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Erratum: ”Tidal Love numbers of neutron stars”
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There are typographical errors in Eqs. (20) and (23), and some incorrect entries in

Table (1). I thank Ryan Lang for pointing these out.

Equation (20) should read as follows:

H = c1

( r

M

)2
(

1 −
2M

r

)[

−
M(M − r)(2M2 + 6Mr − 3r2)

r2(2M − r)2
+

3

2
log

(

r

r − 2M

)]

+3c2

( r

M

)2
(

1 −
2M

r

)

.

Equation (23) should be replaced by the following:

k2 =
8C5

5
(1 − 2C)2 [2 + 2C (y − 1) − y] ×

{

2C (6 − 3y + 3C(5y − 8)) + 4C3
[

13 − 11y + C(3y − 2) + 2C2(1 + y)
]

+ 3(1 − 2C)2 [2 − y + 2C(y − 1)] log (1 − 2C)

}−1

,

The corrected values for the Love numbers in Table (1) are given in the table below.

http://arXiv.org/abs/0711.2420v4
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Table 1. Relativistic Love numbers k2

n M/R k2

0.3 10−5 0.5511

0.3 0.1 0.294

0.3 0.15 0.221

0.3 0.2 0.119

0.5 10−5 0.4491

0.5 0.1 0.251

0.5 0.15 0.173

0.5 0.2 0.095

0.5 0.25 0.0569

0.7 10−5 0.3626

0.7 0.1 0.1779

0.7 0.15 0.1171

0.7 0.2 0.0721

0.7 0.25 0.042

1.0 10−5 0.2599

1.0 0.1 0.122

1.0 0.15 0.0776

1.0 0.2 0.0459

1.0 0.2 0.0253

1.2 10−5 0.2062

1.2 0.1 0.0931

1.2 0.15 0.0577

1.2 0.2 0.0327
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1. Tidal Love numbers of neutron stars

Tanja Hinderer

Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853

tph25@cornell.edu

For a variety of fully relativistic polytropic neutron star models we calculate the star’s

tidal Love number k2. Most realistic equations of state for neutron stars can be approximated

as a polytrope with an effective index n ≈ 0.5−1.0. The equilibrium stellar model is obtained

by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the

linear l = 2 static perturbations to the Schwarzschild spacetime following the method of

Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second

order differential equation for the perturbation to the metric coefficient gtt, and matching the

exterior solution to the asymptotic expansion of the metric in the star’s local asymptotic rest

frame gives the Love number. Our results agree well with the Newtonian results in the weak

field limit. The fully relativistic values differ from the Newtonian values by up to ∼ 24%.

The Love number is potentially measurable in gravitational wave signals from inspiralling

binary neutron stars.

2. Introduction and Motivation

A key challenge of current astrophysical research is to obtain information about the

equation of state (EoS) of the ultra-dense nuclear matter making up neutron stars (NSs).

The observational constraints on the internal structure of NSs are weak: the observed range

of NS masses is M ∼ 1.1−2.2M⊙ (Lattimer & Prakash 2007), and there is no current method

to directly measure the radius. Some estimates using data from X-ray spectroscopy exist,

but those are highly model-dependent (e. g. Webb & Barret (2007)). Different theoretical

models for the NS internal structure predict, for a neutron star of mass M ∼ 1.4M⊙, a central

density in the range of ρc ∼ 2 − 8 × 1014gcm−3 and a radius in the range of R ∼ 7 − 16km

(Lattimer & Prakash 2007). Potential observations of pulsars rotating at frequencies above

1400Hz could be used to constrain the EoS if the pulsar’s mass could also be measured (e.

g. Zdunik et al. (2007)).

Direct and model-independent constraints on the EoS of NSs could be obtained from

gravitational wave observations. Coalescing binary neutron stars are one of the most impor-

tant sources for ground-based gravitational wave detectors (Cutler & Thorne 1993). LIGO

observations have established upper limits on the coalescence rate per comoving volume

(Abbott et al. 2007), and at design sensitivity LIGO II is expected to detect inspirals at a
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rate of ∼ 2/day (Kalogera et al. 2004).

