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de Sitter Relativity: a New Road to Quantum Gravity?
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Abstract The Poincaré group generalizes the Galilei group for high–velocity kinematics. The de

Sitter group is assumed to go one step further, generalizing Poincaré as the group governing high–

energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity.

In this theory, the cosmological constant Λ is no longer a free parameter, and can be determined

in terms of other quantities. When applied to the whole universe, it is able to predict the value of

Λ and to explain the cosmic coincidence. When applied to the propagation of ultra–high energy

photons, it gives a good estimate of the time delay observed in extragalactic gamma–ray flares. It

can, for this reason, be considered a new paradigm to approach the quantum gravity problem.

1 Introduction

Low energy physics is governed by Newtonian mechanics, whose underlying kinematics is
ruled by the Galilei group. For higher energies, which involve higher velocities, Galilei rela-
tivity fails and must be replaced by Einstein special relativity, whose underlying kinematics
is ruled by the Poincaré group. From the kinematic point of view, Poincaré relativity can
be viewed as describing the implications to Galilei relativity of introducing a fundamental
velocity scale — the speed of light c — into the Galilei group. Conversely, Galilei relativity
can be obtained from Poincaré’s by taking the formal limit of the velocity scale going to
infinity (non-relativistic limit).

Now, there are theoretical and experimental evidences that, at ultra–high energies, also
Poincaré relativity fails to be true. The theoretical indications are related to the physics
at the Planck scale, where a fundamental length parameter — the Planck length lP —
naturally shows up. Since a length contracts under a Lorentz boost, the Lorentz symmetry
is usually supposed to be broken at this scale [1]. The experimental evidences come basically
from the propagation of very–high energy photons, which seems to violate ordinary special
relativity. More precisely, very–high energy extragalactic gamma–ray flares seem to travel
slower than lower energy ones [2]. If this comes to be confirmed, it will constitute a clear
violation of special relativity.

The above indications suggest that we should look for another special relativity, which
would rule the kinematics at ultra–high energies.1 From the point of view of the alge-
braic hierarchy described above, the most natural generalization towards ultra–high energy
kinematics would be to replace Poincaré special relativity by a de Sitter relativity [4, 5].
Algebraically, this theory describes the implications to Galilei relativity of introducing both

a velocity and a length scales in the Galilei group. In the formal limit of the length-scale

1Several attempts have been made to construct such a theory. The relevant literature can be traced back
from the papers cited in Ref. [3].
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going to infinity, the de Sitter group contracts [6, 7] to the Poincaré group [8], in which
only the velocity scale is present. A further limit of the velocity scale going to infinity
leads Poincaré to Galilei relativity. It is interesting to observe that the order of the group
expansions (or contractions) is not important. If we introduce in the Galilei group a fun-
damental length parameter, we end up with the Newton-Hooke group [9], which describes
a Galilean relativity in the presence of a cosmological constant. Adding to this group a
fundamental velocity scale, we end up again with the de Sitter group, whose underlying
relativity involves both a velocity and a length scales. Conversely, the low–velocity limit of
the de Sitter group yields the Newton-Hooke group, which contracts to the Galilei group in
the limit of a vanishing cosmological constant.

Considering that the de Sitter group naturally incorporates an invariant length–parame-
ter — in addition to the speed of light — de Sitter relativity can be interpreted as a new
example of the so called doubly special relativity [3]. There is a fundamental difference,
though: whereas in all doubly special relativity models the Lorentz symmetry is violated,
in de Sitter relativity it remains as a physical symmetry [10]. It is important to mention that
one drawback of the usual doubly special relativity models is that they are valid only at the
energy scales where ordinary special relativity is supposed to break down,2 giving rise to a
kind of patchwork relativity. On the other hand, de Sitter relativity is found to be invariant
under a simultaneous re-scaling of mass, energy and momentum [4], and is consequently
valid at all energy scales — it is a “universal” relativity. This is a very important property
shared by all fundamental theories.

Taking into account the above considerations, the purpose of this paper is to explore
the consequences of replacing ordinary special relativity by de Sitter special relativity. We
begin by presenting, in section 2, the fundamentals of the de Sitter special relativity. If
special relativity changes, general relativity must change accordingly. The consistency of
these modifications is examined in section 3. As illustrations of possible applications of
de Sitter special relativity, we use it in section 4 to re–analyze the cosmological constant
problem, and in section 5 we study the implications of the theory for the propagation of
very–high energy photons. Finally, in section 6, we present some concluding remarks.

