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We demonstrate complete integrability of the Nambu-Goto equations for a stationary string in
the general Kerr-NUT-(A)dS spacetime describing the higher-dimensional rotating black hole. The
stationary string in D dimensions is generated by a 1-parameter family of Killing trajectories and
the problem of finding a string configuration reduces to a problem of finding a geodesic line in an
effective (D − 1)-dimensional space. Resulting integrability of this geodesic problem is connected
with the existence of hidden symmetries which are inherited from the black hole background. In
a spacetime with p mutually commuting Killing vectors it is possible to introduce a concept of a
ξ-brane, that is a p-brane with the worldvolume generated by these fields and a 1-dimensional curve.
We discuss integrability of such ξ-branes in the Kerr-NUT-(A)dS spacetime.

PACS numbers: 04.70.Bw, 04.50.+h, 04.20.Jb

I. INTRODUCTION

There are several reasons why the problem of in-
teraction of strings and branes with black holes at-
tracted interest recently. Fundamental strings and
branes are basic objects in string theory [1], and
black holes (as well as other black objects) form
an important class of solutions of the low-energy
effective action in this theory (see, e.g., [2]). On
the other hand, cosmic strings and domain walls
are topological defects which can be naturally cre-
ated during phase transitions in the early Universe
(see, e.g., [3, 4, 5]). Their interaction with astro-
physical black holes may result in interesting ob-
servational effects. In both cases we are dealing
with a problem when the interacting objects are
non-local and relativistic. An important example
is an interaction of a bulk black hole with a brane
representing our world in the brane world models
(see, e.g., [6]). A stationary test brane interacting
with a bulk black hole can be used as a toy model
for the study of (Euclidean) topology change tran-
sitions [7]. This model demonstrates interesting
scaling and self-similarity properties during such
phase transitions, similar to the Choptuik critical
collapse [8] and merger black hole transitions [9].
These models may also have far going interesting
consequences for the study of phase transitions in
quantum chromodynamics (see, e.g., [10, 11]).

Even in an idealized case, when one neglects the
effects connected with the thickness of the strings
and branes and their tension, this problem is quite
complicated. The reason is evident: the Dirac-
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Nambu-Goto action for these objects in an external
gravitational field is very nonlinear. In a general
case numerical calculations are required (see, e.g.,
[12]). When the effects of thickness and tension
are taken into account these numerical calculations
become even more involved (see, e.g., [13, 14]).

Study of stationary configurations of strings and
branes in a background of a stationary black hole
is simpler problem which in several cases allows
complete solution. One of the examples is a sta-
tionary string in the Kerr spacetime. It was shown
[15] that the Hamilton-Jacobi equation for such a
string allows a complete separation of variables. It
was also demonstrated [16] that this property is di-
rectly connected with the hidden symmetry of the
Kerr metric generated by the Killing tensor [17]
discovered by Carter in 1968 [18]. More recently,
Carters’s method was applied to 5-dimensional ro-
tating black holes and the Killing tensor was found
in these spacetimes [19]. This result was used to
show that the equations for a stationary string
in the 5-dimensional Myers-Perry metric are com-
pletely integrable [20].

In the present paper we demonstrate that this re-
sult allows a generalization to higher-dimensional
rotating black holes in an arbitrary number of
spacetime dimensions. Namely, we show that a
stationary string configuration is completely inte-
grable in the general Kerr-NUT-(A)dS spacetimes
[21]. We use the fact that after performing a di-
mensional reduction along the Killing trajectories,
the stationary string equation in a D-dimensional
stationary spacetime can be reduced to a geodesic
equation in a (D − 1)-dimensional space with a
metric conformal to the reduced metric. The sep-
arability of the Hamilton-Jacobi equation in this
effective metric follows from the separability of
the Hamilton-Jacobi equation in the original D-
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dimensional Kerr-NUT-(A)dS spacetime proved in
[22] and a special property of the primary (time-
like) Killing vector.
There is a natural generalization of the concept

of a stationary string in the case when there exist
several mutually commuting Killing vectors. If p is
a number of these fields one may consider a (p+1)-
hypersurface generated by the Killing vectors pass-
ing through a 1-dimensional line. We call a ξ-brane
an extended object, a p-brane, with the worldvol-
ume associated with this hypersurface. We discuss
integrability conditions for ξ-branes in the Kerr-
NUT-(A)dS spacetimes [21] and give some exam-
ples of integrable systems.

