knowing f (x) and
g (x), the proper ground-state wavefunctions can be found from Eq.(32),
i.e. without the gauge-term. Without giving the details of our calculation
which are straightforward, we present the results of various expressions in
standard form.
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4.1 3D−Harmonic oscillator potential

g (x) = αµ (x) , (38.a)

f (x) = −
1

2µ (x)
−

µ′′ (x)

2µ′2 (x)
, (38.b)

VHO (x) = −α2µ2 (x)−
1

4µ2 (x)
− 2iα, (38.c)

ψ
(0)
HO (x) ∝

√
µ (x)

U (x)
exp

[
−
iα

2
µ2 (x)

]
. (38.d)

4.2 Morse potential

g (x) = exp [−αµ (x)] , (39.a)

f (x) =
α

2
−

µ′′ (x)

2µ′2 (x)
, (39.b)

VM (x) = − exp [−2αµ (x)] + 2iα exp [−αµ (x)] +
α2

4
, (39.c)

ψ
(0)
M (x) ∝

1

U (x)
e−

α

2
µ(x) exp

[
2i

α
e−αµ(x) (x)

]
(39.d)

4.3 Scarf II potential

g (x) = sech [αµ (x)] , (40.a)

f (x) =
α

2
tanh [αµ (x)]−

µ′′ (x)

2µ′2 (x)
, (40.b)

VSc (x) = −

(
1 +

3α2

4

)
sech2 [αµ (x)]

+2iα sech [αµ (x)] tanh [αµ (x)] +
α2

4
, (40.c)

ψ
(0)
Sc (x) ∝

1

U (x)
√
cosh [αµ (x)]

exp

[
−
i

α
arctan tanh

α

2
µ (x)

]
.(40.d)
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4.4 Generalized Pöschl-Teller potential

g (x) = cosech [αµ (x)] , (41.a)

f (x) =
α

2
coth [αµ (x)]−

µ′′ (x)

µ′2 (x)
, (41.b)

VGPT (x) = −

(
1−

3α2

4

)
cosech2 [αµ (x)]

+2iα cosech [αµ (x)] coth [αµ (x)] +
α2

4
, (41.c)

ψ
(0)
GPT (x) ∝

1

U (x)
√

sinh [αµ (x)]
tanh− 2i

α

[
αµ (x)

2

]
. (41.d)

4.5 Pöschl-Teller potential

g (x) = sech [αµ (x)] cosech [αµ (x)] , (42.a)

f (x) = α coth [2αµ (x)]−
µ′′ (x)

2µ′2 (x)
, (42.b)

VPT (x) =

(
3α2

4
− 1 + 2iα

)
cosech2 [αµ (x)]

−

(
3α2

4
− 1− 2iα

)
sech2 [αµ (x)] + α2, (42.c)

ψ
(0)
PT (x) ∝

1

U (x)
√

sinh [2αµ (x)]
tanh− 2i

α [αµ (x)] . (42.d)

The above models are displayed in their usual forms and give quite
well-known exact solvable non-Hermitian effective potentials as well as
their accompanying ground-state wavefunctions. The first one represents a
generalized η−weak-pseudo-Hermitian 3D−harmonic oscillator. The sec-
ond model corresponds to the non−PT −symmetric Morse potential and
is already obtained by [22,23], where the γ = bR constraint is considered
therein, using sl (2,C) potential algebra as a complex Lie algebra by a sim-
ple complexification of the coordinates in a group theoretical point of view
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and also in [24], labelled LIII according to Lévai [25], once a substitution
b→ ib is made therein. The remainder models belong to so called PI class
[25] which contains five individual potentials. The third model represents a
generalized η−weak-pseudo-Hermitian PT −symmetric Scarf II Potential,
labelled PI1, which is established in [22,23,24] with the same constraints
quoted above. Finally, the two last models represent, respectively, a gen-
eralized η−weak-pseudo-Hermitian generalized Pöschl-Teller (PI2) and a
generalized η−weak-pseudo-Hermitian Pöschl-Teller (PI5) potentials and
are already established, respectively, in [22,23,24] and [24].

5 Conclusion

A well-known class of non-Hermitian Hamiltonians endowed with position-
dependent mass are generated as a by-product of a generalized η−weak-
pseudo-Hermiticity thanks to a shift on the momentum p of the type p→
p− A(x)

U(x)
, and which allows to avoid the Hermitian invertible linear operator

η for the benefit of η̃. We show that, being different from the realization
of Ref.[13], there is no inconsistency to generate a well-known class of non-
Hermitian Hamiltonians if the last shift is used, leading then to consider
that D̃ may be looked upon as a gauge-transformed version of D and
depending essentially on the function A (x), i.e. δD ≡D̃−D = −iA (x). As
a consequence of this, the wavefunction ξ (x) is also subjected to a gauge
transformation in the manner ψ (x) → ξ (x) = Λ (x)ψ (x), with Λ (x) =

exp

[
i

∫ x

dyA(y)
U(y)

]
and where ψ (x) is the ground-state wavefunction when

the A (x) = 0 constraint holds.
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