2 Fundamentals of de Sitter Relativity

According to de Sitter relativity, the local symmetry of spacetime is not ruled by Poincaré,
but by the de Sitter group. Now, in order to exhibit de Sitter symmetry, a physical phe-
nomenon must modify the local structure of spacetime in such a way that the region in

which it takes place becomes a de Sitter spacetime.3 To comply with this requirement, in
addition to the usual gravitational field, any physical system must also engender a local de
Sitter field, whose intensity — described by the local value of the “cosmological” term Λ,
ultimately an energy density — is proportional to the energy density of the physical system.
The natural question then arises: how can ordinary matter give rise to a cosmological term?
The answer to this question is not simple, and requires a thorough analysis.

2This restriction is known as the “soccer-ball problem” [11].
3This hypothesis has already been considered by F. Mansouri in a different context [12].
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2.1 Conformal Transformations and the Cosmological Term

In one of its versions, the strong equivalence principle states that, in the presence of a
gravitational field, it is always possible to find a local coordinate system in which the laws
of physics reduce to those of special relativity. In this local coordinate system, therefore,
the kinematics is governed by the Poincaré group. This version of the equivalence principle,
therefore, is consistent with ordinary special relativity, whose underlying spacetime is the
Minkowski space

M = P/L, (1)

the quotient between Poincaré and Lorentz groups. It is a solution of the sourceless Einstein
equation4

Rµν − 1
2 gµν R = 0. (2)

An important property of the Minkowski spacetime is that it is transitive under spacetime
translations. The invariance of a physical system under spacetime translations leads to the
conservation of its corresponding Noether current, the energy-momentum tensor Tµν which
appears as the source in Einstein’s equation

Rµν − 1
2 gµν R =

8πG

c4
Tµν . (3)

On the other hand, if the local kinematics is to be governed by the de Sitter relativity,
the local symmetry group of spacetime changes from Poincaré to de Sitter, and consequently
the strong equivalence principle must change accordingly. Its modified version states that,
in the presence of a gravitational field, it is always possible to find a local coordinate system
in which the laws of physics reduce to those of de Sitter special relativity, whose underlying
spacetime is the de Sitter space

dS(4, 1) = SO(4, 1)/L, (4)

the quotient between de Sitter and Lorentz groups. Immersed in a five–dimensional pseudo-
Euclidean space E

4,1 with Cartesian coordinates (χa, χ4), it is defined by

ηab χ
aχb − (χ4)2 = − l2, (5)

with l the so called de Sitter length–parameter (or “pseudo–radius”). de Sitter space is a
solution of the sourceless Λ-modified Einstein equation5

Rµν − 1
2 gµν R− gµν Λ = 0, (6)

provided Λ and l are related by

Λ =
3

l2
. (7)

4We use the Greek alphabet (µ, ν, ρ, . . . = 0, 1, 2, 3) to denote indices related to spacetime, and the
first half of the Latin alphabet (a, b, c, . . . = 0, 1, 2, 3) to denote algebraic indices, which are raised and
lowered with the Minkowski metric ηab = diag (+1,−1,−1,−1). The second half of the Latin alphabet
(i, j, k, . . . = 1, 2, 3) is reserved for space indices.

5According to our convention, the de Sitter spacetime (Λ > 0) has a negative scalar curvature (R < 0).
In this convention the scalar curvature has the same sign as the Gaussian curvature.
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Differently from Minkowski, de Sitter spacetime is transitive under a combination of
translations and proper conformal transformations [13]. This property is easily seen in the
coordinates {xa} obtained by a stereographic projection from the de Sitter hyper-surface
into a target Minkowski spacetime. The projection is defined by [8]

χa = Ω(x)xa and χ4 = − lΩ(x)

(

1 +
σ2

4l2

)

, (8)

where

Ω(x) =
1

1− σ2/4l2
, (9)

with σ2 = ηab x
axb a Lorentz invariant quadratic interval. In such coordinates, the de Sitter

metric has the form
gµν = Ω2(x) δaµ δ

b
ν ηab = Ω2(x) ηµν , (10)

showing clearly its conformally flat character. The generators of the de Sitter Lie algebra,
on the other hand, are given by

Lab = ηac x
c Pb − ηbc x

c Pa, (11)

and
La4 = lPa − (4l)−1Ka, (12)

where
Pa = ∂a and Ka =

(

2ηac x
cxb − σ2 δba

)

∂b (13)

are, respectively, the generators of translations and proper conformal transformations. Gen-
erators Lab refer to the Lorentz subgroup, whereas the remaining La4 define the transitivity
on the de Sitter spacetime.