II. STATIONARY STRINGS

Consider a string in a stationary D-dimensional
spacetime MD. Let xa (a = 0, . . . , D− 1) be coor-
dinates in it and

ds2 = gabdx
adxb (1)

be its metric. We denote by ξa the corresponding
Killing vector which is timelike at least in some
domain of MD. We call the string stationary if
ξa is tangent to the 2-dimensional worldsheet Σξ
of the string in this domain. In other words, the
surface Σξ is generated by a 1-parameter family of
the Killing trajectories (the integral lines of ξa).
A general formalism for studying a stationary

spacetime based on its foliation by Killing trajec-
tories was developed by Geroch [23]. In this ap-
proach, one considers a set S of the Killing trajec-
tories as a quotient space and introduce the struc-
ture of the differential Riemannian manifold on it.
The projector hab onto S is related to the metric
gab as follows

gab = hab + ξaξb/ξ
2 . (2)

In this formalism, a stationary string is uniquely
determined by a curve in S.
The equation for this curve follows from the

Nambu-Goto action

I = −µ
∫

d2ζ |γ|1/2 . (3)

Here µ is the string tension. As it enters the
Nambu-Goto action as a common factor, its value
is not important and one can always put µ = 1.
The string worldsheet can be parametrized by
xa = xa(ζA), where ζA are coordinates on Σξ,
(A = 0, 1). We denote by γAB the induced metric
on Σξ

γAB =
∂xa

∂ζA
∂xa

∂ζB
gab , (4)

and by γ its determinant.
Let Killing time parameter be t, so that ξa∂a =

∂t, and let yi be coordinates which are constant
along the Killing trajectories (coordinates in S).
Then, the non-vanishing components of the pro-
jection operator hab are hij (reduced metric) and
the metric (1)-(2) takes the form

ds2 = −F (dt+Aidy
i)2 + hijdy

idyj , (5)

F = gtt = −ξaξa , Ai = gti/gtt . (6)

From (2) it also follows that in these coordinates
hij = gij .
We choose ζ0 = t and denote ζ1 = σ. Then the

string configuration is determined by yi = yi(σ).
The induced metric is

dγ2 = γABdζ
Adζb = −F (dt+Adσ)2 + dl2 , (7)

where

dl2 = hdσ2 , A = Aidy
i/dσ , h = hij

dyi

dσ

dyj

dσ
, (8)

and it has the following determinant

γ = det(γAB) = −Fh . (9)

So, the Nambu-Goto action is

I = −∆tE , (10)

E = µ

∫ √
Fdl = µ

∫

dσ

√

Fhij
dyi

dσ

dyj

dσ
.(11)

In a static spacetime the equation (11) has a very
simple meaning: The energy density of a string is
proportional to its proper length dl multiplied by
the red-shift factor

√
F .

The problem of a stationary string configuration
therefore reduces to that of a geodesic in the (D−
1)-dimensional effective background

dH2 = Hijdy
idyj = Fhijdy

idyj . (12)

In order to solve this geodesic problem we shall
use the Hamilton-Jacobi method. That is, we
shall attempt for the additive separation of the
Hamilton-Jacobi equation

∂S

∂σ
+Hij ∂iS ∂jS = 0 , (13)

where Hij is the inverse of the effective metric (12)
with the components given by

FHij = hij = gij . (14)

If the Hamilton-Jacobi equation can be separated,
the effective geodesic motion and hence also the
stationary string configuration are completely in-
tegrable, e.g., [24].
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III. STATIONARY STRINGS IN

