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Abstract

On the basis of our recent modifications of the Dirac formalism we
generalize the Bargmann-Wigner formalism for higher spins to be com-
patible with other formalisms for bosons. Relations with dual electro-
dynamics, with the Ogievetskii-Polubarinov notoph and the Weinberg
2(2J+1) theory are found. Next, we introduce the dual analogues of the
Riemann tensor and derive corresponding dynamical equations in the
Minkowski space. Relations with the Marques-Spehler chiral gravity
theory are discussed. The problem of indefinite metrics, particularly,
in quantization of 4-vector fields is clarified.

1 Introduction

The general scheme for derivation of higher-spin equations was given in [1].
A field of rest mass m and spin j ≥ 1

2 is represented by a completely sym-
metric multispinor of rank 2j. The particular cases j = 1 and j = 3

2 were
given in the textbooks, e. g., ref. [2]. Generalized equations for higher spins
can be derived from the first principles on using some modifications of the
Bargmann-Wigner formalism. The generalizations of the equations in the
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(1/2, 0) ⊕ (0, 1/2) representation are well known. The Tokuoka-SenGupta-
Fushchich formalism and the Barut formalism are based on the equations
presented in refs. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

2 Generalized Spin-1 Case

We begin with

[
iγµ∂µ + a− b∂2 + γ5(c− d∂2)

]

αβ
Ψβγ = 0 , (1)

[
iγµ∂µ + a− b∂2 − γ5(c− d∂2)

]

αβ
Ψγβ = 0 , (2)

∂2 is the d’Alembertian. Thus, we obtain the Proca-like equations:

∂νAλ − ∂λAν − 2(a+ b∂µ∂µ)Fνλ = 0 , (3)

∂µFµλ =
1

2
(a+ b∂µ∂µ)Aλ +

1

2
(c+ d∂µ∂µ)Ãλ , (4)

Ãλ is the axial-vector potential (analogous to that used in the Duffin-Kemmer
set of equations for J = 0). Additional constraints are:

i∂λAλ + (c+ d∂µ∂µ)φ̃ = 0 , (5)

ǫµλκτ∂µFλκ = 0 , (c + d∂µ∂µ)φ = 0 . (6)

The spin-0 Duffin-Kemmer equations are:

(a+ b∂µ∂µ)φ = 0 , i∂µÃµ − (a+ b∂µ∂µ)φ̃ = 0 , (7)

(a+ b ∂µ∂µ)Ãν + (c+ d ∂µ∂µ)Aν + i(∂ν φ̃) = 0 . (8)

The additional constraints are:

∂µφ = 0 , ∂νÃλ − ∂λÃν + 2(c+ d∂µ∂µ)Fνλ = 0 . (9)

In such a way the spin states are mixed through the 4-vector potentials.
After elimination of the 4-vector potentials we obtain the equation for the
AST field of the second rank:

[∂µ∂νFνλ − ∂λ∂νFνµ] +

+
[
(c2 − a2)− 2(ab− cd)∂µ∂µ + (d2 − b2)(∂µ∂µ)

2
]
Fµλ = 0 , (10)
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which should be compared with our previous equations which follow from
the Weinberg-like formulation [13, 14, 15]. Just put:

c2 − a2 ⇒
−Bm2

2
, c2 − a2 ⇒ +

Bm2

2
, (11)

−2(ab− cd) ⇒
A− 1

2
, +2(ab− cd) ⇒

A+ 1

2
, (12)

b = ±d . (13)

Of course, these sets of algebraic equations have solutions in terms A and
B. We found them and restored the equations. The parity violation and
the spin mixing are intrinsic possibilities of the Proca-like theories.

In fact, there are several modifications of the BW formalism. One can
propose the following set:

[iγµ∂µ + ǫ1m1 + ǫ2m2γ5]αβ Ψβγ = 0 , (14)

[iγµ∂µ + ǫ3m1 + ǫ4m2γ5]αβ Ψγβ = 0 , (15)

where ǫi = i∂t/E are the sign operators. So, at first sight, we have 16
possible combinations for the AST fields. We first come to

[iγµ∂µ +m1A1 +m2A2γ5]αβ {(γλR)βγAλ + (σλκR)βγFλκ}+

+ [m1B1 +m2B2γ5]αβ

{
Rβγϕ+ (γ5R)βγφ̃+ (γ5γλR)βγÃλ

}
= 0 ,(16)