To make contact with the Poincaré group, it is convenient to define [8]

πa ≡ La4

l
= Pa − (4l)−2Ka, (14)

which are usually called de Sitter “translation” generators. From the algebraic point of
view, therefore, the change from Poincaré to de Sitter is achieved by replacing ordinary
translations Pa by the de Sitter “translations” πa. The relative importance of translation
and proper conformal generators is determined by the value of l, that is, by the value of
the cosmological term. We see in this way that a non–vanishing Λ is directly related to
the presence of conformal transformations in the spacetime transitivity generators — or
equivalently, in the group governing the spacetime kinematics.

2.2 The Local Cosmological Term

We are now back to the question posed at the beginning of the section, which can now be
rephrased in the form: given a physical system, how to obtain the associated cosmological
term? To answer this question we remember first that, according to quantum mechanics,
there is a lower limit for all physical quantities. For example, the smallest amount of an
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electromagnetic field, a photon, is determined by the Planck constant as a quantum of the
field. In a similar fashion, the smallest possible length is the Planck length. Since in de
Sitter relativity there is a free length parameter l, its minimum value will then be the Planck
length lP =

√

G~/c3. Let us then consider a de Sitter spacetime with l = lP , for which the
corresponding cosmological term is

ΛP =
3

l2P
. (15)

Considering that a cosmological term represents ultimately an energy density, we define the
Planck energy density

εP =
mP c2

(4π/3)l3P
, (16)

with mP =
√

c~/G the Planck mass. In terms of εP , Eq. (15) assumes the form

ΛP =
4πG

c4
εP . (17)

Now, the very definition of ΛP can be considered a particular, extremal case of a general
expression relating the local “cosmological” term to the corresponding energy density of a
physical system. Accordingly, to a physical system of energy density ε will be associated
the “cosmological” term

Λ =
4πG

c4
ε. (18)

It is important to reinforce that the ε appearing in this equation is not the dark energy
density, but the matter energy density. For small values of ε, the local cosmological term
Λ will be small, spacetime will approach Minkowski, and de Sitter special relativity will
approach ordinary special relativity, whose kinematics is governed by the Poincaré group.6

3 Consistency with General Relativity

In order to comply with de Sitter relativity, any physical system must engender on spacetime
a local cosmological term. This means that spacetime must present a local kinematic–related
curvature. We have then to verify whether the presence of this kinematic curvature is con-
sistent with general relativity, the theory that governs the spacetime dynamical curvature.

3.1 Conserved Source Currents

Due to the transitivity properties of the de Sitter spacetime, de Sitter relativity naturally
incorporates the conformal generators in the definition of spacetime transitivity. As a
consequence, the conformal current will appear as part of the Noether conserved current,
producing a change in the very notions of energy and momentum [15]. To see that, let us
consider a general matter field with Lagrangian Lm. Its action integral is

Sm =
1

c

∫

Lm d4x. (19)

6We remark that the relation (18) between the local value of Λ and the energy density ε is the same as
that appearing in Einstein universe. See, for example, Ref. [14], page 104.
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Under a local spacetime transformation δxρ, the change in S is

δSm = − 1

2c

∫

T µν δgµν
√−g d4x, (20)

where

T µν = − 2√−g

δLm

δgµν
(21)

is the symmetric energy–momentum tensor. Although the coefficient of the variation is the
energy–momentum tensor, the conserved quantity depends on the transformation δxρ. For
example, invariance of the action under translations δxρ = ξρ(x) leads to the conservation
of T µν itself, whereas the invariance under a Lorentz transformation δxρ = ωρ

λ(x)x
λ leads

to the conservation of the total angular momentum tensor [16]

Jρµν = xµ T ρν − xν T ρµ. (22)

Now, when the local kinematics is assumed to be ruled by the de Sitter group, the
underlying spacetime is necessarily a de Sitter spacetime. As already said, that spacetime
is not transitive under ordinary translations, but under the so called de Sitter “translations”,
whose infinitesimal version is

δxρ = ξα(x)∆α
ρ, (23)

where ξα(x) is the transformation parameter and7

∆α
ρ = δρα − 1

4l2
(

2gαν x
νxρ − x2δρα

)

≡ δρα − 1

4l2
δ̄α

ρ (24)

represent the Killing vector components, with x2 = gµν x
µxν . Under such a transformation,

the metric tensor changes according to

δgµν = −∇ν[∆αµξ
α(x)]−∇µ[∆ανξ

α(x)], (25)

with ∇ν a covariant derivative in the spacetime metric. Using the fact that the ∆αµ’s are
Killing vectors, this can be rewritten in the form