KERR-NUT-ADS SPACETIME

In this section we prove the complete integra-
bility of a stationary string configuration in the
general Kerr-NUT-(A)dS spacetime [21]. After a
suitable analytical continuation the metric takes
the form1

ds2 =

n
∑

µ=1

[dx2µ
Qµ

+Qµ

(

n−1
∑

k=0

A(k)
µ dψk

)2]

− εc

A(n)

(

n
∑

k=0

A(k)dψk

)2

,

(15)

with n = [D/2] and ε = D − 2n. Here,

A(k)
µ =

∑

ν1<···<νk
νi 6=µ

x2ν1 . . . x
2
νk
, A(k) =

∑

ν1<···<νk

x2ν1 . . . x
2
νk
,

Qµ =
Xµ

Uµ
, Uµ =

n
∏

ν=1
ν 6=µ

(x2ν − x2µ) ,

Xµ =

n
∑

k=ε

ckx
2k
µ − 2bµx

1−ε
µ +

εc

x2µ
. (16)

Time is denoted by ψ0, azimuthal coordi-
nates by ψk, k = 1, . . . ,m = D − n− 1, and xµ,
µ = 1, . . . , n, stand for radial and latitude coordi-
nates. Parameter cn is proportional to the cosmo-
logical constant [25]

Rab = (−1)n(D − 1)cn gab , (17)

and remaining constants ck, c, and bµ are related to
rotation parameters, mass, and NUT parameters
of the black hole (see [21] for more details). The
inverse metric reads

gab∂a∂b =

n
∑

µ=1

1

XµUµ

(

m
∑

k=0

(−x2µ)n−1−k∂ψk

)2

+

n
∑

µ=1

Qµ(∂xµ
)2 − ε

cA(n)
(∂ψn

)2 .

(18)

In the space with the metric (15) the vector
∂ψ0

, called primary Killing, plays a special role.

1 The physical metric with proper signature is recovered
when standard radial coordinate r = −ixn and new pa-
rameter M = (−i)1+ǫbn are introduced (for more details
see [21]). As these transformations do not affect the dis-
cussed separability of the Hamilton-Jacobi equation we
prefer to work with this more symmetric analytical con-
tinuation of the metric.

This vector (after the analytical continuation to
the ‘physical’ spacetime) is timelike in the black
hole exterior. It is also directly connected with
the principal Killing-Yano tensor of the metric [26].
We call a string stationary if it is tangent to the
primary Killing vector. For this string one has

Hij∂i∂j = F−1

[

n
∑

µ=1

1

XµUµ

(

m
∑

k=1

(−x2µ)n−1−k∂ψk

)2

+

n
∑

µ=1

Qµ(∂xµ
)2 − ε

cA(n)
(∂ψn

)2

]

, (19)

F =

n
∑

µ=1

Qµ − εc

A(n)
. (20)

The expression in the square brackets of (19), the
reduced metric, is similar to (18). The only differ-
ence is that in the sum over k the term k = 0 is
omitted. This corresponds to the natural projec-
tion given by (14).
In the background of the metric Hij the

Hamilton-Jacobi equation (13) allows the additive
separation of variables

S = wσ +
n
∑

µ=1

Sµ(xµ) +
m
∑

k=1

Lkψk (21)

with functions Sµ(xµ) of a single argument xµ.
Substituting (21) into (13) we obtain

Fw +
n
∑

µ=1

1

XµUµ

(

m
∑

k=1

(−x2µ)n−1−kLk

)2

+

n
∑

µ=1

QµS
′2
µ − εL2

n

cA(n)
= 0 ,

(22)

where Sµ
′ denotes the derivative of a function Sµ

with respect to its single argument xµ. Using the
explicit form of F and algebraic identity [22]:

1

A(n)
=

n
∑

µ=1

1

x2µUµ
, (23)

we can rewrite the last equation in the form

n
∑

µ=1

Gµ
Uµ

= 0, (24)

where Gµ are functions of xµ only:

Gµ = Xµ

(

S′2
µ + w

)

+
1

Xµ

(

m
∑

k=1

(−x2µ)n−1−kLk
)2

− ε
(

L2
n/c+ wc

)

x2µ
. (25)
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Applying the Lemma proved in the Appendix of
[27] we realize that the general solution of (24) is