[iγµ∂µ +m1A1 +m2A2γ5]γβ {(γλR)αβAλ + (σλκR)αβFλκ} −

− [m1B1 +m2B2γ5]αβ

{
Rαβϕ+ (γ5R)αβ φ̃+ (γ5γλR)αβÃλ

}
= 0 ,(17)

where A1 = ǫ1+ǫ3
2 , A2 = ǫ2+ǫ4

2 , B1 = ǫ1−ǫ3
2 , and B2 = ǫ2−ǫ4

2 . Thus, for spin
1 we have

∂µAλ − ∂λAµ + 2m1A1Fµλ + im2A2ǫαβµλFαβ = 0 , (18)

∂λFκλ −
m1

2
A1Aκ −

m2

2
B2Ãκ = 0 , (19)

with constraints

−i∂µAµ + 2m1B1φ+ 2m2B2φ̃ = 0 , (20)

iǫµνκλ∂µFνκ −m2A2Aλ −m1B1Ãλ = 0 , (21)

m1B1φ̃+m2B2φ = 0 . (22)

If we remove Aλ and Ãλ from this set, we come to the final results for the
AST field. Actually, we have twelve equations, see [16]. One can go even

3



further. One can use the Barut equations for the BW input. So, we can get
16×16 combinations (depending on the eigenvalues of the corresponding sign
operators), and we have different eigenvalues of masses due to ∂2

µ = κm2.
Why do I think that the shown arbitrarieness of equations for the AST

fields is related to 1) spin basis rotations; 2) the choice of normalization? (see
ref. [17]) In the common-used basis three 4-potentials have parity eigenvalues
−1 and one time-like (or spin-0 state), +1; the fields E and B have also
definite parity properties in this basis. If we transfer to other basis, e.g.,
to the helicity basis [18] we can see that the 4-vector potentials and the
corresponding fields are superpositions of a vector and an axial-vector [19].
Of course, they can be expanded in the fields in the “old” basis.

The detailed discussion of the generalized spin-1 case (as well as the
problems related to normalization, indefinite metric and 4-vector fields) can
be found in refs. [16, 17, 23].

3 Generalized Spin-2 Case

The spin-2 case can also be of some interest because it is generally believed
that the essential features of the gravitational field are obtained from trans-
verse components of the (2, 0) ⊕ (0, 2) representation of the Lorentz group.
Nevertheless, questions of the redandant components of the higher-spin rel-
ativistic equations are not yet understood in detail [20].

We begin with the commonly-accepted procedure for the derivation of
higher-spin equations below. We begin with the equations for the 4-rank
symmetric spinor:

[iγµ∂µ −m]
αα′ Ψα′βγδ = 0 , [iγµ∂µ −m]

ββ′ Ψαβ′γδ = 0 , (23)

[iγµ∂µ −m]
γγ′ Ψαβγ′δ = 0 , [iγµ∂µ −m]

δδ′
Ψαβγδ′ = 0 . (24)

The massless limit (if one needs) should be taken in the end of all calcula-
tions.

We proceed expanding the field function in the complete set of symmetric
matrices (as in the spin-1 case). In the beginning let us use the first two
indices:

Ψ{αβ}γδ = (γµR)αβΨ
µ
γδ + (σµνR)αβΨ

µν
γδ . (25)

We would like to write the corresponding equations for functions Ψµ
γδ and

Ψµν
γδ in the form:

2

m
∂µΨ

µν
γδ = −Ψν

γδ ,Ψ
µν
γδ =

1

2m

[
∂µΨν

γδ − ∂νΨµ
γδ

]
. (26)
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The constraints (1/m)∂µΨ
µ
γδ = 0 and (1/m)ǫµν αβ ∂µΨ

αβ
γδ = 0 can be re-

garded as the consequence of Eqs. (26). Next, we present the vector-spinor
and tensor-spinor functions as

Ψµ
{γδ} = (γκR)γδG

µ
κ + (σκτR)γδF

µ
κτ , (27)

Ψµν
{γδ} = (γκR)γδT

µν
κ + (σκτR)γδR

µν
κτ , (28)

i. e., using the symmetric matrix coefficients in indices γ and δ. Hence, the
total function is

Ψ{αβ}{γδ} = (γµR)αβ(γ
κR)γδG

µ
κ + (γµR)αβ(σ

κτR)γδF
µ

κτ +

+ (σµνR)αβ(γ
κR)γδT

µν
κ + (σµνR)αβ(σ

κτR)γδR
µν

κτ ; (29)

and the resulting tensor equations are:

2

m
∂µT

µν
κ = −G ν

κ ,
2

m
∂µR

µν
κτ = −F ν

κτ , (30)

T µν
κ =

1

2m
[∂µG ν

κ − ∂νG µ
κ ] , (31)

R µν
κτ =

1

2m
[∂µF ν

κτ − ∂νF µ
κτ ] . (32)

The constraints are re-written to

1

m
∂µG

µ
κ = 0 ,

1

m
∂µF

µ
κτ = 0 , (33)

