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Abstract

On the basis of our recent modifications of the Dirac formalism we
generalize the Bargmann-Wigner formalism for higher spins to be com-
patible with other formalisms for bosons. Relations with dual electro-
dynamics, with the Ogievetskii-Polubarinov notoph and the Weinberg
2(2J+1) theory are found. Next, we introduce the dual analogues of the
Riemann tensor and derive corresponding dynamical equations in the
Minkowski space. Relations with the Marques-Spehler chiral gravity
theory are discussed. The problem of indefinite metrics, particularly,
in quantization of 4-vector fields is clarified.

1 Introduction

The general scheme for derivation of higher-spin equations was given in [I].
A field of rest mass m and spin j > % is represented by a completely sym-
metric multispinor of rank 2j. The particular cases j = 1 and j = % were
given in the textbooks, e. g., ref. [2]. Generalized equations for higher spins
can be derived from the first principles on using some modifications of the

Bargmann-Wigner formalism. The generalizations of the equations in the
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(1/2,0) & (0,1/2) representation are well known. The Tokuoka-SenGupta-
Fushchich formalism and the Barut formalism are based on the equations
presented in refs. [3], 4l 5 6, [7, 8, @, 10, 11, 12].
2 Generalized Spin-1 Case
We begin with

{z’fm(‘)ﬂ—ka—b(‘ﬁ+’Y5(C—d82)}a6 T = 0, (1)

(90 + a — b0* = 5(c — daﬂa U,y = 0, (2)

B

0? is the d’Alembertian. Thus, we obtain the Proca-like equations:

0, A\ — A, — 2(a + b&uau)F,,A =0, (3)
1 1 ~
O\ = g(a +00,,0,,) Ay + 5(0 +d0,0,)Ax , (4)

A, is the axial-vector potential (analogous to that used in the Duffin-Kemmer
set of equations for J = 0). Additional constraints are:

i0\Ax + (¢ + d0,0,)p =0, (5)
EM,W8MFM =0, (C + d@uﬁu)gb =0. (6)

The spin-0 Duffin-Kemmer equations are:

(a+3,0,)¢ =0,i0,A, — (a+b3,0,)¢ =0, (7)
(a+b0,0,)A, + (c+ddd)A, +i(D,0) =0 (8)

The additional constraints are:
Oup = 0,0,A\ — A, +2(c+ dd,d,)F,n=0. (9)

In such a way the spin states are mized through the 4-vector potentials.
After elimination of the 4-vector potentials we obtain the equation for the
AST field of the second rank:
[8M8VFV)\ — 8)\(9,,F,,u] +
+[(c? = a?) = 2(ab — )y + (& = *)(0u0,)?] Fur =0, (10)



which should be compared with our previous equations which follow from
the Weinberg-like formulation [13] [14], [15]. Just put:

— 2 2
A —a®= B2m , 02—a2:>+B72n (11)
—2(ab — cd) = % , +2(ab — cd) = % , (12)
b==+d. (13)

Of course, these sets of algebraic equations have solutions in terms A and
B. We found them and restored the equations. The parity violation and
the spin mixing are intrinsic possibilities of the Proca-like theories.

In fact, there are several modifications of the BW formalism. One can
propose the following set:

1740, + e1ma + eamas] 3 ¥y = 0, (14)
(17,0, + e3ma + eamas] s Uy = 0, (15)

where ¢; = i0,/E are the sign operators. So, at first sight, we have 16
possible combinations for the AST fields. We first come to

[0, + m1Ar + maAays] 5 {(R) gy Ax + (0xeR) gy Fart +
+  [m1B1 +ma2Bays),p {R/MP + (5R) 10 + (’Ys’Y,\R)BleA} = 0,(16)
[17,0u + M1 A1 + maA2ys] 5 {(MR)ap AN + (O R)apFri} —
— [miB1 4+ m2Bays),s {RQBSD + (%R)aﬁﬂ~S + (75%\R)a6/~1>\} = 0(17)

where A = %, Ay = %, By = 952, and By = <5, Thus, for spin
1 we have

8MAA — 8)\AM + 2m1A1FM + imgAgeagu)\Fag =0, (18)
O Flox — %AlAH - %BQAH —0, (19)

with constraints

—i0, Ay + 2my By + 2maBad = 0, (20)
Z'E;wn)\a,qu; — mgAgA)\ — mlBlzZl)\ = 0, (21)
m1B1d 4+ myBag = 0. (22)

If we remove Ay and A, from this set, we come to the final results for the
AST field. Actually, we have twelve equations, see [16]. One can go even



further. One can use the Barut equations for the BW input. So, we can get
16 x 16 combinations (depending on the eigenvalues of the corresponding sign
operators), and we have different eigenvalues of masses due to 82 = km?.

