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1 Introduction

Gauge formulation of gravitation [1] attempts to derive a unified picture of known interactions. This
formulation ismetric–affine: both the metric (or tetrad) and affine (or Lorentz) connection are regarded
as gravitational potentials [2,3,4]. Explicit dynamical variables in metric–affine theories can be taken
as: metric and symmetric connection (Palatini formulation) [5], metric and torsion (Einstein–Cartan
theory) [6], metric and asymmetric connection [7,8], metric, torsion and nonmetricity [9], tetrad and
torsion [10], and tetrad and Lorentz connection (Kibble–Sciama theory) [2].

The principle of general covariance imposes the invariance of the total action under general co-
ordinate transformations. Since the metric and tetrad are related by the orthonormality condition,
the group of tetrad rotations is the Lorentz group [11,12]. The local Poincaré invariance, i.e. the in-
variance of a Lagrangian density for matter under coordinate transformations and tetrad rotations,
leads to identities (conservation laws) satisfied by matter sources [13]. An energy–momentum conser-
vation (4 equations) results from the coordinate invariance and an angular momentum conservation
(6 equations) results from the invariance under tetrad rotations [11,14]. The same invariance of the
total Lagrangian for matter and gravitational field gives analogous Bianchi identities satisfied by the
field equations. Since there are 80 gravitational equations for 16 + 64 = 80 gravitational potentials
(tetrad and connection) with 4+ 6 = 10 identities, 80− 10 = 70 potentials are independent dynamical
variables [11].

In this paper, which is a sequel of [15], we present a brief derivation of conservation laws for the
canonical and dynamical energy–momentum tensors and angular momentum (spin) density for a gen-

eral Lorentz connection. Such a connection corresponds to an affine connection that is not restricted
to be metric compatible and torsionless. Examples of a physical theory with a general affine connec-
tion are Weyl’s conformal geometry [12,16] and the generalized Einstein–Maxwell theory with the
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electromagnetic field tensor represented by the homothetic curvature tensor [17]. We use the notation
of [15].

2 Infinitesimal coordinate transformations

Under an infinitesimal coordinate transformation

xµ → x′µ = xµ + ξµ, (1)

where ξµ is an infinitesimal vector, the transformation law for any tensor or tensor density Φ is given
by

δΦ = Φ′(x′)− Φ(x) = ξα,βC
β
αΦ, (2)

where the constant linear operators Ĉβ
α are determined by the covariant derivative of Φ with respect

to the affine connection [12]:

Φ;µ = Φ,µ + Γ α
β µĈ

β
αΦ. (3)

For example, the operator Ĉ acting on a scalar φ, contravariant vector V ν , covariant vector Vν and
scalar density V of weight w returns, respectively:

Ĉβ
αφ = 0, (4)

Ĉβ
αV

ν = δναV
β , (5)

Ĉβ
αVν = −δβνVα, (6)

Ĉβ
αV = −wδβαV . (7)

The transformation law for a Lagrangian density L, which is a scalar density (of weight 1) since Ld4x
is a scalar, is thus

δL = −ξµ,µL. (8)

A Lie derivative with respect to ξµ of a quantity Φ is defined as

LξΦ = δ̄Φ = Φ′(x) − Φ(x) = δΦ− ξνΦ,ν . (9)

It can be shown that δ̄Φ, unlike δΦ, transforms under general coordinate transformations the same
way as Φ. For example, the Lie derivative of the contravariant metric tensor gµν is also a tensor:

Lξg
µν = ξµ,αg

αν + ξν,αg
µα − ξαgµν,α = 2ξ(µ;ν) + (4S

(µν)
α
+Nµν

α)ξ
α. (10)

A Killing vector is defined as a vector ξµ that preserves the metric: Lξg
µν = 0.1

3 Canonical energy–momentum tensors

The change δL of a Lagrangian density for matter under an infinitesimal coordinate transformation (1)
is given by Eq. (8). If we assume that L depends, in addition to the coordinates xµ, on matter fields
φ and their first derivatives φ,µ then