1

m
ǫαβνµ∂

αT βν
κ = 0 ,

1

m
ǫαβνµ∂

αR βν
κτ = 0 . (34)

However, we need to make symmetrization over these two sets of indices
{αβ} and {γδ}. The total symmetry can be ensured if one contracts the
function Ψ{αβ}{γδ} with antisymmetric matrices R−1

βγ , (R−1γ5)βγ

and (R−1γ5γλ)βγ and equate all these contractions to zero (similar to the
j = 3/2 case considered in ref. [2, p. 44]. We obtain additional constraints
on the tensor field functions:

G µ
µ = 0 , G[κµ] = 0 , Gκµ =

1

2
gκµG ν

ν , (35)

F µ
κµ = F µ

µκ = 0 , ǫκτµνFκτ,µ = 0 , (36)

T µ
µκ = T µ

κµ = 0 , ǫκτµνTκ,τµ = 0 , (37)

F κτ,µ = T µ,κτ , ǫκτµλ(Fκτ,µ + Tκ,τµ) = 0 , (38)

R µν
κν = R µν

νκ = R νµ
κν = R νµ

νκ = R µν
µν = 0 , (39)

ǫµναβ(gβκRµτ,να − gβτRνα,µκ) = 0 ǫκτµνRκτ,µν = 0 . (40)
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Thus, we encountered with the known difficulty of the theory for spin-2 par-
ticles in the Minkowski space. We explicitly showed that all field functions
become to be equal to zero. Such a situation cannot be considered as a
satisfactory one (because it does not give us any physical information) and
can be corrected in several ways.

We shall modify the formalism [17]. The field function is now presented
as

Ψ{αβ}γδ = α1(γµR)αβΨ
µ
γδ + α2(σµνR)αβΨ

µν
γδ + α3(γ

5σµνR)αβΨ̃
µν
γδ , (41)

with

Ψµ
{γδ} = β1(γ

κR)γδG
µ
κ + β2(σ

κτR)γδF
µ

κτ + β3(γ
5σκτR)γδF̃

µ
κτ , (42)

Ψµν
{γδ} = β4(γ

κR)γδT
µν

κ + β5(σ
κτR)γδR

µν
κτ + β6(γ

5σκτR)γδR̃
µν
κτ ,(43)

Ψ̃µν
{γδ} = β7(γ

κR)γδT̃
µν

κ + β8(σ
κτR)γδD̃

µν
κτ + β9(γ

5σκτR)γδD
µν
κτ .(44)

Hence, the function Ψ{αβ}{γδ} can be expressed as a sum of nine terms:

Ψ{αβ}{γδ} = α1β1(γµR)αβ(γ
κR)γδG

µ
κ + α1β2(γµR)αβ(σ

κτR)γδF
µ

κτ +

+ α1β3(γµR)αβ(γ
5σκτR)γδF̃

µ
κτ ++α2β4(σµνR)αβ(γ

κR)γδT
µν

κ +

+ α2β5(σµνR)αβ(σ
κτR)γδR

µν
κτ + α2β6(σµνR)αβ(γ

5σκτR)γδR̃
µν

κτ +

+ α3β7(γ
5σµνR)αβ(γ

κR)γδT̃
µν

κ + α3β8(γ
5σµνR)αβ(σ

κτR)γδD̃
µν

κτ +

+ α3β9(γ
5σµνR)αβ(γ

5σκτR)γδD
µν

κτ . (45)

The corresponding dynamical equations are given by the set of equations

2α2β4
m

∂νT
µν

κ +
iα3β7
m

ǫµναβ∂ν T̃κ,αβ = α1β1G
µ

κ ; (46)

2α2β5
m

∂νR
µν

κτ +
iα2β6
m

ǫαβκτ∂νR̃
αβ,µν +

iα3β8
m

ǫµναβ∂νD̃κτ,αβ −

−
α3β9
2

ǫµναβǫλδκτD
λδ

αβ = α1β2F
µ

κτ +
iα1β3
2

ǫαβκτ F̃
αβ,µ ; (47)

2α2β4T
µν

κ + iα3β7ǫ
αβµν T̃κ,αβ =

α1β1
m

(∂µG ν
κ − ∂νG µ

κ ) ; (48)

2α2β5R
µν

κτ + iα3β8ǫ
αβµνD̃κτ,αβ + iα2β6ǫαβκτ R̃

αβ,µν −

−
α3β9
2

ǫαβµνǫλδκτD
λδ

αβ =
α1β2
m

(∂µF ν
κτ − ∂νF µ

κτ ) +

+
iα1β3
2m

ǫαβκτ (∂
µF̃αβ,ν − ∂νF̃αβ,µ) . (49)
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The essential constraints are:

α1β1G
µ

µ = 0 , α1β1G[κµ] = 0; 2iα1β2F
µ

αµ + α1β3ǫ
κτµ

αF̃κτ,µ = 0; (50)

2iα1β3F̃
µ

αµ + α1β2ǫ
κτµ

αFκτ,µ = 0 ; 2iα2β4T
µ

µα − α3β7ǫ
κτµ

αT̃κ,τµ = 0;(51)

2iα3β7T̃
µ

µα − α2β4ǫ
κτµ

αTκ,τµ = 0; (52)

iǫµνκτ
[
α2β6R̃κτ,µν + α3β8D̃κτ,µν

]
+ 2α2β5R

µν
µν + 2α3β9D

µν
µν = 0; (53)

iǫµνκτ [α2β5Rκτ,µν + α3β9Dκτ,µν ] + 2α2β6R̃
µν

µν + 2α3β8D̃
µν

µν = 0; (54)

2iα2β5R
µα

βµ + 2iα3β9D
µα

βµ + α2β6ǫ
να
λβR̃

λµ
µν + α3β8ǫ

να
λβD̃

λµ
µν = 0; (55)

2iα1β2F
λµ

µ − 2iα2β4T
µλ

µ + α1β3ǫ
κτµλF̃κτ,µ + α3β7ǫ

κτµλT̃κ,τµ = 0 ; (56)

2iα1β3F̃
λµ

µ − 2iα3β7T̃
µλ

µ + α1β2ǫ
κτµλFκτ,µ + α2β4ǫ

κτµλTκ,τµ = 0; (57)

α1β1(2G
λ

α − gλ αG
µ

µ)− 2α2β5(2R
λµ

µα + 2R µλ
αµ + gλ αR

µν
µν) +

+ 2α3β9(2D
λµ

µα + 2D µλ
αµ + gλ αD

µν
µν) + 2iα3β8(ǫ

µν
κα D̃κλ

µν −

− ǫκτµλD̃κτ,µα)− 2iα2β6(ǫ
µν

κα R̃κλ
µν − ǫκτµλR̃κτ,µα) = 0; (58)

2α3β8(2D̃
λµ

µα + 2D̃ µλ
αµ + gλ αD̃

µν
µν)− 2α2β6(2R̃

λµ
µα + 2R̃ µλ

αµ

+ gλ αR̃
µν

µν) + +2iα3β9(ǫ
µν

κα Dκλ
µν − ǫκτµλDκτ,µα)−

− 2iα2β5(ǫ
µν

κα Rκλ
µν − ǫκτµλRκτ,µα) = 0; (59)

α1β2(F
αβ,λ − 2F βλ,α + F βµ

µ g
λα − Fαµ

µ g
λβ)−

− α2β4(T
λ,αβ − 2T β,λα + T µα

µ gλβ − T µβ
µ gλα) +

+
i

2
α1β3(ǫ

κταβF̃ λ
κτ + 2ǫλκαβF̃ µ

κµ + 2ǫµκαβF̃ λ
κ,µ)−

−
i

2
α3β7(ǫ

µναβ T̃ λ
µν + 2ǫνλαβ T̃ µ

µν + 2ǫµκαβ T̃ λ
κ,µ ) = 0. (60)

They are the results of contractions of the field function (45) with three
antisymmetric matrices, as above. Furthermore, one should recover the
relations (35-40) in the particular case when α3 = β3 = β6 = β9 = 0 and
α1 = α2 = β1 = β2 = β4 = β5 = β7 = β8 = 1.

As a discussion we note that in such a framework we have physical con-
tent because only certain combinations of field functions would be equal to
zero. In general, the fields F µ

κτ , F̃ µ
κτ , T µν

κ , T̃ µν
κ , and R µν

κτ , R̃ µν
κτ ,

D µν
κτ , D̃ µν

κτ can correspond to different physical states and the equations
above describe some kind of “oscillations” of one state to another. Fur-
thermore, from the set of equations (46-49) one obtains the second-order

7



equation for symmetric traceless tensor of the second rank (α1 6= 0, β1 6= 0):

1

m2
[∂ν∂

µG ν
κ − ∂ν∂

νG µ
κ ] = G µ

κ . (61)

After the contraction in indices κ and µ this equation is reduced to the set

∂µG
µ

ν = Fν (62)

1

m2
∂νF

ν = 0 , (63)

i. e., to the equations connecting the analogue of the energy-momentum
tensor and the analogue of the 4-vector potential. Further investigations may
provide additional foundations to “surprising” similarities of gravitational
and electromagnetic equations in the low-velocity limit, refs. [21, 22].
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