In the early, low frequency part of the inspiral (f ≤ 100Hz, where f is the gravi-

tational wave frequency), the waveform’s phase evolution is dominated by the point-mass

dynamics and finite-size effects are only a small correction. Toward the end of the inspiral

the internal degrees of freedom of the bodies start to appreciably influence the signal, and

there have been many investigations of how well the EoS can be constrained using the last

several orbits and merger, including constraints from the gravitational wave energy spec-

trum (Faber et al. 2002) and from the NS tidal disruption signal for NS-black hole binaries

(Vallisneri 2002). Several numerical simulations of the hydrodynamics of NS-NS mergers

have studied the dependence of the gravitational wave spectrum on the radius and EoS (see,

e.g. Baumgarte & Shapiro (2003) and references therein). However, trying to extract EoS

information from this late time regime presents several difficulties: (i) the highly complex

behavior requires solving the full nonlinear equations of general relativity together with rela-

tivistic hydrodynamics; (ii) the signal depends on unknown quantities such as the spins and

angular momentum distribution inside the stars, and (iii) the signals from the hydrodynamic

merger are outside of LIGO’s most sensitive band.

During the early regime of the inspiral the signal is very clean and the influence of tidal

effects is only a small correction to the waveform’s phase. However, signal detection is based

on matched filtering, i. e. integrating the measured waveform against theoretical templates,

where the requirement on the templates is that the phasing remain accurate to ∼ 1 cycle over

the inspiral. If the accumulated phase shift due to the tidal corrections becomes of order unity

or larger, it could corrupt the detection of NS-NS signals or alternatively, detecting a phase

perturbation could give information about the NS structure. This has motivated several

analytical and numerical investigations of tidal effects in NS binaries (Bildsten & Cutler

1992; Kokkotas & Schafer 1995; Kochanek 1992; Taniguchi & Shibata 1998; Mora & Will

2004; Shibata 1994; Gualteri et al. 2001; Pons et al. 2002; Berti et al. 2002). The influence

of the internal structure on the gravitational wave phase in this early regime of the inspiral

is characterized by a single parameter, namely the ratio λ of the induced quadrupole to

the perturbing tidal field. This ratio λ is related to the star’s tidal Love number k2 by

k2 = 3GλR−5/2, where R is the star’s radius. Flanagan & Hinderer (2007) have shown that

for an inspiral of two non-spinning 1.4M⊙ NSs at a distance of 50 Mpc, LIGO II detectors

will be able to constrain λ to λ 6 2.01 × 1037g cm2s2 with 90% confidence. This number

is an upper limit on λ in the case that no tidal phase shift is observed. The corresponding

constraint on radius would be R 6 13.6 km (15.3 km) for a n = 0.5 (n = 1.0) fully relativistic

polytrope, for 1.4M⊙ NSs (Flanagan & Hinderer 2007).

Because neutron stars are compact objects with strong internal gravity, their Love num-
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bers could be very different from those for Newtonian stars that have been computed previ-

ously, e. g. by Brooker & Olle (1955).

Knowledge of Love number values could also be useful for comparing different numerical

simulations of NS binary inspiral by focusing on models with the same masses and values of

λ.

In Flanagan & Hinderer (2007), the l = 2 tidal Love numbers for fully relativistic neu-

tron star models with polytropic pressure-density relation P = Kρ1+1/n, where K and n

are constants, were computed for the first time. The present paper will give details of this

computation. Using polytropes allows us to explore a wide range of stellar models, since

most realistic models can be reasonably approximated as a polytrope with an effective index

in the range n ∼ 0.5 − 1.0 Lattimer & Prakash (2007). Our prescription for computing λ is

valid for an arbitrary pressure-density relation and not restricted to polytropes. In Sec. 3,

we start by defining λ in the fully relativistic context in terms of coefficients in an asymp-

totic expansion of the metric in the star’s local asymptotic rest frame and discuss the extent

to which it is uniquely defined. In Sec. 4, we discuss our method of calculating λ, which

is based on static linearized perturbations of the equilibrium configuration in the Regge-

Wheeler gauge as in Thorne & Campolattaro (1967). Section 5 contains the results of the

numerical computations together with a discussion. Unless otherwise specified, we use units

in which c = G = 1.

3. Definition of the Love number

Consider a static, spherically symmetric star of mass M placed in a static external

quadrupolar tidal field Eij. The star will develop in response a quadrupole moment Qij
1. In

the star’s local asymptotic rest frame (asymptotically mass centered Cartesian coordinates)

at large r the metric coefficient gtt is given by (Thorne 1998):

(1 − gtt)

2
= −

M

r
−

3Qij

2r3

(

ninj −
1

3
δij

)

+ O

(

1

r3

)

+
1

2
Eijx

ixj + O
(

r3
)

, (1)

1 The induced quadrupolar deformation of the star can be described in terms of the star’s l = 2 mode

eigenfunctions of oscillation.
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where ni = xi/r; this expansion defines Eij
2 and Qij . In the Newtonian limit, Qij is related

to the density perturbation δρ by

Qij =

∫

d3xδρ(x)

(

xixj −
1

3
r2δij

)

, (2)

and Eij is given in terms of the external gravitational potential Φext as

Eij =
∂2Φext

∂xi∂xj
. (3)

We are interested in applications to fully relativistic stars, which requires going beyond

Newtonian physics. In the strong field case, Eqs. (2) and (3) are no longer valid but the

expansion of the metric (1) still holds in the asymptotically flat region and serves to define

the moments Qij and Eij.