δL =
∂L

∂φ
δφ+

∂L

∂φ,µ
δ(φ,µ) +

∂̄L

∂xµ
ξµ, (11)

where the changes δφ and δ(φ,µ) are brought by the transformation (1) and ∂̄ denotes partial differ-
entiation with respect to xµ regarding φ and φ,µ as constant. Using the Lagrange field equations,

∂L

∂φ
−
( ∂L

∂φ,µ

)

,µ
= 0, (12)

1 The invariance of the matter action under a coordinate translation generated by a Killing vector yields
the covariant conservation of the corresponding dynamical energy–momentum tensor [18].
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and the identities L,µ = ∂̄L
∂xµ + ∂L

∂φ
φ,µ + ∂L

∂φ,ν

φ,νµ and δ(φ,µ) = (δφ),µ − ξν,µφ,ν , we bring Eq. (11) to

δL = ξµL,µ +
( ∂L

∂φ,µ
(δφ− ξνφ,ν)

)

,µ
. (13)

Combining Eqs. (8) and (13) gives a conservation law [12]:

J

µ
,µ = J

µ
;µ − 2SµJ

µ = 0, (14)

with the current:

J

µ = ξµL+
∂L

∂φ,µ
(δφ− ξνφ,ν) = ξµL+

∂L

∂φ,µ
δ̄φ. (15)

Equations (14) and (15) represent Noether’s theorem: the correspondence between continuous symme-
tries of a Lagrangian and conservation laws.2

If we assume that the matter fields φ are purely tensorial then applying Eqs. (2) and (3) to the
definition of the conserved current (15) gives

J

µ = ξµL+
∂L

∂φ,µ

(

(ξα;β + 2Sα
βνξ

ν)Ĉβ
αφ− ξνφ;ν

)

. (16)

In order to obtain a local conservation law that does not contain the vector ξµ we must impose a
covariant restriction on this vector at a particular point in spacetime:

ξα;β + 2Sα
βνξ

ν = 0, (17)

which brings Eqs. (14) and (15) to

(

ξµL− ∂L

∂φ,µ
ξνφ;ν

)

;µ
− 2Sµ

(

ξµL− ∂L

∂φ,µ
ξνφ;ν

)

= 0. (18)

Using again Eq. (17) allows to eliminate ξµ, leading to

L;ν −
( ∂L

∂φ,µ
φ;ν

)

;µ
+ 2Sρ

µν

∂L

∂φ,µ
φ;ρ + 2Sµ

∂L

∂φ,µ
φ;ν = 0, (19)

which represents a conservation law:

Hν
µ;ν − 2SνHν

µ + 2Sν
µρHρ

ν = 0, (20)

for the canonical energy–momentum tensor density:3

Hµ
ν =

∂L

∂φ,µ
φ;ν − δµνL. (21)

2 If xµ are Cartesian coordinates then for Lorentz translations, ξµ = const and δφ = 0, we obtain a

conservation of energy–momentum: Θµ
ν,µ = 0, where Θµ

ν = ∂L
∂φ,µ

φ,ν − δµνL is the energy–momentum tensor

density. This conservation also follows from the Lagrange field equations (12). For Lorentz rotations, ξµ = ǫµνx
ν

and φ = 1

2
ǫµνG

µνφ, where Gµν are the generators of the Lorentz group, the conservation law (14) yields a

conservation of angular momentum: (Λ µ

αβ + Σ
µ

αβ ),µ = 0, where Λ
µ

αβ = xαΘ
µ

β − xβΘ
µ
α is the orbital angular

momentum density and Σ
µ

αβ = ∂L
∂φ,µ

Gαβφ is the spin density.
3 The canonical energy–momentum tensor density (21) generalizes the Cartesian energy–momentum tensor

density Θµ
ν (cf. footnote 2) to a general affine connection, replacing the ordinary derivative φ,ν by the covariant

derivative φ;ν . The corresponding canonical energy–momentum tensor can be symmetrized using the generalized
Belinfante–Rosenfeld formula [8,19].
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4 Dynamical energy–momentum tensors

A dynamical energy–momentum tensor density in the tetrad formulation of gravity, Ta
µ, is defined via

the variation of a matter Lagrangian density L with respect to a tetrad:4

δL = T

a
µδe

µ
a . (22)