Gµ =

n−1
∑

k=1

Ck(−x2µ)n−1−k , (26)

where Ck are arbitrary constants. So, we have ob-
tained the equations for S′

µ:

S′2
µ =

1

Xµ

[

n−1
∑

k=1

Ck (−x2µ)n−1−k +
ε
(

L2
n/c+ wc

)

x2µ

]

− 1

X2
µ

(

m
∑

k=1

(

−x2µ
)n−1−k

Lk

)2

− w , (27)

which can be solved by quadratures.
This completes the demonstration that in the

general higher-dimensional rotating black hole
spacetime (15) the reduced (D − 1)-dimensional
geodesic problem (11) allows the separation of the
Hamilton-Jacobi equation (13) and therefore the
stationary string configuration is completely inte-
grable.

IV. HIDDEN SYMMETRIES

The resulting complete integrability of the sta-
tionary string configuration in the Kerr-NUT-
(A)dS spacetime (15) is connected with the ex-
istence of hidden symmetries of the (D − 1)-
dimensional effective metric Hij . Namely, there

exist (n− 1) irreducible Killing tensors Cij(k), (k =

1, . . . , n− 1), which give the constants of motion

Ck = Cij(k)pipj , D(mC
(k)
ij) = 0 , (28)

and allow the separation of the Hamilton-Jacobi
equation (13) in the background Hij . In the last
formula pi = ∂iS are the ‘momenta’ of geodesic
motion and Di denotes the covariant derivative
with respect to Hij .

One can easily find the explicit form of Cij(k) by

inverting (25). Let us multiply it by A
(l)
µ /Uµ, sum

over µ, and use identities [22]:

n
∑

µ=1

(−x2µ)n−1−k
Uµ

A(l)
µ = δlk ,

n
∑

µ=1

A
(k)
µ

x2µUµ
=
A(k)

A(n)
,

(29)
which are valid for l, k = 0, . . . , n − 1. Then we
obtain

Cij(k) = Kij
(k) − F(k)H

ij , (30)

F(k) =

n
∑

µ=1

QµA
(k)
µ − εcA(k)

A(n)
. (31)

Here Kij
(k) are natural projections of the tensors

Kab
(k)∂a∂b =

n
∑

µ=1

A
(k)
µ

QµU2
µ

(

m
∑

l=0

(−x2µ)n−1−l∂ψl

)2

+

n
∑

µ=1

A(k)
µ Qµ(∂xµ

)2 − εA(k)

cA(n)
(∂ψn

)2 .

(32)

That is, similar to (19), the direction ∂ψ0
is pro-

jected out (the term l = 0 is omitted).

In fact, the tensors Kab
(k), (k = 1, . . . , n− 1), are

the irreducible Killing tensors for the Kerr-NUT-
(A)dS metric (15) [22, 26]. And so one can say that
the hidden symmetries of the (D− 1)-dimensional
effective metric Hij are ‘inherited’ from the hidden
symmetries of gab.

A nontrivial property which follows from the
separability of the Hamilton-Jacobi equation (see,
e.g., [24]) is that the constants Ck mutually Pois-
son commute, or equivalently, the Schouten brack-
ets, in the background Hij , of the corresponding
Killing tensors vanish:

[

C(k), C(l)

] ijm

H
= C

n(i
(k)DnC

jm)
(l) − C

n(i
(l) DnC

jm)
(k) = 0 .

(33)

Let us also mention that the projections Kij
(k)

are the Killing tensors for the reduced metric hij
and obey

[

K(k),K(l)

] ijm

h
= 0 . (34)

These results can be easily obtained by separating
the Hamilton-Jacobi equation in the background of
the reduced metric hij . We expect them to be more
general. (For a discussion and necessary conditions
regarding the projection of a single Killing tensor
see [16].)

We have seen that the existence of the Killing
tensors Cij(k) for the metric Hij is the property

inherited from the metric gab (15). This met-
ric possesses even more fundamental symmetry—
connected with the principal Killing-Yano tensor
[28] from which all the Killing tensors (32) are
derivable [26]. A natural question arises whether
also Hij admits any (not necessary principal)
Killing-Yano tensor.