Why do I think that the shown arbitrarieness of equations for the AST
fields is related to 1) spin basis rotations; 2) the choice of normalization? (see
ref. [I7]) In the common-used basis three 4-potentials have parity eigenvalues
—1 and one time-like (or spin-0 state), +1; the fields E and B have also
definite parity properties in this basis. If we transfer to other basis, e.g.,
to the helicity basis [I§] we can see that the 4-vector potentials and the
corresponding fields are superpositions of a vector and an axial-vector [19].
Of course, they can be expanded in the fields in the “old” basis.

The detailed discussion of the generalized spin-1 case (as well as the
problems related to normalization, indefinite metric and 4-vector fields) can
be found in refs. [16], 17, 23].

3 Generalized Spin-2 Case

The spin-2 case can also be of some interest because it is generally believed
that the essential features of the gravitational field are obtained from trans-
verse components of the (2,0) @ (0,2) representation of the Lorentz group.
Nevertheless, questions of the redandant components of the higher-spin rel-
ativistic equations are not yet understood in detail [20].

We begin with the commonly-accepted procedure for the derivation of
higher-spin equations below. We begin with the equations for the 4-rank
symmetric spinor:

[(7" 0y = M| oy Yo pys = 0, [0y — m]ﬁﬁ’ Vapys =0, (23)
(i7" 0 —m) ) Wapys = 0, (70 — mlsy Vagner =0. (24)

The massless limit (if one needs) should be taken in the end of all calcula-
tions.

We proceed expanding the field function in the complete set of symmetric
matrices (as in the spin-1 case). In the beginning let us use the first two
indices:

\P{aﬁ}yé = (’YMR)aﬁ\IJ/—;(S + (O'/WR)aB\IJ/-;g : (25)

We would like to write the corresponding equations for functions \IJ% and
\I/% in the form:

2

=0, Wl = Wy, W oy — ovwt] (26)

1
T XA '\/5_2m

4



The constraints (1/m)d,¥Ls = 0 and (1/m)e" g 8M\I/f7? = 0 can be re-
garded as the consequence of Eqs. (20). Next, we present the vector-spinor
and tensor-spinor functions as

W = (Y R)3sG M+ (0" R)ys Fp (27)
W = (VR)6T, M+ (0" R)ys Ry (28)

i. e., using the symmetric matrix coefficients in indices v and §. Hence, the
total function is

\IJ{C“B}{'Y‘S} = (’YNR)CVﬁ(’YHR)’Y(SG/{ K + (’YMR)aﬁ(O-HTR)’Y(SFRT u"‘
b (OwRas (BT, * + (00 R)as(0 Ry iRy s (20)

and the resulting tensor equations are:

2 2
s T wo_ v = Hy _F v
mau K GH ) maMRm— KT (30)
1
T py T [AM v _ Aav 2 1
=5 [0MG, Y- 0"G, 1 (31)
1
R_W=—0"F_ Y—-0"F_"]. 32
KT 2m [ KT KT ] ( )

The constraints are re-written to
Loa r=0, Lo,p »—o0 (33)
m [l - ¥ m K- KT - Y
1 1
EeaﬁwaaTﬁ v—o, EeaﬁwaaRmﬁ” =0. (34)

However, we need to make symmetrization over these two sets of indices
{af} and {7d}. The total symmetry can be ensured if one contracts the
function Wi,gy(y5) With —antisymmetric matrices Rg,i, (R719%) 5,
and (R_lfy‘r”y)‘)g,y and equate all these contractions to zero (similar to the
j = 3/2 case considered in ref. [2] p. 44]. We obtain additional constraints
on the tensor field functions:

G, "=0, Gyu=0, G“”:%g““GV v, (35)
F,"=F,"=0, €¢™Fy,,=0, (36)
T =T, =0, T, ., =0, (37)
Frmt =TT SN (B4 Ter) = 0 (38)
RHVMV = Rwiwj = RHVVM = Run = Ruuwj = 07 (39)
ijaﬁ (gBIiR/JT,I/CM - gBTRVa,;m) =0 EKTMVRHT,/J,V =0. (40)



Thus, we encountered with the known difficulty of the theory for spin-2 par-
ticles in the Minkowski space. We explicitly showed that all field functions
become to be equal to zero. Such a situation cannot be considered as a
satisfactory one (because it does not give us any physical information) and
can be corrected in several ways.

