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1 Introduction

Gauge formulation of gravitation [I] attempts to derive a unified picture of known interactions. This
formulation is metric—affine: both the metric (or tetrad) and affine (or Lorentz) connection are regarded
as gravitational potentials [2l3l[4]. Explicit dynamical variables in metric-affine theories can be taken
as: metric and symmetric connection (Palatini formulation) [5], metric and torsion (Einstein—Cartan
theory) [6], metric and asymmetric connection [7[8], metric, torsion and nonmetricity [9], tetrad and
torsion [10], and tetrad and Lorentz connection (Kibble-Sciama theory) [2].

The principle of general covariance imposes the invariance of the total action under general co-
ordinate transformations. Since the metric and tetrad are related by the orthonormality condition,
the group of tetrad rotations is the Lorentz group [I1l[12]. The local Poincaré invariance, i.e. the in-
variance of a Lagrangian density for matter under coordinate transformations and tetrad rotations,
leads to identities (conservation laws) satisfied by matter sources [13]. An energy—momentum conser-
vation (4 equations) results from the coordinate invariance and an angular momentum conservation
(6 equations) results from the invariance under tetrad rotations [I1l[I4]. The same invariance of the
total Lagrangian for matter and gravitational field gives analogous Bianchi identities satisfied by the
field equations. Since there are 80 gravitational equations for 16 + 64 = 80 gravitational potentials
(tetrad and connection) with 4+ 6 = 10 identities, 80 — 10 = 70 potentials are independent dynamical
variables [IT].

In this paper, which is a sequel of [I5], we present a brief derivation of conservation laws for the
canonical and dynamical energy-momentum tensors and angular momentum (spin) density for a gen-
eral Lorentz connection. Such a connection corresponds to an affine connection that is not restricted
to be metric compatible and torsionless. Examples of a physical theory with a general affine connec-
tion are Weyl’s conformal geometry [I2[T6] and the generalized Einstein—Maxwell theory with the
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electromagnetic field tensor represented by the homothetic curvature tensor [I7]. We use the notation
of [15].

2 Infinitesimal coordinate transformations

Under an infinitesimal coordinate transformation
L T N (1)

where £ is an infinitesimal vector, the transformation law for any tensor or tensor density @ is given
by
80 = &' (z') — B(x) = £ 4CL D, (2)

where the constant linear operators C’g are determined by the covariant derivative of @ with respect
to the affine connection [12]:

D, =0, +ICHl. (3)

For example, the operator C acting on a scalar ¢, contravariant vector V¥, covariant vector V, and
scalar density V of weight w returns, respectively:

Clo =0, (4)
ChvYy =51 vP, (5)
égvv = _55‘/&7 (6)
CPY = —wsly. (7)

The transformation law for a Lagrangian density &, which is a scalar density (of weight 1) since Zd*x
is a scalar, is thus

oL =—¢" 4. (8)
A Lie derivative with respect to £ of a quantity @ is defined as
LcD =60 =P (z) — D(z) = 6D — "D, (9)

It can be shown that d®, unlike 6&, transforms under general coordinate transformations the same
way as @. For example, the Lie derivative of the contravariant metric tensor g"” is also a tensor:

Legh = € 0g™ + € ag" — €79 o = 2V + (45H) 1 N e, (10)

A Killing vector is defined as a vector " that preserves the metric: Leg"” = 0[]

3 Canonical energy—momentum tensors

The change 0% of a Lagrangian density for matter under an infinitesimal coordinate transformation ()
is given by Eq. (8). If we assume that ¥ depends, in addition to the coordinates z*, on matter fields
¢ and their first derivatives ¢, then

oxL oxL 3} 8
= 5500+ 5500+ gt (1)

oxH
where the changes §¢ and §(¢,,) are brought by the transformation () and O denotes partial differ-
entiation with respect to z* regarding ¢ and ¢ , as constant. Using the Lagrange field equations,

0 0
a_z B (aqi)

The invariance of the matter action under a coordinate translation generated by a Killing vector yields
the covariant conservation of the corresponding dynamical energy—momentum tensor [18].

o0&

=0, (12)
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and the identities %, = oL | %(Jﬁ,# + %(Jiw and 0(¢,,) = (6¢),u — € .00, we bring Eq. (II) to

oxH

L= 60+ (5206 - €6,)) (13)