If L depends only on tensor matter fields then the tetrad enters L only where there is the metric tensor,
in a combination gµν = ηabeµae

ν
b , yielding

δeµa =
1

2
eaνδg

µν . (23)

Substituting Eq. (23) to (22) gives the standard general-relativistic form δL = 1
2Tµνδg

µν , where

Tµν = eaµT
a
ν . (24)

Therefore, for purely tensorial matter fields, the symmetric part T(µν) of the dynamical energy–
momentum tensor density in the tetrad formulation coincides with the dynamical energy–momentum
tensor density Tµν in the metric formulation [12,18]. If L depends also on spinor matter fields then
Eq. (22) becomes the sum of two parts, tensorial and spinorial:

δL =
1

2
Tµνδgµν + T

a(spin)
µ δ̃eµa , (25)

where δ̃eµa denotes the variation of the tetrad that cannot be related to the variation of the metric
tensor.

Let us assume that the matter Lagrangian density L depends on matter fields φ (and their first
derivatives φ,µ) that can be expressed in terms of Lorentz and spinor indices only. Consequently,
the tetrad field appears in L only where there is a derivative of φ, in a covariant combination
eµaφ|µ. For example, the Dirac Lagrangian density for a massless particle is i

2 e(ψ̄γ
aeµaψ|µ − eµa ψ̄|µγ

aψ)

and the Maxwell Lagrangian density − 1
4

√−gFµνF
µν , where Fµν = Aν,µ − Aµ,ν , can be written as

1
2 e(−eµaAb|µF

ab + Sc
abAcF

ab).5 Since L = eL, where L is a scalar, we obtain6

δL = eδL− eeaµLδe
µ
a = e

∂L

∂φ|a
φ|µδe

µ
a − Leaµδe

µ
a =

( ∂L

∂φ|a
φ|µ − Leaµ

)

δeµa . (26)

Comparing Eq. (26) with (22) shows that the dynamical energy–momentum tensor density Ta
µ is a

generalized canonical energy–momentum tensor density [12]:

T

a
µ =

∂L

∂φ|a
φ|µ − eaµL, (27)

or equivalently

T

µ
ν =

∂L

∂φ,µ
φ|ν − δµνL. (28)

The canonical energy–momentum tensor density (28) generalizes the density (21), replacing the
derivative φ;ν with φ|ν . The difference between the tensor densities (28) and (21) is

T

µ
ν −Hµ

ν = − ∂L

∂φ,µ
Γνφ, (29)

where the connection Γν = − 1
2ωabνG

ab depends on the generators Gab of the representation of the
Lorentz group governing a transformation law of φ [12,15]. If the matter fields φ in the Lagrangian
density L are expressed in terms of coordinate indices only, they must be purely tensorial and the
dynamical energy–momentum tensor density (27) corresponds to the dynamical matter density Tµν in
the metric formulation.

4 The energy–momentum tensor, canonical or dynamical, is obtained from the corresponding energy–
momentum tensor density by dividing the latter by e.

5 The definition Fµν = Aν,µ − Aµ,ν does not yield Fab = Ab,a − Aa,b.
6 For the Maxwell Lagrangian density the variation δL due to the variation of the tetrad is: δL =

−Ab|µF
abδeµa .
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5 Spin density

For a general connection, not restricted to be metric compatible, the Lorentz connection ωab
µ is not

antisymmetric in the indices a, b [3] and its symmetric part is related to the nonmetricity tensor:

ω
(ab)

µ
= − 1

2N
ab
µ [15]. The variation of a matter Lagrangian density L with respect to a Lorentz

connection:

δL =
1

2
S

µ
ab δω

ab
µ, (30)

defines the Lorentz connection-conjugate density S µ
ab .7 The variation of L with respect to the anti-

symmetric part of the Lorentz connection defines the spin density M
µ

ab in the tetrad formulation of
gravity:

δL =
1

2
M

µ
ab δω

[ab]
µ
. (31)

The variation of L with respect to the symmetric part of the Lorentz connection, i.e. the nonmetricity

tensor, defines the nonmetricity-conjugate density N µ
ab :