We shall modify the formalism [1I7]. The field function is now presented
as

Uiaprs = a1(VuR)apWhs + a2(0w R)apPhs + 03(75%1/3)«1/3‘1’75 , (41)
with
{m = B1(7" R)ysG L + a0 R)ys Ft + B3(1°0™ R)sFy M, (42)
{ws} = Ba(V*R)ys T + B5(0" R)ys REY + Bo(1° 0" R) s R (43)
WSy = Br(y R)ys T + (0" R)os DAY + o (770" R)1s DY (44)
Hence, the function W,417,5) can be expressed as a sum of nine terms:

Viasyver = AB1(Vul)ap(V R)1s G ' + a1 Bo(vuR)ap (0" R)s F,
a185(1uR)as (1’0" R)ysFpy ' + +02B4(00 R)ap (Y R)AsT, ™ +

@285 (0 R)ap (077 R)ys Ry ™ + 0286(00 R)ag (V20" R) s R M +
a3B7 (7’0 R)as(Y"R)1s T, " + asBs(v° 0, R)as (0" R)ys Dy, ™ +
a3B0(Y° 0w R)ap(v° 0" R)15D, M . (45)

-

+

The corresponding dynamical equations are given by the set of equations

20284 iasfBr ~
auT,i 4 TEMVQBaVTE,aB = alﬁlGn M; (46)
20235 i B ~ ia3 s ~
(%Rm’“’ + m Eaﬁ,ﬁ—a,/RaB’wj + _m EMVaBaVDRT,aB -
e} ixe" ~
- _3/89 EMVQBGAJRTD)\(S aff — alBQFm‘ H+ ;/83 EaﬁHTFaB# ) (47)

204254TR mv + ia357e°‘6“”1~}7a5 = %ﬁl(aan Y- ayGn H); (48)

204255R,W "+ ia3585aﬁuuﬁn7 af t ia256€aﬁnréaﬁ’uu —

B a3 fy EOCBMVG)\&WDM _ 047152 (OMF,. " —0"F,_ ")+
+ Z(;;fg eaﬁm'(auﬁaﬁ’u - auﬁwaﬁ,u) : (49)



The essential constraints are:

a1fiG* , =0, a1f1G,, = 0;2ia1BoF,, " + a1B3e" ™ Fery = 05 (50
2icn B3y, " + a1 o€ By = 05 2i00 84T |, — a3 fre™ T 7y = 051
2iag B TH pa — 02B4€" T 1y = 0 (52
e [04256Rm',/w + a3/885m',/w} + 20985 R |, + 20389 D, = 0; (53
i€ T (o fs Ryr s + @369 Dyer ] + 204256§WW + 2043581~7WW =0; (54
2icaBs R4 + 2iasBoD fi + e Sy R, + asBee”Ss DM, = 05 (55
22'0415217)‘““ — 2iaa 84T, HA 1y B3 M Fr 4 3 Bre MM 1 = 0
2ion B3 M, — 2ia3B7T, " + a1 foe™ ™ Frr ) + 02 Ba€ ™ Ty = 0; (57
a1Br(2G* , —g* G ) —202B5(2RM o + 2R, + gt GRM ) +

+ 20369(2DM  + 2Dy, M + g (DM ) + 2iasPs(e " D, —

— Dy ) — 202 B (€0 R, — €T Ry o) = 0; (58)
2035 (2D o, + 2D, " + g (DM ) — 20286 (2RM ,, + 2R,

+ g GR™ )+ +2iasBye g D™, — €A Dyr ) —

— 2ia9f5(e0" R — €T Rir i) = 0; (59)
a162(F‘15”\ —9fPra Fﬂ“u g/\a _ F‘l““ g/\B) _

_ oz264(T)"°‘B _oTBAe Tu uagw _ Tu uﬂgka) +

Z ~ ~ ~
+ §a1ﬁ3(€m—a5Fm— A + 26)\naﬁFHu o + 2€“HO{BF)\ n,,u) _

- %agm(ewﬁﬁ p +28NBTH L genmal T Ay — ), (60)

They are the results of contractions of the field function ([45]) with three
antisymmetric matrices, as above. Furthermore, one should recover the
relations (B5H40) in the particular case when a3 = 83 = 5 = B9 = 0 and
av=ar=p=F=0=0Fk=0=0p=1

As a discussion we note that in such a framework we have physical con-
tent because only certain combinations of field functions would be equal to
zero. In general, the fields F,__*, ﬁ'm woT, B, fn o and R, Iém’“’,
D, ", Em # can correspond to different physical states and the equations
above describe some kind of “oscillations” of one state to another. Fur-

thermore, from the set of equations (4GHAJ) one obtains the second-order



equation for symmetric traceless tensor of the second rank (a; # 0, 51 # 0):
1

- [0,0'G,. ¥V —0,0"G,, "] =G, ". (61)

After the contraction in indices x and p this equation is reduced to the set
9,G" ,=F, (62)

1

W&,FV - 0 3 (63)

i. e., to the equations connecting the analogue of the energy-momentum
tensor and the analogue of the 4-vector potential. Further investigations may

provide additional foundations to “surprising” similarities of gravitational
and electromagnetic equations in the low-velocity limit, refs. [21] 22].
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