In a general case the answer is negative. The
necessary conditions for a Killing tensor in 4D to
be the ‘square’ of a Killing-Yano tensor were given
by Collinson [29] (see also [30]). One can easily
check that they are not satisfied and hence, at least
in 4D, the metric Hij does not admit a Killing-
Yano tensor. In higher dimensions we can exclude
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the existence of the ‘special’ principal Killing-Yano
tensor for the metric Hij .

2

V. ξ-BRANES

In the above consideration we have focused on
stationary strings, that is strings generated by a
1-parameter family of timelike Killing trajectories.
There are two natural ways how one may try to
generalize this construction. First, one may con-
sider other Killing vector fields, and/or second, in
the case when there exist more than one Killing
vector, one may consider hypersurfaces formed by
the set of Killing trajectories passing through the
same 1-dimensional curve. Let us discuss these
generalizations in more detail.
For simplicity we assume that the spacetimeMD

allows pmutually commuting Killing vectors which
we denote by ξa(M), (M,N = 1, . . . , p). The Frobe-

nius theorem implies that for each point of the
spacetimeMD there exists (at least locally) a sub-
manifold of dimension p generated by the Killing
vectors ξa(M) passing through this point. In other

words, the set ξ = {ξa(M)} defines a foliation of

MD. Similar to what was done in the Geroch for-
malism for one Killing vector field, one can define
a quotient space S of M determined by the action
of the isometry group generated by ξ. This gener-
alization of the Geroch’s formalism was developed
in [33]. The metric gab of the spacetime MD can
be written as

gab = hab + Ξab , habξ
a
(M) = 0 , (35)

Ξab =

p
∑

M,N=1

aMN ξ(M)aξ(N)b . (36)

Here aMN is the (p× p) matrix which is inverse to
the (p× p) matrix aMN = ξ(M)aξ

a
(N): a

MNaNK =

δKM . A tensor hab is a projection operator onto S.
Let us denote by yi (D − p) coordinates which

are constant along the Killing surfaces generated
by the set ξ, and by ψM the Killing parameters
defined by the conditions

ξaM∂a = ∂ψM . (37)

2 The special principal Killing-Yano tensor is a principal
Killing-Yano tensor obeying the additional properties as
defined in [31]. It was demonstrated in [32] that the only
higher-dimensional spacetime admitting this special prin-
cipal Killing-Yano tensor is the ‘generalized’ Kerr-NUT-
AdS spacetime, i.e. the spacetime different from Hij .

The metric gab in these coordinates (xa) =
(yi, ψM ) takes the form

ds2 = hi,jdy
idyj+

p
∑

M,N=1

aMN (ξ(M)adx
a)(ξ(N)bdx

b) .

(38)
In these coordinates we also have

aMN = ξ(M)aξ
a
(N) = ξ(N)M = ξ(M)N . (39)

A natural generalization of stationary strings
Σξ are (p + 1)-dimensional objects Σpξ which are
formed by a 1-parameter family of Killing surfaces.
We call them ξ-branes. In (yi, ψM )-coordinates the
equation of Σpξ is y

i = yi(σ). For this parametriza-

tion coordinates on Σpξ are (ζ
A) = (ψM , σ) (A,B =

1, . . . , p + 1). The induced metric on the ξ-brane
takes the form

dγ2 = γABdζ
AdζB = (h+ u)dσ2

+2dσ

p
∑

M=1

ξ(M)σdψ
M +

p
∑

M,N=1

aMNdψ
MdψN .(40)

Here we have defined

h = hij
dyi

dσ

dyj

dσ
, ξ(M)σ = ξ(M)i

dyi

dσ
,

u =

p
∑

M,N=1

aMN ξ(M)σξ(N)σ .
(41)

In order to derive (40) we used (39).
The metric γAB can be considered as a block

matrix of the form

γ =

(

A B
C D

)