δgµν = −∆αµ∇νξ
α(x)−∆αν∇µξ

α(x). (26)

Substituting in Eq. (20), the invariance of the action yields the conservation law

∇µΠ
µν = 0, (27)

where

Πµν ≡ T µα∆α
ν = T µν − 1

4l2
Kµν , (28)

with T µν the symmetric energy–momentum tensor, and Kµν the proper conformal cur-
rent [17]

Kµν ≡ T µαδ̄α
ν = T µα

(

2gαρ x
ρxν − x2δα

ν
)

. (29)

7For ordinary translations, as is well known, the Killing vectors reduce to δρα.
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When the underlying spacetime is the de Sitter spacetime, the covariant conserved source
is the projection of the energy–momentum tensor T µα along the Killing vector ∆α

µ.
In general, neither Tµν norKµν is conserved separately. In fact, as an explicit calculation

shows,

∇µT
µν =

2T ρ
ρ x

ν

4l2 − x2
and ∇µK

µν =
2T ρ

ρ x
ν

1− x2/4l2
. (30)

Only when the trace of the energy–momentum tensor vanishes are the currents T µν andKµν

separately conserved. In the formal limit of a vanishing cosmological term (corresponding
to l → ∞), we obtain

∇µT
µν = 0 and ∇µK

µν = 2T ρ
ρ x

ν . (31)

On the other hand, in the formal limit of an infinite cosmological term (corresponding to
l → 0), we get

∇µT
µν = − 2T ρ

ρ
xν

x2
and ∇µK

µν = 0. (32)

In this limit, physics becomes conformally invariant, and the proper conformal current turns
out to be conserved.

3.2 Second Bianchi Identity

Let us consider the gravitational action functional

Sg = − c3

16πG

∫

R(T)

√−g d4x, (33)

with R(T) the ordinary scalar curvature generated by Tµν . Up to a surface term, the variation
of this action is

δSg = − c3

16πG

∫

Gµν
(T) δgµν

√−g d4x, (34)

where
Gµν

(T) = Rµν
(T) − 1

2 g
µν R(T) (35)

is Einstein’s tensor. For the specific case of de Sitter “translations”, in which the metric
tensor transforms according to Eq. (26), we get

δSg = − c3

16πG

∫

∇µ

(

Gµα
(T)∆α

ν
)

ξν(x)
√−g d4x. (36)

From the invariance of the action, and considering the arbitrariness of the parameter ξν(x),
we obtain

∇µ

(

Gµα
(T)∆α

ν
)

= 0. (37)

In the case of ordinary general relativity, whose underlying kinematics is ruled by the
Poincaré group, the Killing vectors are simply δνα, and Eq. (37) reduces to the usual con-
tracted form of the second Bianchi identity [18]. When the underlying kinematics is ruled
by the de Sitter group, however, what is covariantly conserved is the projection of Gµα

(T) along
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the Killing vector ∆α
ν . This projection represents Einstein’s tensor of the total spacetime

curvature: the dynamic curvature generated by T µν , and the kinematic curvature associ-
ated to the local de Sitter spacetime. It is, for this reason, the Bianchi identity consistent
with de Sitter special relativity.

3.3 Gravitational Field Equations

In ordinary general relativity, Einstein equation appears as an equality between two covari-
antly–conserved quantities: the purely geometrical Einstein tensor — divergenceless by the
second Bianchi identity — and the source energy-momentum tensor — divergenceless by
Noether’s theorem. Consistency with de Sitter special relativity — in which Πµν and not
Tµν is the conserved current — requires that Einstein equation be generalized to8

Gµα
(T)∆α

ν =
8πG

c4
T µα∆α

ν . (38)

Substituting ∆α
ν from Eq. (24) and using Eq. (28), it becomes

Gµν
(T) −

1

4l2
Gµα

(T)δ̄α
ν =

8πG

c4

(

T µν − 1

4l2
Kµν

)

. (39)

This field equation has both a symmetric and an anti–symmetric parts. Using the relations