We briefly review here the extent to which these moments are uniquely defined since

there are considerable coordinate ambiguities in performing asymptotic expansions of the

metric. For an isolated body in a static situation these moments are uniquely defined: Eij

and Qij are the coordinate independent moments defined by Geroch (1970) and Hansen

(1974) for stationary, asymptotically flat spacetimes in terms of certain combinations of the

derivatives of the norm and twist of the timelike Killing vector at spatial infinity. In the case

of an isolated object in a dynamical situation, there are ambiguities related to gravitational

radiation, for example angular momentum is not uniquely defined (Wald 1984). For the

application to the adiabatic part of a NS binary inspiral, we are interested in the case of a

non-isolated object in a quasi-static situation. In this case there are still ambiguities (related

to the choice of coordinates) but their magnitudes can be estimated (Thorne & Hartle 1985)

and are at a high post-Newtonian order and therefore can be neglected. We are also interested

in (i) working to linear order in Eij and (ii) in the limit where the source of Eij is very far

away. In this limit the ambiguities disappear.

To linear order in Eij, the induced quadrupole will be of the form

Qij = −λEij . (4)

Here λ is a constant which is related to the l = 2 tidal Love number (apsidal constant) k2

by (Flanagan & Hinderer 2007)

k2 =
3

2
GλR−5. (5)

2The l = 2 tidal moment can be related to a component of the Riemann tensor Rαβγδ of the external

pieces of the metric in Fermi normal coordinates at r = 0 as Eij = R0i0j (see Misner et al. (1973)).
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Note the difference in terminology: in Flanagan & Hinderer (2007), λ was called the Love

number, whereas in this paper, we reserve that name for the dimensionless quantity k2.

The tensor multipole moments Qij and Eij can be decomposed as

Eij =

2
∑

m=−2

EmY
2m
ij , (6)

and

Qij =

2
∑

m=−2

QmY
2m
ij , (7)

where the symmetric traceless tensors Y2m
ij are defined by (Thorne 1980)

Y2m(θ, ϕ) = Y2m
ij ninj (8)

with n = (sin θ cos ϕ, sin θ sin ϕ, cos θ). Thus, the relation (4) can be written as

Qm = −λEm. (9)

Without loss of generality, we can assume that only one Em is nonvanishing, this is sufficient

to compute λ.

4. Calculation of the Love number

4.1. Equilibrium configuration

The geometry of spacetime of a spherical, static star can be described by the line element

(Misner et al. 1973)

ds2
0 = g

(0)
αβdxαdxβ = −eν(r)dt2 + eλ(r)dr2 + r2

(

dθ2 + sin2 θdφ2
)

. (10)

The star’s stress-energy tensor is given by

Tαβ = (ρ + p)uαuβ + pg
(0)
αβ , (11)

where ~u = e−ν/2∂t is the fluid’s four-velocity and ρ and p are the density and pressure.

Numerical integration of the Tolman-Oppenheimer-Volkhov equations (see e.g. Misner et al.

(1973)) for neutron star models with a polytropic pressure-density relation

P = Kρ1+1/n, (12)

where K is a constant and n is the polytropic index, gives the equilibrium stellar model with

radius R and total mass M = m(R).
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4.2. Static linearized perturbations due to an external tidal field

We examine the behavior of the equilibrium configuration under linearized perturbations

due to an external quadrupolar tidal field following the method of Thorne & Campolattaro

(1967). The full metric of the spacetime is given by

gαβ = g
(0)
αβ + hαβ, (13)

where hαβ is a linearized metric perturbation. We analyze the angular dependence of the

components of hαβ into spherical harmonics as in Regge & Wheeler (1957). We restrict

our analysis to the l = 2, static, even-parity perturbations in the Regge-Wheeler gauge

(Regge & Wheeler 1957). With these specializations, hαβ can be written as (Regge & Wheeler

1957; Thorne & Campolattaro 1967):

hαβ = diag
[

e−ν(r)H0(r), eλ(r)H2(r), r2K(r), r2 sin2 θK(r)
]

Y2m(θ, ϕ). (14)

The nonvanishing components of the perturbations of the stress-energy tensor (11) are δT 0
0 =

−δρ = −(dp/dρ)−1δp and δT i
i = δp. We insert this and the metric metric perturbation (14)

into the the linearized Einstein equation δGβ
α = 8πδT β

α and combine various components.