(42)

where A is a 1-dimensional matrix and D is a ma-
trix (p× p). If |Z| is a determinant of a matrix Z,
then one has the following relation for the deter-
minant of a block matrix (see, e.g., [34])

∣

∣

∣

∣

A B
C D

∣

∣

∣

∣

= |D||A− CD−1B| . (43)

Using this equation one obtains

γ = det(γAB) =

∣

∣

∣

∣

h+ u ξ(M)σ

ξ(N)σ aMN

∣

∣

∣

∣

= hFξ , (44)

where

Fξ = det(aMN ) = det(ξa(M)ξ(N)a) (45)

is the Gram determinant for the set ξ = {ξ(M)} of
the Killing vectors.
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The Dirac-Nambu-Goto action for a (p + 1)-
dimensional brane is

I = −µ
∫

dp+1ζ
√

|γ| , (46)

where γ is the determinant of the induced met-
ric on the brane γAB. For a ξ-brane this action
reduces to the following expression3

I = −µV E , dl2 = hdσ2 , (49)

V =

∫

dpψN , E =

∫

√

Fξdl . (50)

Thus after the dimensional reduction the problem
of finding a configuration of a ξ-brane reduces to
a problem of solving a geodesic equation in the
reduced (D−p)-dimensional space with the metric

dH2 = H ijdy
idyj = Fξh ijdyidyj . (51)

If the original metric gab admits a Killing ten-
sor Kab then, since hij = gij , the natural pro-
jection Kij is also a Killing tensor for the metric
hij . However, the full effective metric Hij does not
inherit this symmetry unless the ‘red-shift’ factor
Fξ is of the special ‘separable form’. Only then,
the Hamilton-Jacobi equation (13) for the geodesic
motion in the metric (51) allows complete separa-
tion of variables.

VI. ξ-BRANES IN KERR-NUT-ADS

SPACETIME

A. Separability condition

Let us discuss now the problem of integrabil-
ity of ξ-branes in the Kerr-NUT-(A)dS metric
(15). There we have m + 1 Killing fields ∂ψk

,
k = 0, . . . ,m and we may choose any arbitrary

3 In our derivation we have focused on a 1-dimensional line
in S generating ξ-branes. The same construction remains
valid for, let us say, q-dimensional hyperspace in S in
the case of a (p + q)-dimensional brane. Then, denoting
coordinates on the worldvolume of such brane by (ζA) =
(ψM , σα), (α, β = 1, . . . , q), and repeating the same steps
one would obtain

γ = det(hαβ)Fξ = hFξ, hαβ = hij
dyi

dσα

dyj

dσβ
, (47)

and

I = −µV E, E =

Z

q

Fξdv, dv =
√
hdqσ . (48)

subset of them as the set ξ. In general, however,
the corresponding red-shift factor Fξ will not be of
the separable form.
More specifically, one requires that the red-shift

factor can be written as

Fξ =
n
∑

µ=1

fµ(xµ)

Uµ
, (52)

with fµ functions of xµ only, in order to allow
the separation of variables for the Hamilton-Jacobi
equation in the effective background Hij . The cor-
responding Killing tensors (k = 1, . . . , n−1) would
be then

Cij(k) = Kij
(k) − f(k)H

ij , (53)

where Kij
(k) are due natural projections of (32),

with directions from the set ξ projected out, and

f(k) =
n
∑

µ=1

fµA
(k)
µ

Uµ
. (54)

In the case of a stationary string, i.e. for ξ =
{∂ψ0

}, the red-shift factor (20), the norm of the
primary Killing field ∂ψ0

, possesses the property
(52), with

fµ = Xµ − ǫc

x2µ
, (55)

and the integrability proved in the section III is
justified.