δL =
1

2
N

µ
ab δω

(ab)
µ
. (32)

The densities M µ
ab and N µ

ab are the symmetric and antisymmetric (in the indices a, b) parts of the

density S µ
ab , respectively:

S

µ
ab = M

µ
ab + N

µ
ab . (33)

The Lorentz connection ωab
µ enters L only where there is a derivative of φ, in a combination

− ∂L
∂φ,µ

Γµφ. Consequently, the spin density is equal to

M

µ
ab =

∂L

∂φ,µ
Gabφ, (34)

and generalizes the spin density Σ µ
αβ in the Cartesian coordinates (cf. footnote 2). The difference (29)

between the tensor densities (28) and (21) is then

T

µ
ν −Hµ

ν =
1

2
ωab

νM
µ

ab . (35)

6 Conservation of angular momentum

The Lorentz group is the group of tetrad rotations [3,12]. Since a physical matter Lagrangian density
L is invariant under local, proper Lorentz transformations, it is invariant under tetrad rotations:

δL =
∂L

∂φ
δφ+

∂L

∂φ,µ
δ(φ,µ) + T

a
µδe

µ
a +

1

2
S

µ
ab δω

ab
µ = 0, (36)

where the changes δ correspond to a tetrad rotation. Under integration of Eq. (36) over spacetime the
first two terms vanish because of the field equation for φ (12):

∫

(

T

a
µδe

µ
a +

1

2
S

µ
ab δω

ab
µ

)

d4x = 0. (37)

For an infinitesimal Lorentz transformation:

Λa
b = δab + ǫab, (38)

7 The analogous affine connection-conjugate density Π µν
ρ , defined via the variation of L with respect to a

general affine connection: δL = Π µν
ρ δΓ ρ

µν , is called hypermomentum [8].
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where ǫab = −ǫba, the tetrad eaµ changes according to

δeaµ = ẽaµ − eaµ = Λa
be

b
µ − eaµ = ǫaµ, (39)

and the tetrad eµa , because of the identity δ(eaµe
ν
a) = 0, according to

δeµa = −ǫµa. (40)

The Lorentz connection changes according to

δωab
µ = δ(eaνω

νb
µ) = ǫaνω

νb
µ − eaνǫ

νb
;µ = ǫacω

cb
µ − eaνǫ

νb
|µ + ǫacω

bc
µ = −ǫab|µ − ǫacN

bc
µ. (41)

Substituting Eqs. (24), (40) and (41) to (37) gives8

0 = −
∫

(

T

a
µǫ

µ
a +

1

2
S

µ
ab ǫ

ab
|µ +

1

2
S

µ
ab ǫ

a
cN

bc
µ

)

d4x

=

∫

(

Tµνǫ
µν − 1

2
S

ρ
µν ǫ

µν

|ρ −
1

2
S

σ
µρ ǫµνNρ

νσ

)

d4x

=

∫

(

T[µν] − SρS
ρ

[µν] +
1

2
S

ρ

[µν] ;ρ +
1

2
N

ρσ

[µ Sν]ρσ

)

ǫµνd4x. (42)

Since the infinitesimal Lorentz rotation ǫµν is arbitrary, we obtain a generalized conservation law for

angular momentum (spin density):9

M

ρ
µν ;ρ = −Tµν + Tνµ + 2SρM

ρ
µν −N

ρσ

[µ Mν]ρσ −N
ρσ

[µ Nν]ρσ . (43)

Eq. (43) corresponds to the conservation law for the hypermomentum density in the orthonormal
gauge [11].

7 Conservation of energy–momentum

A matter Lagrangian density L is also invariant under infinitesimal translations of the coordinate sys-
tem (1). The corresponding changes of the tetrad and Lorentz connection are given by Lie derivatives:

δ̄eµa = Lξe
µ
a = ξµ,νe

ν
a − ξνeµa,ν , (44)

δ̄ωab
µ = Lξω

ab
µ = −ξν,µωab

ν − ξνωab
µ,ν . (45)

Eq. (37) becomes now
∫

(

T

a
µδ̄e

µ
a +

1

2
S

µ
ab δ̄ω

ab
µ

)

d4x = 0, (46)

and holds for an arbitrary vector ξµ:

0 =

∫

(

T

a
µξ

µ
,νe

ν
a − T

a
µξ

νeµa,ν −
1

2
S

µ
ab ξ

ν
,µω

ab
ν − 1

2
S

µ
ab ξ

νωab
µ,ν

)

d4x

=

∫

(

−Tν
µ,ν − T

a
νe

ν
a,µ +

1

2
(S ν

ab ω
ab

µ),ν − 1

2
S

ν
ab ω

ab
ν,µ

)

ξµd4x. (47)

Consequently we can write

0 = S

ν
ab ,νω

ab
µ + S

ν
ab (ωab

µ,ν − ωab
ν,µ)− 2Tν

µ,ν − 2Ta
νe

ν
a,µ

= (S ν
ab |ν − 2SρS

ρ
ab + S

ν
cb ω

c
aν + S

ν
ac ω

c
bν)ω

ab
µ + S

ν
ab (−Rab

µν + ωa
cµω

cb
ν − ωa

cνω
cb
µ)

−2Tν
µ,ν − 2Ta

νe
ν
a,µ, (48)

8 We also use the partial-integration identity
∫

d4x(Vµ)|µ = 2
∫

d4xSµV
µ, valid for an arbitrary vector

density Vµ.
9 If we use the affine connection Γ ρ

µν , which is invariant under tetrad rotations, instead of the Lorentz

connection ωab
µ as a variable in a Lagrangian density L then we must replace the term with δωab

µ in Eq. (36)
by a term with δ(eµa,ν). The resulting equation is equivalent to Eq. (43), cf. [17].
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which reduces to

0 = (S ν
ab |ν − 2SρS

ρ
ab − S

ν
ac N

c
b ν)ω

ab
µ −Rab

µνS
ν

ab

−2Tν
µ;ν + 4SνT

ν
µ − 2Tρνω

νρ
µ + 4Sνρ

µTρν

= (M ν
αβ ;ν + N

ν
αβ ;ν − 2SρS

ρ
αβ − S

ν
ασ N

σ
β ν)ω

αβ
µ −R

αβ
µνS

ν
αβ

−2Tν
µ;ν + 4SνT

ν
µ − 2Tρνω

νρ
µ + 4Sνρ

µTρν . (49)

Equations (33), (43) and the identity10 R
(αβ)

µν
= N

αβ

[µ;ν] + Sρ
µνN

αβ
ρ bring Eq. (49) to the form

of a generalized conservation law for energy–momentum:

T

ν
µ;ν = 2SνT

ν
µ − 2Sν

µρT
ρ
ν +

1

2
TνρN

νρ
µ − 1

4
N

σ
νρ ;σN

νρ
µ +

1

4
MαρσN

ρσ
β N

αβ
µ

+
1

4
NαρσN

ρσ
β N

αβ
µ +

1

2
N

ρ
αβ SρN

αβ
µ − 1

2
M

ν
αβ R

αβ
µν − 1

2
N

ν
αβ (Nαβ

[µ;ν] + Sρ
µνN

αβ
ρ). (50)

Eq. (50) corresponds to the conservation law for the canonical energy–momentum density in the or-
thonormal gauge [11], cf. also [17,20].

The conservation law (50) for the dynamical energy–momentum tensor density Tν
µ coincides with

the conservation law (20) for the canonical energy–momentum density Hν
µ if the nonmetricity tensor

Nµνρ and the spin density M ρ
µν vanish. In order to derive Eq. (20) we assumed that the matter fields

φ are purely tensorial and only considered a coordinate translation in the variation of φ. Therefore the
spin density does not contribute to the conservation of the tensor density Hν

µ and does not appear in
Eq. (20). In fact, the difference (35) between the tensor densities (28) and (21) is linear in the spin
density. The absence of the nonmetricity tensor in Eq. (20) is related to the fact that we imposed the
constraint (17) on the vector ξµ to derive a covariant conservation law independent of ξµ, while there
is no restriction on this vector in the derivation of the conservation law (50). The full conservation law
for Hν

µ (corresponding to unrestricted ξµ) can be derived by combining Eqs. (35), (43) and (50).
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