From δGθ
θ − δGφ

φ = 0 it follows that that H2 = H0 ≡ H , then δGr
θ = 0 relates K ′ to H , and

after using δGθ
θ + δGφ

φ = 16πδp to eliminate δp, we finally subtract the r − r component of

the Einstein equation from the t− t component to obtain the following differential equation

for H0 ≡ H (for l = 2):

H ′′ + H ′

[

2

r
+ eλ

(

2m(r)

r2
+ 4πr (p − ρ)

)]

+H

[

−
6eλ

r2
+ 4πeλ

(

5ρ + 9p +
ρ + p

(dp/dρ)

)

− ν ′2

]

= 0, (15)

where the prime denotes d/dr. The boundary conditions for Eq. (15) can be obtained as

follows. Requiring regularity of H at r = 0 and solving for H near r = 0 yields

H(r) = a0r
2

[

1 −
2π

7

(

5ρ(0) + 9p(0) +
ρ(0) + p(0)

(dp/dρ)(0)

)

r2 + O(r3)

]

, (16)

where a0 is a constant. To single out a unique solution from this one-parameter family of

solutions parameterized by a0, we use the continuity of H(r) and its derivative across r = R.

Outside the star, Eq. (15) reduces to

H ′′ +

(

2

r
− λ′

)

H ′ −

(

6eλ

r2
+ λ′2

)

H = 0, (17)
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and changing variables to x = (r/M − 1) as in Thorne & Campolattaro (1967) transforms

Eq. (17) to a form of the associated Legendre equation with l = m = 2:

(

x2 − 1
)

H ′′ + 2xH ′ −

(

6 +
4

x2 − 1

)

H = 0. (18)

The general solution to Eq. (18) in terms of the associated Legendre functions Q2
2(x) and

P2
2(x) is given by

H = c1Q2
2
( r

M
− 1
)

+ c2P2
2
( r

M
− 1
)

, (19)

where c1 and c2 are coefficients to be determined. Substituting the expressions for Q2
2(x)

and P2
2(x) from Abramowitz & Stegun (1964) yields for the exterior solution

H = c1

( r

M

)2
(

1 −
2M

r

)[

−
M(M − r)(2M2 + 6Mr − 3r2)

r2(2M − r)2
+

3

2
log

(

r

r − 2M

)]

+3c2

( r

M

)2
(

1 −
2M

r

)

. (20)

The asymptotic behavior of the solution (20) at large r is

H =
8

5

(

M

r

)3

c1 + O

(

(

M

r

)4
)

+ 3
( r

M

)2

c2 + O
(( r

M

))

, (21)

where the coefficients c1 and c2 are determined by matching the asymptotic solution (21) to

the expansion (1) and using Eq. (9):

c1 =
15

8

1

M3
λE , c2 =

1

3
M2

E . (22)

We now solve for λ in terms of H and its derivative at the star’s surface r = R using Eqs.

(22) and (20), and use the relation (5) to obtain the expression:

k2 =
8C5

5
(1 − 2C)2 [2 + 2C (y − 1) − y] × (23)

{

2C (6 − 3y + 3C(5y − 8)) + 4C3
[

13 − 11y + C(3y − 2) + 2C2(1 + y)
]

+ 3(1 − 2C)2 [2 − y + 2C(y − 1)] log (1 − 2C)

}−1

,

where we have defined the star’s compactness parameter C ≡ M/R and the quantity y ≡

RH ′(R)/H(R), which is obtained by integrating Eq. (15) outwards in the region 0 < r < R.
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4.3. Newtonian limit

The first term in the expansion of the expression (23) in M/R reproduces the Newtonian

result:

kN
2 =

1

2

(

2 − y

y + 3

)

, (24)

where the superscript N denotes ”Newtonian”. In the Newtonian limit, the differential

equation (15) inside the star becomes

H ′′ +
2

r
H ′ +

(

4πρ

dp/dρ
−

6

r2

)

H = 0. (25)

For a polytropic index of n = 1, Eq. (25) can be transformed to a Bessel equation with the

solution that is regular at r = 0 given by H = A
√

r/R J5/2(πr/R), where A is a constant.

At r = R, we thus have y = RH ′/H = (π2 − 9)/3, and from Eq. (23) it follows that

kN
2 (n = 1) =

(

−
1

2
+

15

2π2

)

≈ 0.25991, (26)

which agrees with the known result of Brooker & Olle (1955).