B. ξ-branes in 4D

In 4D a stationary string is the only nontrivial
example of a ξ-brane for which (in these coordi-
nates) integrability can be proved. Indeed, as dis-
cussed in [16] only in the exceptionally symmetric
case of de Sitter space itself one can obtain the in-
tegrability of the axially symmetric ξ-string with
ξ = {∂ψ1

}.4
The last possibility of a ξ-brane in 4D Kerr-

NUT-(A)dS spacetime is the axially symmetric
stationary domain wall, ξ = {∂ψ0

, ∂ψ1
}. Let us

consider this important example in more detail.
The action takes the form

I = −µ∆ψ0∆ψ1E , E =

∫

dσ

√

Hij
dyi

dσ

dyj

dσ
,

(56)

4 The asymmetry between the Killing fields is connected
with the separability of the Klein-Gordon equation, see,
e.g., [16] and reference therein. In higher-dimensional
spacetime (15) this separability was demonstrated in [22].
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where the effective 2-dimensional metric is

dH2 = Hijdy
idyj = Fξ

(

dx21
Q1

+
dx22
Q2

)

. (57)

The red-shift factor reads

Fξ =
∣

∣

∣

∣

gψ0ψ0
gψ0ψ1

gψ0ψ1
gψ1ψ1

∣

∣

∣

∣

=

2
∑

µ=1

fµ
Uµ

, (58)

where

fµ = x2µXµ(X1 +X2). (59)

Evidently, fµ becomes function of xµ only in the
case when all parameters, but c0, vanish. Only in
that trivial case the Hamilton-Jacobi equation for
the axially symmetric stationary domain wall in
4D can be separated.
The stationary string configuration remains the

only one separable also in the standard Boyer-
Lindquist coordinates which can be obtained from
our coordinates by the identifications given in [35].

C. ξ-branes in 5D

In 5D the situation is more interesting. There
we can prove the integrability of the axisymmet-
ric ξ-string, ξ = {∂ψ1

}, under the condition that
c1 = 0. Indeed, then the red-shift factor takes the
separable form (52) with

f1(x1) = 2b2x
4
1 + cx21 , f2(x2) = 2b1x

4
2 + cx22 .

(60)
Also, the axially symmetric stationary ξ-brane,

ξ = {∂ψ0
, ∂ψ1

} is completely integrable in the case
of a vacuum (c2 = 0) 5D spacetime (15) with c1 =
0. In that case,

f1(x1) = 4b1b2x
2
1+2cb1 , f2(x2) = 4b1b2x

2
2+2cb2 .

(61)
In both cases the nontrivial Killing tensor respon-
sible for the integrability is given by (53).
However restrictive and unlikely to be gener-

ally satisfied the condition (52) seems, the above
examples illustrate the special cases where com-
plete integrability of ξ-branes can be analytically
proved. We postpone the discussion of the exis-
tence of other nontrivial examples elsewhere.

VII. SUMMARY

We have studied integrability of the Nambu-
Goto equations for a stationary string configura-
tion near a higher-dimensional rotating black hole.
In a general stationary spacetime this problem re-
duces to finding a geodesic in the effective (D−1)-
dimensional background Hij . In the Kerr-NUT-
(A)dS spacetime (15) the geodesic equation can
be integrated by separation of variables of the cor-
responding Hamilton-Jacobi equation. This sepa-
rability is a consequence of the fact that Hij in-
herits some of the hidden symmetries of the black
hole. Namely, it inherits (n− 1) irreducible mutu-
ally commuting Killing tensors which correspond
to natural projections of the Killing tensors present
in gab. In a general case there are no (antisymmet-
ric) Killing-Yano tensors generating these (sym-
metric rank 2) Killing tensors.

The problem of integrating of equations for ξ-
branes is more complicated. We gave some ex-
amples where these equations are completely in-
tegrable, but in the general case the complete in-
tegrability is not possible. It would be interest-
ing to find other, physically interesting, examples
of completely integrable ξ-branes in higher dimen-
sional black hole spacetimes. It is also interesting
to study cases where there exist non-complete but
non-trivial sets of (quadratic in momenta) integrals
of motion for ξ-branes related to the hidden sym-
metries of the black hole background.
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[21] W. Chen, H. Lü, and C. N. Pope, Classical Quan-
tum Gravity 23, 5323 (2006).

[22] V. P. Frolov, P. Krtouš, and D. Kubizňák, J. High
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