Kµν
a ≡ 1

2K
[µν] = 1

2 (K
µν −Kνµ) = xρ (xµTρ

ν − xνTρ
µ) (40)

and
Kµν

s ≡ 1
2K

(µν) = 1
2 (K

µν +Kνµ) = xρ (xµTρ
ν + xνTρ

µ − xρT
µν) , (41)

the anti–symmetric part brings back the total angular momentum tensor,

xρ (xµG(T)ρ
ν − xνG(T)ρ

µ) =
8πG

c4
xρJρ

µν , (42)

from where we see that de Sitter relativity does not produce any change in the rotational
— or Lorentzian — sector of the theory. The symmetric part, on the other hand, yields

Gµν
(T) −Gµν

(K) =
8πG

c4

(

T µν − 1

4l2
Kµν

s

)

, (43)

where, analogously to (29), we have identified

1

l2
G

(µα
(T) δ̄α

ν) ≡ Gµν
(K) = Rµν

(K) − 1
2 g

µν R(K), (44)

8It should be remarked that this equation follows from the same Lagrangian of ordinary general relativity,
provided the translational variation δgµν = δαν δgµα be replaced by the de Sitter variation δgµν = ∆α

νδgµα.
The name “translational variation” is related to the fact that this is the variation used to define the energy–
momentum tensor, which is obtained from the invariance of the action under spacetime translations, with
Killing vectors δαν .
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with Gµν
(K) representing the kinematic curvature related to the local “de Sitter–like” space-

time, necessary to yield the appropriate local symmetry, as required by the de Sitter version
of the strong equivalence principle.

By “de Sitter–like” we mean a spacetime whose curvature tensor is formally the same
as the curvature tensor of a de Sitter spacetime, except for the facts that (i) Λ is no longer
constant, and (ii) it is written with the general spacetime metric gµν , solution of the complete
field equation (43). Namely,

Rµ
(K)νρσ = − Λ

3

(

δµρ gνσ − δµσ gνρ
)

. (45)

The corresponding Ricci tensor and the scalar curvature have, consequently, the forms

Rµν
(K) = −Λ gµν and R(K) = − 4Λ. (46)

If the dynamic gravitational field related to general relativity is neglected, it reduces to a
pure de Sitter spacetime. Using the above expressions, the generalized Einstein equation
(43) can be rewritten as

Rµν
(T) − 1

2 g
µν R(T) −

Λ

4
gµν =

8πG

c4

(

T µν − 1

4l2
Kµν

s

)

. (47)

By construction, this equation is consistent with de Sitter special relativity, and for this
reason the corresponding gravitational theory can be called de Sitter general relativity. In
the limit Λ → 0 (which corresponds to l → ∞), the field equation (47) reduces to the usual
Einstein equation (3), which is consistent with ordinary (Poincaré) special relativity. Notice
that Λ is no longer a constant. This is clear from the fact that it is non–vanishing in the
region occupied by the source, and goes to zero outside that region.

3.4 Conformal Current and the Cosmological Term

Neglecting both the source and the corresponding gravitational field related to ordinary
general relativity — as usually done in special relativity — the (trace of the) field equation
(47) yields

Λ =
2πG

c4
Kµ

µ

l2
. (48)

According to de Sitter relativity, therefore, the source of the cosmological term is the trace

Kµ
µ = 2xµxνTµν − x2 T µ

µ (49)

of the proper conformal current of matter. It is important to note that, differently from
the usual de Sitter solution, the cosmological term here is produced by ordinary matter.
In absence of matter, the proper conformal current vanishes, and the cosmological term
vanishes as well.

Let us consider now the specific case of an isotropic and homogeneous dust fluid de-
scribed by

Tµν = ε uµuν . (50)
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Considering that the underlying de Sitter spacetime is described by the metric

gµν = Ω2 ηµν , (51)

with Ω given by Eq. (9), it is easy to see that, in a comoving coordinate system,

Kµ
µ =

(

c2t2 + r2
)

ε, (52)

where r2 = δijx
ixj . Interesting enough, the trace of the proper conformal current produces

a Euclidianization of the coordinate–dependent factor, yielding a strictly positive quantity.
At the Planck scale, t = tP , r = lP and ε = εP , which yields

Kµ
µ = 2 l2P εP . (53)

At an arbitrary energy scale, therefore, the trace of the proper conformal current is

Kµ
µ = 2 l2ε. (54)

Substituting in Eq. (48), we get

Λ =
4πG

c4
ε, (55)

which is again Eq. (18), now obtained from its relation with the proper conformal current
of the source.