L

0d

Combining Eqgs. (8) and (3] gives a conservation law [12]:
3" ,=3",-253"=0, (14)

with the current:

oL
3¢u 9o

Equations ([4) and ([I3)) represent Noether’s theorem: the correspondence between continuous symme-
tries of a Lagrangian and conservation laws 2

If we assume that the matter fields ¢ are purely tensorial then applying Eqs. (@) and (B) to the
definition of the conserved current (I3 gives

JH = rE + 5. (15)

(5¢ SEMEIE

oL
0d

I = L+ 5 (675 +25%,8)C00 — €0y ). (16)

In order to obtain a local conservation law that does not contain the vector £€* we must impose a
covariant restriction on this vector at a particular point in spacetime:

£ +25%,8" =0, (17)

which brings Eqs. (Id)) and (3] to

(2 - e,

59 C ), Su(éﬂi—%w ,) =0. (18)

Using again Eq. () allows to eliminate &, leading to

oL

ox
7, (—qs‘y) vose 2, 105, 2y o (19)
8¢,u SH nv 6¢ 8¢,u ’
which represents a conservation law:
HZ;V — 2SU’HZ + QSVM)’Hﬁ =0, (20)
for the canonical energy—momentum tensor densityE
oL
HE = — 0hAL. 21
5w (21)
2 If 2# are Cartesian coordinates then for Lorentz translations, é* = const and §¢ = 0, we obtain a
conservation of energy-momentum: ©F, = 0, where O = a‘l—uqﬁ,u — o083 is the energy-momentum tensor
density. This conservation also follows from the Lagrange field equations (I2]). For Lorentz rotations, £&# = €*,z"
and ¢ = EWG V¢, where G*¥ are the generators of the Lorentz group, the conservation law (I4) yields a
conservation of angular momentum: (A, 5" + X 5"),. = 0, where A ;" = 2.0 — 2504 is the orbital angular
momentum density and Zaﬁ“ = ;—lGamb is the spin density.

3 The canonical energy-momentum tensor density [21)) generalizes the Cartesian energy—momentum tensor

density ©4 (cf. footnote 2) to a general affine connection, replacing the ordinary derivative ¢,, by the covariant
derivative ¢,,. The corresponding canonical energy-momentum tensor can be symmetrized using the generalized
Belinfante—Rosenfeld formula [8/[19].



4 Dynamical energy—momentum tensors

A dynamical energy-momentum tensor density in the tetrad formulation of gravity, T}, is defined via
the variation of a matter Lagrangian density & with respect to a tetrad{]

0L = Tk, (22)

If ¥ depends only on tensor matter fields then the tetrad enters I only where there is the metric tensor,
in a combination g"¥ = n“bege’g, yielding

1
dett = 5%,,69“”. (23)

Substituting Eq. 23) to ([22) gives the standard general-relativistic form 0% = 1T, 6g", where
T, =eq..T;. (24)

Therefore, for purely tensorial matter fields, the symmetric part T,,) of the dynamical energy—
momentum tensor density in the tetrad formulation coincides with the dynamical energy—momentum
tensor density 7,, in the metric formulation [12][I8]. If ¥ depends also on spinor matter fields then
Eq. [22) becomes the sum of two parts, tensorial and spinorial:

1 L
0L = 577“/59;“/ + @Z(spm)(setlL’ (25)

where Seg denotes the variation of the tetrad that cannot be related to the variation of the metric
tensor.

Let us assume that the matter Lagrangian density ¥ depends on matter fields ¢ (and their first
derivatives ¢ ,) that can be expressed in terms of Lorentz and spinor indices only. Consequently,
the tetrad field appears in & only where there is a derivative of ¢, in a covariant combination
ek ¢y, For example, the Dirac Lagrangian density for a massless particle is ge(1oy®el)), — ehb),v*)
and the Maxwell Lagrangian density —i\/—gFWF‘“’, where F,, = A, — A, can be written as
Te(—el Ay, Fb + ScabAcF“b)ﬁ Since I = tL, where L is a scalar, we obtain

oL oL
08 = 6L — e Lbe) = 500l — Aejbel = (Wm

OP|a
Comparing Eq. 20) with (22) shows that the dynamical energy-momentum tensor density T, is a
generalized canonical energy—momentum tensor density [12]:

Bl — ieg)aeg. (26)

a 81 a
@:M = —a(b‘agblu — eul, (27)
or equivalently
oL
T =_—¢, — LA 28
W (28)

The canonical energy—momentum tensor density (28] generalizes the density (2I]), replacing the
derivative ¢, with ¢y,. The difference between the tensor densities 28) and (21 is

ox
0d .
1

where the connection I, = —2wab,,G“b depends on the generators G of the representation of the
Lorentz group governing a transformation law of ¢ [I2l[I5]. If the matter fields ¢ in the Lagrangian
density I are expressed in terms of coordinate indices only, they must be purely tensorial and the
dynamical energy-momentum tensor density (27) corresponds to the dynamical matter density 7, in
the metric formulation.

4

qu - /Hﬁ = - I, 9, (29)

The energy—momentum tensor, canonical or dynamical, is obtained from the corresponding energy—
momentum tensor density by dividing the latter by ¢.

5 The definition Fuv = Ay — Ay, does not yield Fop = Apq — Aas.
6 For the Maxwell Lagrangian density the variation L due to the variation of the tetrad is: 6L =
—Awa“béeﬁ.



5 Spin density

For a general connection, not restricted to be metric compatible, the Lorentz connection w“bﬂ is not
antisymmetric in the indices a,b [3] and its symmetric part is related to the nonmetricity tensor:
ab)# = —IN abﬂ [15]. The variation of a matter Lagrangian density ¥ with respect to a Lorentz

connection:

w'
1 I ab
0L = igﬁab dw™,, (30)

defines the Lorentz connection-conjugate density &,/ [1 The variation of Z with respect to the anti-

symmetric part of the Lorentz connection defines the spin density M/ in the tetrad formulation of
gravity:

1

5L — Emab#(gw[ab] (31)

n
The variation of I with respect to the symmetric part of the Lorentz connection, i.e. the nonmetricity
tensor, defines the nonmetricity-conjugate density f2,,":

5T — %ﬁab#(gw(ab)u' (32)

The densities M, and £,/ are the symmetric and antisymmetric (in the indices a,b) parts of the
density &_,", respectively:
éab# = mab# + jau,b‘u' (33)

The Lorentz connection w“bﬂ enters L only where there is a derivative of ¢, in a combination

_%Fu¢- Consequently, the spin density is equal to

o O

= MGabaﬁ, (34)

and generalizes the spin density X ﬁ“ in the Cartesian coordinates (cf. footnote 2). The difference (29))
between the tensor densities (28) and (21I) is then

1
TH N = §wabuﬁlab”. (35)

6 Conservation of angular momentum

The Lorentz group is the group of tetrad rotations [3l[12]. Since a physical matter Lagrangian density
7 is invariant under local, proper Lorentz transformations, it is invariant under tetrad rotations:

oL oL
= oo+
95’ 84,

where the changes ¢ correspond to a tetrad rotation. Under integration of Eq. B8] over spacetime the
first two terms vanish because of the field equation for ¢ ([I2):

1
PE 5(6.) + Thoelt + 58, 0w, =0, (36)

a 1 a
/ (Q:#&e’[l‘ + 58, 0w b#)d% —0. (37)

For an infinitesimal Lorentz transformation:

Aab = 6g + Eab7 (38)

" The analogous affine connection-conjugate density IT ,""", defined via the variation of & with respect to a

general affine connection: 0% = I1,"éI,5,, is called hypermomentum [8].



where €., = —€pq, the tetrad ez changes according to
a _ za _ ,a _ pa b a _ _a
dey, = €, — ey, = Ae), — e =€), (39)

and the tetrad e”, because of the identity d(e Z ¥) = 0, according to
oell = —€¥,. (40)
The Lorentz connection changes according to
Sw® 5( a, vb ) — Eal’wvbﬂ _ ezeubm _ Eacwa# _ ezeublu + eacwbc# _ _eablu _ eachc#' (41)
Substituting Eqs. (24), @0) and @) to B7) gived
1
0= —/(@Ze“a + §§’ab“6“b gﬁab € Nbc#>d4ac
v 1 v o _pv 4
= /(QEWE” — ESW”EM = §§)W et Npl,o>d T
1 1
— _ P - 4 - po pv g4
- / (Tlr = $08p)” + 580"+ 5N B ). (42)