5. Results and Discussion

The range of dimensionless Love numbers k2 obtained by numerical integration of Eq.

(23) is shown in Fig. 1 as a function of M/R and n for a variety of different neutron star

models, and representative values are given in Table 2. These values can be approximated

to an accuracy of ∼ 6% in the range 0.5 ≤ n ≤ 1.0 and 0.1 ≤ (M/R) ≤ 0.24 by the fitting

formula

k2 ≈
3

2

(

−0.41 +
0.56

n0.33

)(

M

R

)−0.003

. (27)

Both Fig. 1 and Table 2 illustrate that the dimensionless Love numbers k2 depend more

strongly on the polytropic index n than on the compactness C = M/R. 3 This is expected

since the weak field, Newtonian values kN
2 given by Eq. (24) just depend on n (through the

dependence on y). The additional dependence on the compactness for the Love numbers k2

in Eq. (23) is a relativistic correction to this. For M/R ∼ 10−5 our results for k2 agree well

with the Newtonian results of Brooker & Olle (1955). Figure 2 shows the percent difference

3Note, however, that LIGO measurements will yield the combination k2R
5 and therefore will be more

sensitive to the compactness than the polytropic index.
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(kN
2 − k2)/k2 between the relativistic and Newtonian dimensionless Love numbers. As can

be seen from the figure, the relativistic values are lower than the Newtonian ones for higher

values of n. This can be explained by the fact that the Love number encodes information

about the degree of central condensation of the star. Stars with a higher the polytropic

index n are more centrally condensed and therefore have a smaller response to a tidal field,

resulting in a smaller Love number.

Some estimates of the masses and radii of neutron stars, given in Table 3, have been

inferred from X-ray observations (Ozel 2006; Webb & Barret 2007) using the information

from three measured quantities: the Eddington luminosity, the surface redshift of spectral

lines, and the quiescent X-ray flux. The range of the numbers λ for these stars is shown

in Fig. 3. LIGO II detectors will be able to establish a 90% confidence upper limit of

λ 6 2.01 × 1037g cm2s2 for an inspiral of two nonspinning 1.4M⊙ NSs at a distance of 50

Mpc in the case that no tidal phase shift is observed (Flanagan & Hinderer 2007).

The author thanks Éanna Flanagan for valuable discussions and comments.
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Fig. 1.— The relativistic Love numbers k2.
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Fig. 2.— The difference in percent between the relativistic dimensionless Love numbers k2

and the Newtonian values kN
2 .
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Fig. 3.— The range of Love numbers for the estimated NS parameters from X-ray obser-

vations. Top to bottom sheets: EXO0748-676, ωCen, M 13, NGC 2808. For an inspiral of

two 1.4M⊙ NSs at a distance of 50 Mpc, LIGO II detectors will be able to constrain λ to

λ 6 20.1 × 1036g cm2s2 with 90% confidence (Flanagan & Hinderer 2007).
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Table 2. Relativistic Love numbers k2

n M/R k2

0.3 10−5 0.5511

0.3 0.1 0.294

0.3 0.15 0.221

0.3 0.2 0.119

0.5 10−5 0.4491

0.5 0.1 0.251

0.5 0.15 0.173

0.5 0.2 0.095

0.5 0.25 0.0569

0.7 10−5 0.3626

0.7 0.1 0.1779

0.7 0.15 0.1171

0.7 0.2 0.0721

0.7 0.25 0.042

1.0 10−5 0.2599

1.0 0.1 0.122

1.0 0.15 0.0776

1.0 0.2 0.0459

1.0 0.2 0.0253

1.2 10−5 0.2062

1.2 0.1 0.0931

1.2 0.15 0.0577

1.2 0.2 0.0327



– 18 –

Table 3: Estimated neutron star parameters from X-ray observations

Cluster / object M(M⊙) R(km) M/R

ω Cen a 1.61 ± 0.15 10.99 ± 0.71 0.18 ± 0.04

M 13 a 1.36 ± 0.04 9.89 ± 0.08 0.2

NGC 2808 a 0.84 ± 0.12 7.34 ± 0.96 0.22 ± 0.01

EXO 0748-676 b ≥ 2.1 ± 0.28 ≥ 13.8 ± 1.8 0.2256

aThe parameters for these stars are the averages from the best fit values of the data in Webb & Barret (2007)

for their three different spectral fits. The errors given here reflect only the deviations among the best fit

values for the fits.
bThe values are taken from Ozel (2006).

Note. — Parameters used to generate Fig. (3).
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