4 The Cosmological Constant Problem

Although supposed to be relevant at ultra–high energy–densities, de Sitter relativity may
give rise to residual effects at not so high energies. As an example, let us consider the
universe as a whole. Of course, since the gravitational field equations of de Sitter general
relativity are slightly different from the usual ones, the ensuing Friedmann equations will
also be modified. However, for the sake of simplicity, we assume that spacetime is still
described by the Friedmann-Robertson-Walker metric, and has a flat space–section (k = 0).
In this case, we can take ε of the order of the Friedmann critical energy density

ε ≃ 3H2
0c

2

8πG
, (56)

with H0 the Hubble constant. Substituting in Eq. (55), we obtain

Λ ≃ 3H2
0

2c2
. (57)

Using the value H0 = 75 (Km/s)/Mpc, the cosmological constant is found to be

Λ ≃ 10−56 cm−2, (58)

which is of the order of magnitude of the observed value [19]. This simple estimate is given
to illustrate the main point: replacing Poincaré by de Sitter as the group governing the
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spacetime kinematics leads to a relation between the energy density of any physical system
and the local value of Λ. When applied to the whole universe, that relation is able to predict
the value of the cosmological constant, which is no more an independent parameter — it is
determined by the spacetime kinematics and is, in principle, calculable. It is important to
observe that, although produced by matter, the source of Λ is not the energy–momentum
tensor, but the proper conformal current. In consequence, no mysterious fluid — satisfying
exotic equations of state — is necessary to explain the existence of a cosmological constant.

According to de Sitter relativity, therefore, the cosmological term has a pure kinematic
origin. In this case, the thermodynamic energy density associated with the de Sitter horizon
is found to be [13]

εΛ =
c4

4πG
Λ. (59)

A comparison with Eq. (48) yields

Kµ
µ

l2
= 2 εΛ. (60)

Assuming for argument’s sake that the present-day content of the universe can be accurately
described by dust, we see from Eqs. (54) and (60) that the dark and the matter energy
densities of such universe are of the same order, εΛ ≃ ε, a result consistent with the so-
called cosmic coincidence problem [20].

5 Photon Kinematics in de Sitter Relativity

According to quantum gravity considerations, high energies might cause small–scale fluctu-
ations in the texture of spacetime. These fluctuations could, for example, act as small–scale
lenses, interfering in the propagation of ultra–high energy photons. The higher the photon
energy, the more it changes the spacetime structure, the larger the interference will be. This
kind of mechanism could be the cause of the recently observed delay in high energy gamma–
ray flares from the heart of the galaxy Markarian 501 [2]. Those observations compared
gamma rays in two energy ranges, from 1.2 to 10 TeV, and from 0.25 to 0.6 TeV. The first
group arrived on Earth four minutes later than the second. Since de Sitter relativity gives
a precise meaning to these local spacetime fluctuations, it provides a precise high energy
phenomenology, opening up the door for experimental predictions.

With this in mind, let us consider a photon of wavelength λ and energy E = hc/λ.
Although the photons in a gamma–ray beam are not necessarily in thermal equilibrium, we
are going to use the thermodynamic expression [21]

ε =
π2

15

(kT )4

(~c)3
(61)

to estimate the photons energy density. Setting kT = E, it becomes

ε =
π2

15

E4

(~c)3
. (62)
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Substituting in Eq. (55), we obtain

Λ ≃ 4π3

15~2c2
E4

E2
P

, (63)

where EP =
√

c5~/G is the Planck energy. The corresponding de Sitter length parameter
is given by

l =
√

3/Λ. (64)

To get an idea of the order of magnitude, we give in Table 1 the local values of l and Λ
for several photons with different wavelength λ. In the first line are the values for a photon
with energy of the order of the Planck energy. Gamma-rays (1) and (2) correspond to the
two observed gamma-ray flares from Markarian 501. For comparison purposes, we give also
the values for a visible (red) photon. Since the photons produce such Λ in the place they

E (GeV) λ (cm) l (cm) Λ (cm−2)

Planck photon 1.2 × 1019 1.0× 10−32 9.7 × 10−34 3.3× 1066

Gamma-ray (1) 1.0 × 104 1.2× 10−17 1.4 × 10−3 1.7× 106

Gamma-ray (2) 0.6 × 103 2.1× 10−16 3.8 × 10−1 2.2× 101

Red light 1.8 × 10−9 7.0× 10−5 4.5 × 1022 1.6× 10−45

Table 1: Local values of l and Λ for several different photons.

are located, we can assume that they are always propagating in a de Sitter spacetime with
that cosmological term.