Since the infinitesimal Lorentz rotation e*” is arbitrary, we obtain a generalized conservation law for
angular momentum (spin density){

M, =T+ T +25M,,° — N[Hpgml/]pa - N[Hwﬁu]pv' (43)
Eq. (@3) corresponds to the conservation law for the hypermomentum density in the orthonormal
gauge [11].
7 Conservation of energy—momentum

A matter Lagrangian density Z is also invariant under infinitesimal translations of the coordinate sys-
tem (). The corresponding changes of the tetrad and Lorentz connection are given by Lie derivatives:

deh = Leel =€V e — "¢l (44)
gwabu = ngabu ==& Mw = {”wablhu. (45)

Eq. (37) becomes now X
/ (afﬁaeg + §§>ab“5w“b#)d4x =0, (46)

and holds for an arbitrary vector £:

a v a ¢v 1 v o .a 1 v, .a
= /(mﬂgu,uea _m:,ug eg,v - §éabug Y bu - §§abug w b,u,v>d4x

1 v 1
_ / (-0 — Tl 5 (B ™) — 58w, )€ (47)
Consequently we can write
ab v b b v
0_51117 W +§ab (wa "% —w® u,u) _2¢ 2¢Z €a,u
= (%ab lv — 25 5ab + 5cb wcau + 5acvc*jcbl)c’uabu + %ab (_Rabuu + wacuwd)u - wacuwau)
-2, , —2Te, (48)
8 We also use the partial-integration identity fd4:c('W“)m = 2fd4:tcS,fW”7 valid for an arbitrary vector
density Y*.
9 If we use the affine connection I',?,, which is invariant under tetrad rotations, instead of the Lorentz

TR
. . b .
connection w*’, as a variable in a Lagrangian density 7 then we must replace the term with dw® ,, in Eq. B8]

by a term with d(e ). The resulting equation is equivalent to Eq. @3)), cf. [17].

ab



which reduces to
0= (éab v — 25 gab - gacV‘vacl/)""yab,u - Rabyugabu
—QQEVWJ + 45,}![”“ - QQEpl,w”pM + 45’””MQEPU
_ v v P v o af af v
=@M, F 805" — 25805 — 8o Ng" Jw™, — R 8,4
—2@:”#;1, + 4SUQE”# — 2¢pyw””# + 45’”’)#@:,,1,. (49)
Equations (33), @3) and the identity™] R(QB)W = N“ﬁ[#‘y] + S”WNo‘ﬁp bring Eq. (@9) to the form

of a generalized conservation law for energy—momentum:

v 14 v, v 1 o araf3
T, = 29,8, 25", T, + %N = —ﬁyp N Ry N5 TN,

1 o araf3 af 1 v paf 1 v af af
+ZﬁapgN5” N, + §ﬁa5PSpN e imaﬁ R, - iﬁaﬁ (N T 87N, (50)

Eq. (B0) corresponds to the conservation law for the canonical energy—momentum density in the or-
thonormal gauge [I1], cf. also [I720].

The conservation law (B0) for the dynamical energy—momentum tensor density QE”H coincides with
the conservation law (20) for the canonical energy-—momentum density H* if the nonmetricity tensor
Nyuyp and the spin density M,,,” vanish. In order to derive Eq. (20) we assumed that the matter fields
¢ are purely tensorial and only considered a coordinate translation in the variation of ¢. Therefore the
spin density does not contribute to the conservation of the tensor density H;, and does not appear in
Eq. 20). In fact, the difference ([B5) between the tensor densities (28) and (IZD) is linear in the spin
density. The absence of the nonmetricity tensor in Eq. (20) is related to the fact that we imposed the
constraint (I7)) on the vector £* to derive a covariant conservation law independent of £, while there
is no restriction on this vector in the derivation of the conservation law (B0). The full conservation law
for H}, (corresponding to unrestricted {#) can be derived by combining Eqs. (33), (@3) and (&0).
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