5.1 Geometric Optics Revisited

In flat spacetime, the condition for geometric optics to be applicable is that

λ ≪ l, (65)

where l is the typical dimension of the physical system. Since the physical system is now the
local de Sitter spacetime produced by the photon, that dimension is given by the de Sitter
length parameter l. From Table 1 we see that, for a photon with wavelength of the order
of the Planck length, this condition is not fulfilled. However, for gamma-rays (1) and (2),
as well as for red light, condition (65) is fulfilled, which means that we can use geometric
optics to study their propagation.

In the geometric optics domain, any wave-optics quantity A which describes the wave
field is given by an expression of the type

A = b eiφ, (66)

where the amplitude b is a slowly varying function of the coordinates and time, and the
phase φ, the eikonal, is a large quantity which is almost linear in the coordinates and the
time. The time derivative of φ yields the angular frequency of the wave,

∂φ

∂t
= ω, (67)
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whereas the space derivative gives the wave vector

∂φ

∂r
= −k. (68)

The characteristic equation for Maxwell’s equations in an isotropic (but not necessarily
homogeneous) medium of refractive index n(r) is

(

∂φ

∂r

)2

− n2(r)

c2

(

∂φ

∂t

)2

= 0 , (69)

which implies the usual relation

k
2 = n2(r)

ω2

c2
. (70)

Now, as is well known, there exists a deep relationship between optical media and
metrics [22]. This relationship allows to reduce the problem of the propagation of electro-
magnetic waves in a gravitational field to the problem of wave propagation in a refractive
medium in flat spacetime. Let us then consider the specific case of a de Sitter spacetime,
for which the quadratic line element ds2 can be written in the form [23]

ds2 = dτ2 − n2(E) δij dx
idxj , (71)

where
n(E) ≡ exp

[

√

Λ/3 τ
]

, (72)

with τ = c t. In these coordinates, the metric components are

g00 = g00 = 1, gij = −n2(E) δij , (73)

and the components of the “conformal” Ricci tensor is

Rµ
(K)ν = −Λ δµν , (74)

with Λ given by Eq. (63). It is then easy to see that, with the metric components (73), the
curved spacetime eikonal equation for a n = 1 refractive medium,

gµν
∂φ

∂xµ
∂φ

∂xν
= 0, (75)

coincides formally with the flat-spacetime eikonal equation (69), valid in a medium of re-
fractive index n(r). For this reason, gij is usually called the refractive metric, with n(E)
playing the role of refractive index [24].

5.2 Electromagnetic Waves in the Geometric Optics Limit

As already remarked, according to de Sitter relativity the photons produce a local de Sit-
ter spacetime in the place they are located. We can then assume that they are always
propagating in a de Sitter spacetime, with Λ given by Eq. (63). Let us then consider the
electromagnetic field equations in a de Sitter spacetime, restricting ourselves to the domain
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of geometric optics. Denoting the electromagnetic gauge potential by Aµ, and assuming the
generalized Lorenz gauge ∇µA

µ = 0, Maxwell’s equation reads

�Aµ −Rµ
(K)ν A

ν = 0, (76)

where � = gλρ∇λ∇ρ. Substituting the Ricci tensor components (74), Maxwell equation
(76) becomes

�Aµ + ΛAµ = 0. (77)

Although the term involving the cosmological constant looks like a background-dependent
mass for the photon field, this interpretation leads to properties which are physically unac-
ceptable [25]. In fact, as Maxwell equations in four dimensions are conformally invariant,
and de Sitter spacetime is conformally flat, the electromagnetic field must propagate on the
light–cone [26], which implies a vanishing mass for the photon field.

Assuming a massless photon field, therefore, we take the monochromatic plane-wave
solution to the field equation (77) to be

Aµ = bµ exp[i kα xα], (78)

where bµ is a polarization vector, and kα = (ω(|k|)/c,−k) is the wave-number four-vector,
with ω(|k|) the angular frequency. In order to be a solution of equation (77), the following
dispersion relation must be satisfied,

ω(k) =
c

n(E)

[

k2 + n2(E)Λ
]1/2

, (79)

where we used the notation k = |k|. Considering that

1

n(E)Λ1/2
∼ l, (80)

with l the dimension of the local de Sitter spacetime, and remembering that k ∼ λ−1, the
condition (65) for geometric optics to be applicable turns out to be

k ≫ n(E)Λ1/2. (81)

In this domain, therefore, the dispersion relation (79) assumes the form

ω(k) = c
k

n(E)
, (82)

and the corresponding velocity of propagation of an electromagnetic wave, given by the
group velocity, is [27]

v ≡ dω(k)

dk
=

c

n(E)
. (83)

In the limit Λ → 0, which corresponds to a contraction from de Sitter to ordinary special
relativity, n(E) → 1, and there will be no effect on the photon propagation.
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5.3 Application to the Gamma–Ray Flares

Let us consider now the propagation of gamma–rays. Substituting the local cosmological
term (63) into the refractive index (72), we obtain

n(E) ≃ exp

[
√

4π3

45~2c2
E2

EP
τ

]

. (84)

For the local de Sitter spacetime produced by a photon, the length τ can be identified with
its own wavelength λ = hc/E. Hence, we get

n(E) ≃ exp

[
√

16π5

45

E

EP

]

. (85)

For energies small compared to EP , we can write

n(E) ≃ 1 +

√

16π5

45

E

EP
. (86)

For a visible (red) electromagnetic radiation,

n(red) ≃ 1 + 1.9× 10−27. (87)

For gamma–rays (1) and (2), we get, respectively,

n(1) ≃ 1 + 8.8 × 10−15 and n(2) ≃ 1 + 5.2 × 10−16. (88)

Taking into account that the velocity of each photon is given by Eq. (83), the time difference
∆t to travel a distance d will be

∆t =
d

c

[

n(1) − n(2)

]

. (89)

Using the refractive indices (88), we see that, for a distance of 500 millions light–year, which
corresponds to d = 4.7× 1026 cm, the time difference will be

∆t ≃ 130 s = 2.2 min. (90)

This is of the same order of magnitude of the observed delay between the two gamma–ray
flares originated from the center of the galaxy Markarian 501 [2].

6 Final Remarks

There are theoretical and experimental evidences that ordinary special relativity, whose
underlying kinematics is ruled by the Poincaré group, breaks down at ultra–high energy
densities. When looking for a new special relativity, the most natural generalization is
arguably to replace Poincaré special relativity by a de Sitter special relativity. This means
to assume that the local kinematics is ruled by the de Sitter group. This, in turn, means that
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any physical process must modify the local structure of spacetime in such a way that the
region where the process takes place departs from Minkowski and becomes an asymptotically
flat de Sitter spacetime.

Considering that the de Sitter spacetime is transitive under a combination of trans-
lations and proper conformal transformations, the proper conformal transformations will
naturally be incorporated in the spacetime kinematics. As an immediate consequence, the
source in the gravitational field equation will be a combination of energy–momentum and
proper conformal currents: whereas the energy–momentum tensor appears as source of or-
dinary curvature, the proper conformal current Kµν appears as source of the local de Sitter
spacetime, which is necessary to comply with the local kinematics, now governed by the
de Sitter group. In this theory, therefore, the existence of Λ is directly connected with the
conformal sector of the spacetime kinematics.

When applied to the whole universe, de Sitter special relativity is able to predict, from
the current matter content of the universe, the value of Λ. It gives, furthermore, an ex-
planation for the cosmic coincidence problem. When applied to study the propagation of
ultra–high energy photons, it gives a good estimate for the recently observed delay in high
energy gamma–ray flares coming from the center of the galaxy Markarian 501 [2]. If this
delay is a manifestation of the small–scale fluctuations in the texture of spacetime, predicted
to exist at very high energies, de Sitter relativity can be seen as a new paradigm to approach
quantum gravity. Of course, the experimental evidences of the above delays are still very
fragile. Independently of this fact, de Sitter special relativity predicts the existence of such
delay.

Even though conformal symmetry is not an exact symmetry at low energies, according to
de Sitter special relativity it naturally becomes the relevant symmetry at ultra–high energy
densities. In fact, the higher the energy density, the higher the value of Λ, the higher the
importance of conformal symmetry. Near the Planck energy, the local value of Λ will be
very large, and the local de Sitter space will approach a cone–spacetime, which is transitive
under proper conformal transformations only [4]. Under such extreme conditions, physics
becomes conformal invariant, and the proper conformal current will be conserved (see the
conservation laws (30), as well as their high-energy limit (32)). An interesting property of
this geometrical structure is that the cone–spacetime is a kind of dual to Minkowski, with
the duality transformation given by the spacetime inversion [13]

xa → − xa

σ2
. (91)

The same happens to the corresponding transitivity generators: under the spacetime in-
version (91), the proper conformal generators — which define the transitivity on the cone
spacetime — are transformed into the translation generators [17] — which define the tran-
sitivity on Minkowski spacetime. This duality symmetry between high and low energies
may have important consequences for high–energy physics and, in particular, for quantum
gravity.
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